1
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
2
|
Ren D, Ebert T, Kreher D, Ernst BLV, de Fallois J, Schmalz G. The Genetic Cross-Talk between Periodontitis and Chronic Kidney Failure Revealed by Transcriptomic Analysis. Genes (Basel) 2023; 14:1374. [PMID: 37510279 PMCID: PMC10379591 DOI: 10.3390/genes14071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Periodontitis and chronic kidney failure (CKF) are potentially related to each other. This bioinformatics analysis aimed at the identification of potential cross-talk genes and related pathways between periodontitis and CKF. Based on NCBI Gene Expression Omnibus (GEO), datasets GSE10334, GSE16134, and GSE23586 were extracted for periodontitis. A differential expression analysis (p < 0.05, |log2(FC)| > 0.5) was performed to assess deregulated genes (DEGs). CKF-related genes were extracted from DisGeNET and examined regarding their overlap with periodontitis-related DEGs. Cytoscape was used to construct and analyze a protein-protein interaction (PPI) network. Based on Cytoscape plugin MCODE and a LASSO regression analysis, the potential hub cross-talk genes were identified. Finally, a complex PPI of the hub genes was constructed. A total of 489 DEGs for periodontitis were revealed. With the 805 CKF-related genes, an overlap of 47 cross-talk genes was found. The PPI network of the potential cross-talk genes was composed of 1081 nodes and 1191 edges. The analysis with MCODE resulted in 10 potential hub genes, while the LASSO regression resulted in 22. Finally, five hub cross-talk genes, CCL5, FCGR3B, MMP-9, SAA1, and SELL, were identified. Those genes were significantly upregulated in diseased samples compared to controls (p ≤ 0.01). Furthermore, ROC analysis showed a high predictive value of those genes (AUC ≥ 73.44%). Potentially relevant processes and pathways were primarily related to inflammation, metabolism, and cardiovascular issues. In conclusion, five hub cross-talk genes, i.e., CCL5, FCGR3B, MMP-9, SAA1, and SELL, could be involved in the interplay between periodontitis and CKF, whereby primarily inflammation, metabolic, and vascular issues appear to be of relevance.
Collapse
Affiliation(s)
- Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Thomas Ebert
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04013 Leipzig, Germany
| | - Deborah Kreher
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Bero Luke Vincent Ernst
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Jonathan de Fallois
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04013 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Cruchaga C, Western D, Timsina J, Wang L, Wang C, Yang C, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey A, Morris J, Perrin R, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson E, Guen YL, Alvarez I, Aguilar M, Greicius M, Pastor P, Pulford D, Ibanez L, Wyss-Coray T, Sung YJ, Phillips B. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2814616. [PMID: 37333337 PMCID: PMC10275048 DOI: 10.21203/rs.3.rs-2814616/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | | | | | | | | | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Mercè Boada
- Memory Clinic of Fundaciò ACE, Catalan Institute of Applied Neurosciences
| | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | |
Collapse
|
4
|
Association of Fc Gamma Receptor 3B Gene Copy Number Variation with Rheumatoid Arthritis Susceptibility. Genes (Basel) 2022; 13:genes13122238. [PMID: 36553504 PMCID: PMC9778311 DOI: 10.3390/genes13122238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Structural variations such as copy number variants (CNVs) have been associated with multiple autoimmune diseases. In this study, we explored the association of the Fc gamma receptor 3B gene (FCGR3B) copy number variation (CNV) with rheumatoid arthritis (RA) susceptibility and related serological traits in the Pakistani population. We also performed a meta-analysis of four published FCGR3B CNV studies along with the current study. A total of 927 subjects (597 RA cases, 330 healthy controls) were recruited from three rheumatology centers in Pakistan. Anti-cyclic citrullinated peptide (anti-CCP) antibodies and rheumatoid factor (RF) were measured in RA patients. FCGR3B copy number was assayed using the TaqMan® CN assay (Hs04211858_cn, Applied Biosystems, Foster City, CA, USA) and the copy number was estimated by using CopyCaller® software (version 2.1; Applied Biosystems, USA). Logistic regression was applied to calculate the odds ratio (OR) of RA risk associated with FCGR3B CNV using sex and age as covariates in R. Meta-analysis on four previously published studies and the current study was performed using the random-effect model. We observed a significant association between FCGR3B copy number < 2 and RA susceptibility (OR = 1.53; 95% CI: 1.05 to 2.22; p = 0.0259) and anti-CCP seropositivity (OR 2.56; 95% CI: 1.34 to 4.89; p = 0.0045). A non-significant association of FCGR3B copy number < 2 was also observed between increased rheumatoid factor (RF) seropositivity (OR = 1.74; 95% CI:0.93 to 3.26; p = 0.0816). Meta-analysis on 13,915 subjects (7005 RA cases and 6907 controls) also showed significant association of copy number < 2 with the increased risk of RA (OR = 1.30; 95% CI: 1.07 to 1.56; p = 0.00671). FCGR3B copy number < 2 is associated with increased RA risk and anti-CCP seropositivity.
