1
|
Fakhrolmobasheri M, Hosseini MS, Shahrokh SG, Mohammadi Z, Kahlani MJ, Majidi SE, Zeinalian M. Coenzyme Q10 and Its Therapeutic Potencies Against COVID-19 and Other Similar Infections: A Molecular Review. Adv Pharm Bull 2023; 13:233-243. [PMID: 37342382 PMCID: PMC10278218 DOI: 10.34172/apb.2023.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/09/2021] [Accepted: 11/06/2021] [Indexed: 08/25/2023] Open
Abstract
Purpose: New lethal coronavirus disease 2019 (COVID-19), currently, has been converted to a disastrous pandemic worldwide. As there has been found no definitive treatment for the infection in this review we focused on molecular aspects of coenzyme Q10 (CoQ10) and possible therapeutic potencies of CoQ10 against COVID-19 and similar infections. Methods: This is a narrative review in which we used some authentic resources including PubMed, ISI, Scopus, Science Direct, Cochrane, and some preprint databases, the molecular aspects of CoQ10 effects, regarding to the COVID-19 pathogenesis, have been analyzed and discussed. Results: CoQ10 is an essential cofactor in the electron transport chain of the phosphorylative oxidation system. It is a powerful lipophilic antioxidant, anti-apoptotic, immunomodulatory and anti-inflammatory supplement which has been tested for the management and prevention of a variety of diseases particularly diseases with inflammatory pathogenesis. CoQ10 is a strong anti-inflammatory agent which can reduce tumor necrosis factor-α (TNF-α), interleukin (IL)- 6, C-reactive protein (CRP), and other inflammatory cytokines. The cardio-protective role of CoQ10 in improving viral myocarditis and drug induced cardiotoxicity has been determined in different studies. CoQ10 could also improve the interference in the RAS system caused by COVID-19 through exerting anti-Angiotensin II effects and decreasing oxidative stress. CoQ10 passes easily through blood-brain barrier (BBB). As a neuroprotective agent CoQ10 can reduce oxidative stress and modulate the immunologic reactions. These properties may help to reduce CNS inflammation and prevent BBB damage and neuronal apoptosis in COVID-19 patients. Conclusion: CoQ10 supplementation may prevent the COVID-19-induced morbidities with a potential protective role against the deleterious consequences of the disease, further clinical evaluations are encouraged.
Collapse
Affiliation(s)
- Mohammad Fakhrolmobasheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mahnaz-Sadat Hosseini
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh-Ghazal Shahrokh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad-Javad Kahlani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Seyed-Erfan Majidi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Iranians Cancer Control Charity Institute (MACSA), Isfahan, Iran
| |
Collapse
|
2
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
3
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
4
|
Peroxisome Proliferator-Activated Receptor-γ Antagonizes LOX-1-Mediated Endothelial Injury by Transcriptional Activation of miR-590-5p. PPAR Res 2019; 2019:2715176. [PMID: 31354796 PMCID: PMC6632502 DOI: 10.1155/2019/2715176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023] Open
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the major receptors expressed on the endothelium of arterial wall with a key role in endothelial dysfunction and the development of atherosclerosis. Recent evidence suggested that LOX-1 is upregulated under the condition of insulin resistance and could be suppressed by the antidiabetic drugs. We previously also confirmed that Thiazolidinedione (TZD) has the inhibitory effect on LOX-1 in ox-LDL-induced endothelial cells. However, the underlying mechanism is unclear. Here we showed that Rosiglitazone treatment significantly attenuated the expressions of LOX-1, ICAM-1, VCAM-1, p47phox, and the atherosclerotic lesions in ApoE−/− mice with high-fat diet. In vitro, we revealed that Rosiglitazone inhibited LOX-1 by regulating miR-590-5p. Ox-LDL-mediated ICAM-1, VCAM-1, and p47phox were significantly reduced by Rosiglitazone, but all reversed after pretreating the cells with antagomiR-590-5p. Induction with Rosiglitazone activated PPAR-γ and promoted its nuclear translocation in cultured human umbilical vein endothelial cells (HUVECs). The nuclear PPAR-γ upregulated the miR-590-5p level through binding to its transcriptional promoter region. Retaining PPAR-γ in cytoplasm by transfecting with PPAR-γ⊿NLS plasmid in HUVECs failed to activate miR-590-5p. Mutation of the promoter region of PPAR-γ also reduced the miR-590-5p promoter luciferase activity. Collectively, these data indicated that PPAR-γ may have the therapeutic potential in atherosclerosis via the transcriptional regulation of miR-590-5p in endothelial cells.
