1
|
Chen H, Han Y, Hearne A, Monarchino A, Wiseman JS. Purinergic ligands induce extracellular acidification and increased ATP turnover in HepG2 cells. Toxicol In Vitro 2024; 96:105788. [PMID: 38320684 DOI: 10.1016/j.tiv.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Nucleosides and nucleotides at μM concentrations stimulated a 300% increase in acid secretion in HepG2 cells, which was quantitatively accounted for as increased export of lactate generated by glycogenolysis. Agonist selectivity encompassed nucleosides and nucleotides for all 5 natural nucleobases and, along with antagonist profiles, was inconsistent with a role for purinergic receptors in mediating this activity. Agonist catabolism did not contribute significantly to either low selectivity or lactate production. Lactate production was driven by an increase in ATP turnover of as much as 56%. For some agonists, especially adenosine, ATP turnover decreased precipitously at mM concentrations, correlating with known adenosine-stimulated apoptosis. We propose that nucleoside/nucleotide agonists induce a futile energy cycle via a novel mechanism, which results in increased ATP turnover and initiates a continuum of events that for some agonists culminates in apoptosis.
Collapse
Affiliation(s)
- Haotong Chen
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA; QPS Holding LLC, 3 Innovation Way, Newark, DE 19711, United States of America.
| | - Yong Han
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Abby Hearne
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Anna Monarchino
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Jeffrey S Wiseman
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| |
Collapse
|
2
|
Benson MD, Eisman AS, Tahir UA, Katz DH, Deng S, Ngo D, Robbins JM, Hofmann A, Shi X, Zheng S, Keyes M, Yu Z, Gao Y, Farrell L, Shen D, Chen ZZ, Cruz DE, Sims M, Correa A, Tracy RP, Durda P, Taylor KD, Liu Y, Johnson WC, Guo X, Yao J, Chen YDI, Manichaikul AW, Jain D, Yang Q, Bouchard C, Sarzynski MA, Rich SS, Rotter JI, Wang TJ, Wilson JG, Clish CB, Sarkar IN, Natarajan P, Gerszten RE. Protein-metabolite association studies identify novel proteomic determinants of metabolite levels in human plasma. Cell Metab 2023; 35:1646-1660.e3. [PMID: 37582364 PMCID: PMC11118091 DOI: 10.1016/j.cmet.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although many novel gene-metabolite and gene-protein associations have been identified using high-throughput biochemical profiling, systematic studies that leverage human genetics to illuminate causal relationships between circulating proteins and metabolites are lacking. Here, we performed protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 365 metabolites, including established relationships in metabolic and signaling pathways such as the protein thyroxine-binding globulin and the metabolite thyroxine, as well as thousands of new findings. In Mendelian randomization (MR) analyses, we identified putative causal protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-concept plasma metabolomics studies in three murine knockout strains of key protein regulators. These analyses identified previously unrecognized associations between bioactive proteins and metabolites in human plasma. We provide publicly available data to be leveraged for studies in human metabolism and disease.
Collapse
Affiliation(s)
- Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron S Eisman
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Center for Biomedical Informatics, Brown University, Providence, RI, USA
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alissa Hofmann
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle Keyes
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yan Gao
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dongxiao Shen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel E Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mario Sims
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Russell P Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | | | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, Columbia, SC, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas J Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Indra Neil Sarkar
- Center for Biomedical Informatics, Brown University, Providence, RI, USA
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine Harvard Medical School, Boston, MA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Saffioti NA, Alvarez CL, Bazzi Z, Gentilini MV, Gondolesi GE, Schwarzbaum PJ, Schachter J. Dynamic recycling of extracellular ATP in human epithelial intestinal cells. PLoS Comput Biol 2023; 19:e1011196. [PMID: 37384797 DOI: 10.1371/journal.pcbi.1011196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Intestinal epithelial cells play important roles in the absorption of nutrients, secretion of electrolytes and food digestion. The function of these cells is strongly influenced by purinergic signalling activated by extracellular ATP (eATP) and other nucleotides. The activity of several ecto-enzymes determines the dynamic regulation of eATP. In pathological contexts, eATP may act as a danger signal controlling a variety of purinergic responses aimed at defending the organism from pathogens present in the intestinal lumen. In this study, we characterized the dynamics of eATP on polarised and non-polarised Caco-2 cells. eATP was quantified by luminometry using the luciferin-luciferase reaction. Results show that non-polarized Caco-2 cells triggered a strong but transient release of intracellular ATP after hypotonic stimuli, leading to low micromolar eATP accumulation. Subsequent eATP hydrolysis mainly determined eATP decay, though this effect could be counterbalanced by eATP synthesis by ecto-kinases kinetically characterized in this study. In polarized Caco-2 cells, eATP showed a faster turnover at the apical vs the basolateral side. To quantify the extent to which different processes contribute to eATP regulation, we created a data-driven mathematical model of the metabolism of extracellular nucleotides. Model simulations showed that eATP recycling by ecto-AK is more efficient a low micromolar eADP concentrations and is favored by the low eADPase activity of Caco-2 cells. Simulations also indicated that a transient eATP increase could be observed upon the addition of non-adenine nucleotides due the high ecto-NDPK activity in these cells. Model parameters showed that ecto-kinases are asymmetrically distributed upon polarization, with the apical side having activity levels generally greater in comparison with the basolateral side or the non-polarized cells. Finally, experiments using human intestinal epithelial cells confirmed the presence of functional ecto-kinases promoting eATP synthesis. The adaptive value of eATP regulation and purinergic signalling in the intestine is discussed.