Collapse
|
5
|
Liu L, Yu Y, Hu LL, Dong QB, Hu F, Zhu LJ, Liang Q, Yu LL, Bao HH, Cheng XS. Potential Target Genes in the Development of Atrial Fibrillation: A Comprehensive Bioinformatics Analysis. Med Sci Monit 2021; 27:e928366. [PMID: 33741890 PMCID: PMC7989062 DOI: 10.12659/msm.928366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although it is not life-threatening, the accompanying rapid and irregular ventricular rate can lead to hemodynamic deterioration and obvious symptoms, especially the risk of cerebrovascular embolism. Our study aimed to identify novel and promising genes that could explain the underlying mechanism of AF development. Material/Methods Expression profiles GSE41177, GSE79768, and GSE14975 were acquired from the Gene Expression Omnibus Database. R software was used for identifying differentially expressed genes (DEGs), and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were subsequently performed. A protein–protein interaction network was constructed in Cytoscape software. Next, a least absolute shrinkage and selection operator (LASSO) model was constructed and receiver-operating characteristic curve analysis was conducted to assess the specificity and sensitivity of the key genes. Results We obtained 204 DEGs from the datasets. The DEGs were mostly involved in immune response and cell communication. The primary pathways of the DEGs were related to the course or maintenance of autoimmune and chronic inflammatory diseases. The top 20 hub genes (high scores in cytoHubba) were selected in the PPI network. Finally, we identified 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, and S100A12) via the LASSO model. Conclusions We present 6 target genes that are potentially involved in the molecular mechanisms of AF development. In addition, these genes are likely to serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yun Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Long-Long Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Quan-Bin Dong
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Feng Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Juan Zhu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Qian Liang
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Ling Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hui-Hui Bao
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Shu Cheng
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
6
|
Lambert NC. Nonendocrine mechanisms of sex bias in rheumatic diseases. Nat Rev Rheumatol 2019; 15:673-686. [PMID: 31597952 DOI: 10.1038/s41584-019-0307-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
Rheumatic diseases affect a wide range of individuals of all ages, but the most common diseases occur more frequently in women than in men, at ratios of up to ten women to one man. Despite a growing number of studies on sex bias in rheumatic diseases, sex-specific health care is limited and sex specificity is not systematically integrated into treatment regimens. Women and men differ in three major biological points: the number of X chromosomes per cell, the type and quantities of sex hormones present and the ability to be pregnant, all of which have immunological consequences. Could a greater understanding of these differences lead to a new era of personalized sex-specific medicine? This Review focuses on the main genetic and epigenetic mechanisms that have been put forward to explain sex bias in rheumatic diseases, including X chromosome inactivation, sex chromosome aneuploidy and microchimerism. The influence of sex hormones is not discussed in detail in this Review, as it has been well described elsewhere. Understanding the sex-specific factors that contribute to the initiation and progression of rheumatic diseases will enable progress to be made in the diagnosis, treatment and management of all patients with these conditions.