Collapse
|
5
|
Lelis DDF, Freitas DFD, Machado AS, Crespo TS, Santos SHS. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism 2019; 95:36-45. [PMID: 30905634 DOI: 10.1016/j.metabol.2019.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Nowadays the adipose tissue is recognized as one of the most critical endocrine organs releasing many adipokines that regulate metabolism, inflammation and body homeostasis. There are several described adipokines, including the renin-angiotensin system (RAS) components that are especially activated in some diseases with increased production of angiotensin II and several pro-inflammatory hormones. On the other hand, RAS also expresses angiotensin-(1-7), which is now recognized as the main peptide on counteracting Ang II effects. New studies have shown that increased activation of ACE2/Ang-(1-7)/MasR arm can revert and prevent local and systemic dysfunctions improving lipid profile and insulin resistance by modulating insulin actions, and reducing inflammation. In this context, the present review shows the interaction and relevance of Ang-(1-7) effects on regulating adipokines, and as one adipokine itself, modulating body homeostasis, with emphasis on its anti-inflammatory properties, especially in the context of metabolic disorders with focus on obesity and type 2 diabetes mellitus pandemic.
Collapse
Affiliation(s)
- Deborah de Farias Lelis
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Amanda Souto Machado
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Thaísa Soares Crespo
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Justin A, Divakar S, Ramanathan M. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT 1 and not AT 2 receptor. Biomed Pharmacother 2018; 102:947-958. [PMID: 29710550 DOI: 10.1016/j.biopha.2018.03.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT1 blocker) and/or PD123319 (AT2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT1 & AT2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT1 pathway is beneficial in ischemia, whereas, blockade of AT2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT1 blocker was remarkably antagonized by AT2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT2 receptors was significantly increased compared to that of AT1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT2 receptors in ischemic condition could be used as target protein for therapeutic benefit.
Collapse
Affiliation(s)
- A Justin
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - S Divakar
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - M Ramanathan
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India.
| |
Collapse
|
7
|
Chen J, Zhang W, Xu Q, Zhang J, Chen W, Xu Z, Li C, Wang Z, Zhang Y, Zhen Y, Feng J, Chen J, Chen J. Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int J Mol Med 2018; 41:2865-2878. [PMID: 29484371 DOI: 10.3892/ijmm.2018.3507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Angiotensin (Ang)‑1‑7, which is catalyzed by angiotensin‑converting enzyme 2 (ACE2) from angiotensin‑II (Ang‑II), exerts multiple biological and pharmacological effects, including cardioprotective effects and endothelial protection. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway has been demonstrated to be involved in diabetes‑associated cardiovascular complications. The present study hypothesized that Ang‑(1‑7) protects against high glucose (HG)‑induced endothelial cell injury and inflammation by inhibiting the JAK2/STAT3 pathway in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 40 mmol/l glucose (HG) for 24 h to establish a model of HG‑induced endothelial cell injury and inflammation. Protein expression levels of p‑JAK2, t‑JAK2, p‑STAT3, t‑STAT3, NOX‑4, eNOS and cleaved caspase‑3 were tested by western blotting. CCK‑8 assay was performed to assess cell viability of HUVECs. Apoptotic cell death was analyzed by Hoechst 33258 staining. Mitochondrial membrane potential (MMP) was obtained using JC‑1. Superoxide dismutase (SOD) activity was tested by SOD assay kit. Interleukin (IL)‑1β, IL‑10, IL‑12 and TNF‑α levels in culture media were tested by ELISA. The findings demonstrated that exposure of HUVECs to HG for 24 h induced injury and inflammation. This injury and inflammation were significantly ameliorated by pre‑treatment of cells with either Ang‑(1‑7) or AG490, an inhibitor of the JAK2/STAT3 pathway, prior to exposure of the cells to HG. Exposure of the cells to HG also increased the phosphorylation of JAK2/STAT3 (p‑JAK2 and p‑STAT3). Increased activation of the JAK2/STAT3 pathway was attenuated by pre‑treatment with Ang‑(1‑7). To the best of our knowledge, the findings from the present study provided the first evidence that Ang‑(1‑7) protects against HG‑induced injury and inflammation by inhibiting activation of the JAK2/STAT3 pathway in HUVECs.