Collapse
Affiliation(s)
- Nicolas Andres Saffioti
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
- Instituto de Nanosistemas, Universidad Nacional de General San Martin, Buenos Aires, Argentina
| | - Cora Lilia Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Zaher Bazzi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| | - María Virginia Gentilini
- Fundación Favaloro Hospital Universitario, Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Buenos Aires, Argentina
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, CONICET, Universidad Favaloro), Laboratorio de Inmunología asociada al Trasplante, Buenos Aires, Argentina
| | - Gabriel Eduardo Gondolesi
- Fundación Favaloro Hospital Universitario, Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Buenos Aires, Argentina
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, CONICET, Universidad Favaloro), Laboratorio de Inmunología asociada al Trasplante, Buenos Aires, Argentina
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| | - Julieta Schachter
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| |
Collapse
|
4
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
5
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
6
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
7
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
8
|
Wujak M, Kozakiewicz A, Ciarkowska A, Loch JI, Barwiolek M, Sokolowska Z, Budny M, Wojtczak A. Assessing the Interactions of Statins with Human Adenylate Kinase Isoenzyme 1: Fluorescence and Enzyme Kinetic Studies. Int J Mol Sci 2021; 22:ijms22115541. [PMID: 34073952 PMCID: PMC8197361 DOI: 10.3390/ijms22115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M−1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.
Collapse
Affiliation(s)
- Magdalena Wujak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Anna Kozakiewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
- Correspondence: ; Tel.: +48-56-611-4511
| | - Anna Ciarkowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Joanna I. Loch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Zuzanna Sokolowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Marcin Budny
- Synthex Technologies Sp. z o.o., Gagarina 7/134B, 87-100 Toruń, Poland;
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| |
Collapse
|
9
|
Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020; 9:cells9112496. [PMID: 33212982 PMCID: PMC7698494 DOI: 10.3390/cells9112496] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor microenvironment (TME), where it can promote tumor progression or tumor suppression depending on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels (MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting for cancer therapy has been proposed and actively investigated, while comparatively fewer studies have explored the suitability of TME ATP as a target. In this review, we briefly summarize the available evidence suggesting that TME ATP has a central role in determining tumor fate and is, therefore, a suitable target for cancer therapy.
Collapse
|
10
|
Wu BJ, Sun Y, Ong KL, Li Y, Tang S, Barter PJ, Rye KA. Apolipoprotein A-I Protects Against Pregnancy-Induced Insulin Resistance in Rats. Arterioscler Thromb Vasc Biol 2019; 39:1160-1171. [PMID: 31018664 DOI: 10.1161/atvbaha.118.312282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Insulin resistance and inflammation in pregnancy are risk factors for gestational diabetes mellitus. Increased plasma HDL (high-density lipoprotein) and apo (apolipoprotein) A-I levels have been reported to improve glucose metabolism and inhibit inflammation in animals and humans. This study asks whether increasing plasma apoA-I levels improves insulin sensitivity and reduces inflammation in insulin-resistant pregnant rats. Approach and Results- Insulin-resistant pregnant rats received intravenous infusions of lipid-free apoA-I (8 mg/kg) or saline on days 6, 9, 12, 15, and 18 of pregnancy. The rats were then subjected to a euglycemic-hyperinsulinemic clamp. Glucose uptake was increased in white and brown adipose tissue by 57±13% and 32±10%, respectively ( P<0.05 for both), and in quadriceps and gastrocnemius muscle by 35±9.7% and 47±14%, respectively ( P<0.05 for both), in the apoA-I-treated pregnant rats relative to saline-infused pregnant rats. The pregnant rats that were treated with apoA-I also had reduced plasma TNF-α (tumor necrosis factor-α) levels by 57±8.4%, plasma IL (interleukin)-6 levels by 67±9.5%, and adipose tissue macrophage content by 54±8.2% ( P<0.05 for all) relative to the saline-treated pregnant rats. Conclusions- These studies establish that apoA-I protects against pregnancy-induced insulin resistance in rats by increasing insulin sensitivity in adipose tissue and skeletal muscle and inhibiting inflammation. This identifies apoA-I as a potential target for preventing pregnancy-induced insulin resistance and reducing the incidence of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Ben J Wu
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Yidan Sun
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria (Y.S.)