Collapse
Affiliation(s)
- Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
7
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
9
|
Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol 2019; 9:3124. [PMID: 30761158 PMCID: PMC6363688 DOI: 10.3389/fimmu.2018.03124] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab')2 blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of FCGR3B causing different levels of surface FcγRIIIb expression. Individuals with one copy of FCGR3B showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG1 heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine W Bruggeman
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris van der Heijden
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q Nagelkerke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Barbosa FB, Simioni M, Wiezel CEV, Torres FR, Molck MC, Bonilla MM, de Araujo TK, Donadi EA, Gil-da-Silva-Lopes VL, Lemos B, Simões AL. Copy number variation in the susceptibility to systemic lupus erythematosus. PLoS One 2018; 13:e0206683. [PMID: 30485348 PMCID: PMC6261406 DOI: 10.1371/journal.pone.0206683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component and etiology characterized by chronic inflammation and autoantibody production. The purpose of this study was to ascertain copy number variation (CNV) in SLE using a case-control design in an admixed Brazilian population. The whole-genome detection of CNV was performed using Cytoscan HD array in SLE patients and healthy controls. The best CNV candidates were then evaluated by quantitative real-time PCR in a larger cohort or validated using droplet digital PCR. Logistic regression models adjusted for sex and ancestry covariates was applied to evaluate the association between CNV with SLE susceptibility. The data showed a synergistic effect between the FCGR3B and ADAM3A loci with the presence of deletions in both loci significantly increasing the risk to SLE (5.9-fold) compared to the deletion in the single FCGR3B locus (3.6-fold). In addition, duplications in these genes were indeed more frequent in healthy subjects, suggesting that high FCGR3B/ADAM3A gene copy numbers are protective factors against to disease development. Overall, 21 rare CNVs were identified in SLE patients using a four-step pipeline created for identification of rare variants. Furthermore, heterozygous deletions overlapping the CFHR4, CFHR5 and HLA-DPB2 genes were described for the first time in SLE patients. Here we present the first genome-wide CNV study of SLE patients in a tri-hybrid population. The results show that novel susceptibility loci to SLE can be found once the distribution of structural variants is analyzed throughout the whole genome.
Collapse
Affiliation(s)
| | - Milena Simioni
- Department of Medical Genetics, Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil
| | | | - Fábio Rossi Torres
- Department of Medical Genetics, Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil
| | - Miriam Coelho Molck
- Department of Medical Genetics, Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil
| | - Melvin M. Bonilla
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | | | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | - Bernardo Lemos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Aguinaldo Luiz Simões
- Department of Genetics, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Kringelbach TM, Glintborg B, Hogdall EV, Johansen JS, Hetland ML. Identification of new biomarkers to promote personalised treatment of patients with inflammatory rheumatic disease: protocol for an open cohort study. BMJ Open 2018; 8:e019325. [PMID: 29391382 PMCID: PMC5829933 DOI: 10.1136/bmjopen-2017-019325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The introduction of biological disease-modifying antirheumatic drugs (bDMARDs) has improved the treatment of inflammatory rheumatic diseases dramatically. However, bDMARD treatment failure occurs in 30%-40% of patients due to lack of effect or adverse events, and the tools to predict treatment outcomes in individual patients are currently limited. The objective of the present study is to identify diagnostic, prognostic and predictive biomarkers, which can be used to (1) diagnose inflammatory rheumatic diseases early in the disease course with high sensitivity and specificity, (2) improve prognostication or (3) predict and monitor treatment effectiveness and tolerability for the individual patient. METHODS AND ANALYSIS The present study is an observational and translational open cohort study with prospective collection of clinical data and biological materials (primarily blood) in patients with inflammatory rheumatic diseases treated in routine care. Patients contribute with one cross-sectional blood sample and/or are enrolled for longitudinal follow-up on initiation of a new DMARD (blood sampling after 0, 3, 6, 12, 24, 36, 48, 60 months of treatment). Other biological materials will be collected when accessible and relevant. Demographics, disease characteristics, comorbidities and lifestyle factors are registered at inclusion; DMARD treatment and outcomes are collected repeatedly during follow-up. Currently (July 2017), >5000 samples from approximately 3000 patients have been collected. Data will be analysed using appropriate statistical analyses. ETHICS AND DISSEMINATION The protocol is approved by the Danish Ethics Committee and the Danish Data Protection Agency. Participants give written and oral informed consent. Biomarkers will be evaluated and published according to the Reporting Recommendations for Tumour Marker (REMARK) prognostic studies, Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) and the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines. Results will be published in peer-reviewed scientific journals and presented at international conferences. TRIAL REGISTRATION NUMBER NCT03214263.
Collapse
Affiliation(s)
- Tina Marie Kringelbach
- The Danish Rheumatologic Biobank, Capital Region, Denmark
- Bio- and Genome Bank Denmark, The Molecular Unit, Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Bente Glintborg
- The Danish Rheumatologic Biobank, Capital Region, Denmark
- Copenhagen Centre for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- The Danish DANBIO Registry, Rigshospitalet, Glostrup, Denmark
| | - Estrid V Hogdall
- The Danish Rheumatologic Biobank, Capital Region, Denmark
- Bio- and Genome Bank Denmark, The Molecular Unit, Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- The Danish Rheumatologic Biobank, Capital Region, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denamrk
| | - Merete Lund Hetland
- The Danish Rheumatologic Biobank, Capital Region, Denmark
- Copenhagen Centre for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- The Danish DANBIO Registry, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|