Collapse
Affiliation(s)
- Jianfang Chen
- Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Wei Zhang
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Qing Xu
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Jihua Zhang
- Department of Endocrinology, Shanxian Central Hospital of Shandong Province, Shanxian, Shangdong 274300, P.R. China
| | - Wei Chen
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Zhengrong Xu
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Chaosheng Li
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Zhenhua Wang
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Yao Zhang
- Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Chen
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|
8
|
Guo X, Xiang Y, Yang H, Yu L, Peng X, Guo R. Association of the LOX-1 rs1050283 Polymorphism with Risk for Atherosclerotic Cerebral Infarction and its Effect on sLOX-1 and LOX-1 Expression in a Chinese Population. J Atheroscler Thromb 2016; 24:572-582. [PMID: 27840386 PMCID: PMC5453683 DOI: 10.5551/jat.36327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS The interaction between lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) and oxidized LDL (ox-LDL) has been viewed as an important pathogenic factor for cardiovascular diseases. This study aimed to explore the association of a functional polymorphism rs1050283 in the 3'-untranslated region of the LOX-1 gene with atherosclerotic cerebral infarction (ACI) susceptibility, and we also investigated the effects of the rs1050283 polymorphism on LOX-1 expression and serum levels of sLOX-1 in patients with ACI. METHODS A case-controlled study was performed in 526 patients with ACI and 640 healthy controls. Genotyping was performed by DNA sequencing method. Real-time PCR and Western blotting were used to determine the level of LOX-1 expression. Serum levels of sLOX-1 were quantified using ELISA according to the manufacturer's instruction. RESULTS The results of the present study showed that the frequency of rs1050283 T allele was significantly higher in patients with ACI than in healthy controls. We also found that the rs1050283 polymorphism T allele was associated with increased LOX-1 expression at mRNA and protein levels in patients with ACI. Furthermore, we also observed that among patients with ACI, those with the rs1050283 T allele showed an increased serum level of sLOX-1. CONCLUSION Our research demonstrated that the rs1050283 T allele of LOX-1 is strongly associated with an increased risk for ACI in a Chinese population, which also affects levels of LOX-1 and sLOX-1.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University
| | - Yuanyuan Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University
| | - Heng Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University
| | - Lijin Yu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University
| |
Collapse
|
9
|
Li W, Li J, Hao P, Chen W, Meng X, Li H, Zhang Y, Zhang C, Yang J. Imbalance between angiotensin II and angiotensin-(1-7) in human coronary atherosclerosis. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316659618. [PMID: 27432541 PMCID: PMC5843867 DOI: 10.1177/1470320316659618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022] Open
Abstract
Objective: Our previous studies found that angiotensin-(1–7) (Ang-(1–7)) is an endogenous counter-factor of angiotensin II (Ang-II). However, the balance between Ang-II and Ang-(1–7) in the development of human coronary atherosclerosis is not determined. Methods and results: The plasma levels of Ang-II and Ang-(1–7) were detected by enzyme-linked immunosorbent assay (ELISA) in 112 patients with known or suspected coronary artery disease (CAD) undergoing coronary angiography. Patients were divided into three groups based on the coronary angiography as follows: (1) normal (n = 13); (2) noncritical CAD (<50% stenosis, n = 17); and (3) critical CAD (⩾50% stenosis, n = 82). The plasma levels of Ang-II, Ang-(1–7) and the ratio of Ang-II and Ang-(1–7) (Ang-II/Ang-(1–7) were comparable between the normal and noncritical CAD groups. However, Ang-II, Ang-(1–7), and especially Ang-II/Ang-(1–7), were elevated in patients with critical CAD, compared with patients with normal or noncritical CAD. The level of Ang-II/Ang-(1–7) was positively associated with serious coronary stenosis, and correlated with tumor necrosis factor-alpha (TNF-α) level. Conclusion: Both Ang-II and Ang-(1–7) expression are significantly increased in patients with critical CAD. However, increased Ang-II/Ang-(1–7) ratios may lead to Ang-II over-activation and aggravate atherosclerosis progression.
Collapse
Affiliation(s)
- Wenjing Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China Fine Arts School of Shandong University, P.R. China
| | - Jifu Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Hongxuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, P.R. China
| |
Collapse
|
10
|
Bader M, Alenina N, Andrade-Navarro MA, Santos RA. MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev 2015; 66:1080-105. [PMID: 25244929 DOI: 10.1124/pr.113.008136] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Mas-related G protein-coupled receptors (Mrgprs or Mas-related genes) comprise a subfamily of receptors named after the first discovered member, Mas. For most Mrgprs, pruriception seems to be the major function based on the following observations: 1) they are relatively promiscuous in their ligand specificity with best affinities for itch-inducing substances; 2) they are expressed in sensory neurons and mast cells in the skin, the main cellular components of pruriception; and 3) they appear in evolution first in tetrapods, which have arms and legs necessary for scratching to remove parasites or other noxious substances from the skin before they create harm. Because parasites coevolved with hosts, each species faced different parasitic challenges, which may explain another striking observation, the multiple independent duplication and expansion events of Mrgpr genes in different species as a consequence of parallel adaptive evolution. Their predominant expression in dorsal root ganglia anticipates additional functions of Mrgprs in nociception. Some Mrgprs have endogenous ligands, such as β-alanine, alamandine, adenine, RF-amide peptides, or salusin-β. However, because the functions of these agonists are still elusive, the physiologic role of the respective Mrgprs needs to be clarified. The best studied Mrgpr is Mas itself. It was shown to be a receptor for angiotensin-1-7 and to exert mainly protective actions in cardiovascular and metabolic diseases. This review summarizes the current knowledge about Mrgprs, their evolution, their ligands, their possible physiologic functions, and their therapeutic potential.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Miguel A Andrade-Navarro
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Robson A Santos
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| |
Collapse
|
11
|
da Silva AR, Fraga-Silva RA, Stergiopulos N, Montecucco F, Mach F. Update on the role of angiotensin in the pathophysiology of coronary atherothrombosis. Eur J Clin Invest 2015; 45:274-87. [PMID: 25586671 DOI: 10.1111/eci.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coronary atherothrombosis due to atherosclerotic plaque rupture or erosion is frequently associated with acute coronary syndromes (ACS). Significant efforts have been made to elucidate the pathophysiological mechanisms underlying acute coronary events. MATERIALS AND METHODS This narrative review is based on the material searched for and obtained via PubMed up to August 2014. The search terms we used were as follows: 'angiotensin, acute coronary syndromes, acute myocardial infarction' in combination with 'atherosclerosis, vulnerability, clinical trial, ACE inhibitors, inflammation'. RESULTS Among several regulatory components, the renin-angiotensin system (RAS) was shown as a key pathway modulating coronary atherosclerotic plaque vulnerability. Indeed, these molecules are involved in all stages of atherogenesis. Classically, the RAS is composed by a series of enzymatic reactions leading to the angiotensin (Ang) II generation and activity. However, the knowledge of RAS has expanded and become more complex. The discovery of novel components and their functions has revealed additional pathways that contribute to or counterbalance the actions of Ang II. In this review, we discussed on recent findings concerning the role of different angiotensin peptides in the pathophysiology of ACS and coronary atherothrombosis, exploring the link between these molecules and atherosclerotic plaque vulnerability. CONCLUSIONS Treatments selectively targeting angiotensins (including Mas and AT2 agonists, ACE2 recombinant, or Ang-(1-7) and almandine in oral formulations) have been tested in animal studies or in small human subgroups, expanding the perspective in the ACS prevention. These novel strategies, especially in the counter-regulatory axis ACE2/Ang-(1-7)/Mas, might be promising to reduce plaque vulnerability and inflammation.
Collapse
Affiliation(s)
- Analina R da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Li Y, Wang N, Chen C, He D, Yang J, Zeng C. Inhibitory effect of D3dopamine receptor on migration of vascular smooth muscle cells induced by synergistic effect of angiotensin II and aldosterone. Clin Exp Hypertens 2014; 37:288-93. [DOI: 10.3109/10641963.2014.960971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Liang B, Wang X, Bian Y, Yang H, Liu M, Bai R, Yang Z, Xiao C. Angiotensin-(1-7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1 macrophag. Clin Exp Pharmacol Physiol 2014; 41:1023-30. [PMID: 25225013 DOI: 10.1111/1440-1681.12312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Liang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Xin Wang
- Department of Rheumatology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Yunfei Bian
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Huiyu Yang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Ming Liu
- Teaching-Research section of Cell Biology and Genetics; Shanxi Medical University; Taiyuan China
| | - Rui Bai
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Zhiming Yang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Chuanshi Xiao
- Department of Cardiology; The First Hospital of Shanxi Medical University; Taiyuan China
| |
Collapse
|
14
|
Mendonça L, Mendes-Ferreira P, Bento-Leite A, Cerqueira R, Amorim MJ, Pinho P, Brás-Silva C, Leite-Moreira AF, Castro-Chaves P. Angiotensin-(1–7) Modulates Angiotensin II-Induced Vasoconstriction in Human Mammary Artery. Cardiovasc Drugs Ther 2014; 28:513-22. [DOI: 10.1007/s10557-014-6555-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Zhi Z, Pengfei Z, Xiaoyi T, Genshan M. Adiponectin ameliorates angiotensin II-induced vascular endothelial damage. Cell Stress Chaperones 2014; 19:705-13. [PMID: 24523033 PMCID: PMC4147077 DOI: 10.1007/s12192-014-0498-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipocyte-specific adipocytokine that possesses anti-atherogenic and anti-diabetic properties. It has been shown to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether adiponectin has a therapeutic effect on vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of adiponectin on Ang II-induced vascular endothelial damage were investigated. In cultured human umbilical vein endothelium cells, Ang II stimulation increased generation of ROS and 4-hydroxy-2-nonenal, both of which were clearly restored by administration of adiponectin. In addition, administration of adiponectin was found to increase cell viability and prevent apoptosis. Our results also demonstrate that the protective effects of adiponectin against Ang II-induced vascular endothelial damage are dependent on the binding of adiponectin to its cell surface receptor 1. Importantly, we found that adiponectin treatment modulates the apoptotic pathway by reducing the expression of LOX-1, up-regulating both cIAP-1 and the ratio of Bcl-2/Bax. Finally, our data displayed that the protective effects of adiponectin against Ang II cytotoxicity depend on AMPK activation mediated by the endosomal adaptor protein, adaptor protein with phosphotyrosine binding, pleckstrin homology domains, and leucine zipper motif.
Collapse
Affiliation(s)
- Zuo Zhi
- />Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Dingjiaqiao Road No. 87, Nanjing, 210009 Jiangsu Province China
| | - Zuo Pengfei
- />Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Dingjiaqiao Road No. 87, Nanjing, 210009 Jiangsu Province China
| | - Tian Xiaoyi
- />Department of Cardiology, Huai’an Municipal First People’s Hospital, Huai’an, 223400 Jiangsu Province China
| | - Ma Genshan
- />Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Dingjiaqiao Road No. 87, Nanjing, 210009 Jiangsu Province China
| |
Collapse
|
16
|
Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 2013; 65:1060-1068. [PMID: 24012919 PMCID: PMC3879043 DOI: 10.1016/j.freeradbiomed.2013.08.183] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
Abstract
About 500,000 new cancer patients will develop brain metastases in 2013. The primary treatment modality for these patients is partial or whole brain irradiation which leads to a progressive, irreversible cognitive impairment. Although the exact mechanisms behind this radiation-induced brain injury are unknown, neuroinflammation in glial populations is hypothesized to play a role. Blockers of the renin-angiotensin system (RAS) prevent radiation-induced cognitive impairment and modulate radiation-induced neuroinflammation. Recent studies suggest that RAS blockers may reduce inflammation by increasing endogenous concentrations of the anti-inflammatory heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) binds to the AT(1-7) receptor and inhibits MAP kinase activity to prevent inflammation. This study describes the inflammatory response to radiation in astrocytes characterized by radiation-induced increases in (i) IL-1β and IL-6 gene expression; (ii) COX-2 and GFAP immunoreactivity; (iii) activation of AP-1 and NF-κB transcription factors; and (iv) PKCα, MEK, and ERK (MAP kinase) activation. Treatment with U-0126, a MEK inhibitor, demonstrates that this radiation-induced inflammation in astrocytes is mediated through the MAP kinase pathway. Ang-(1-7) inhibits radiation-induced inflammation, increases in PKCα, and MAP kinase pathway activation (phosphorylation of MEK and ERK). Additionally Ang-(1-7) treatment leads to an increase in dual specificity phosphatase 1 (DUSP1). Furthermore, treatment with sodium vanadate (Na3VO4), a phosphatase inhibitor, blocks Ang-(1-7) inhibition of radiation-induced inflammation and MAP kinase activation, suggesting that Ang-(1-7) alters phosphatase activity to inhibit radiation-induced inflammation. These data suggest that RAS blockers inhibit radiation-induced inflammation and prevent radiation-induced cognitive impairment not only by reducing Ang II but also by increasing Ang-(1-7) levels.
Collapse
Affiliation(s)
- Elizabeth D Moore
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mitra Kooshki
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Linda J Metheny-Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Patricia E Gallagher
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E Robbins
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Wegman-Ostrosky T, Soto-Reyes E, Vidal-Millán S, Sánchez-Corona J. The renin-angiotensin system meets the hallmarks of cancer. J Renin Angiotensin Aldosterone Syst 2013; 16:227-33. [PMID: 23934336 DOI: 10.1177/1470320313496858] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
The hallmarks of cancer are described as the distinctive and complementary capacities that cells must acquire during the multistep development of becoming a cancer cell that allow them to survive, proliferate and disseminate. The renin-angiotensin system (RAS) was first discovered and extensively studied in the physiological regulation of systemic arterial pressure. RAS signalling increases cell proliferation in malignancy by directly affecting tumour and stromal cells and by indirectly modulating the growth of vascular cells during angiogenesis. We aim to describe and give a general view of how the RAS is involved in several hallmarks of cancer and how this could open a window to several interesting treatments.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Instituto Nacional de Cancerología, División de Investigación, México Universidad de Guadalajara, Instituto de Génetica Humana, México
| | | | | | - José Sánchez-Corona
- Universidad de Guadalajara, Instituto de Génetica Humana, México Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, México
| |
Collapse
|