| | - Kwok-Leung Ong
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Yue Li
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Shudi Tang
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Philip J Barter
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Kerry-Anne Rye
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| |
Collapse
|
11
|
Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2018; 205:16-24. [PMID: 30439478 DOI: 10.1016/j.imlet.2018.11.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, mainly ATP, but also ADP, UTP, UDP and UDP-sugars, adenosine, and adenine base participate in the "purinergic signalling" pathway, an ubiquitous system of cell-to-cell communication. Fundamental pathophysiological processes such as tissue homeostasis, wound healing, neurodegeneration, immunity, inflammation and cancer are modulated by purinergic signalling. Nucleotides can be released from cells via unspecific or specific mechanisms. A non-regulated nucleotide release can occur from damaged or dying cells, whereas exocytotic granules, plasma membrane-derived microvesicles, membrane channels (connexins, pannexins, calcium homeostasis modulator (CALHM) channels and P2X7 receptor) or specific ATP binding cassette (ABC) transporters are involved in the controlled release. Four families of specific receptors, i.e. nucleotide P2X and P2Y receptors, adenosine P1 receptors, and the adenine-selective P0 receptor, and several ecto- nucleotidases are essential components of the "purinergic signalling" pathway. Thanks to the activity of ecto-nucleotidases, ATP (and possibly other nucleotides) are degraded into additional messenger molecules with specific action. The final biological effects depend on the type and amount of released nucleotides, their modification by ecto-nucleotidases, and their possible cellular re-uptake. Overall, these processes confer a remarkable level of selectivity and plasticity to purinergic signalling that makes this network one of the most relevant extracellular messenger systems in higher organisms.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy.
| |
Collapse
|
12
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
14
|
Cardouat G, Duparc T, Fried S, Perret B, Najib S, Martinez LO. Ectopic adenine nucleotide translocase activity controls extracellular ADP levels and regulates the F 1-ATPase-mediated HDL endocytosis pathway on hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:832-841. [PMID: 28504211 DOI: 10.1016/j.bbalip.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Ecto-F1-ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F1-ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F1-ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis.
Collapse
Affiliation(s)
- G Cardouat
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - T Duparc
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - S Fried
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - B Perret
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France; Service de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - S Najib
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| | - L O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| |
Collapse
|
15
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
16
|
Fruttero LL, Leyria J, Ramos FO, Stariolo R, Settembrini BP, Canavoso LE. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae). JOURNAL OF INSECT PHYSIOLOGY 2017; 96:82-92. [PMID: 27983943 DOI: 10.1016/j.jinsphys.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic β chain of ATP synthase (β-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of β-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of β-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of β-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and β-ATPase. In vivo experiments with an anti-β-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4°C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that β-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of β-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jimena Leyria
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabián O Ramos
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raúl Stariolo
- Coordinación Nacional de Control de Vectores, Servicio Nacional de Chagas. Santa María de Punilla, Córdoba, Argentina
| | - Beatriz P Settembrini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Provincia de Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lilián E Canavoso
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
17
|
Sueyoshi K, Sumi Y, Inoue Y, Kuroda Y, Ishii K, Nakayama H, Iwabuchi K, Kurishita Y, Shigemitsu H, Hamachi I, Tanaka H. Fluorescence imaging of ATP in neutrophils from patients with sepsis using organelle-localizable fluorescent chemosensors. Ann Intensive Care 2016; 6:64. [PMID: 27422255 PMCID: PMC4947066 DOI: 10.1186/s13613-016-0175-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background The activation of polymorphonuclear neutrophils (PMNs) plays an important role in sepsis. Previously, we showed that ATP release and feedback via ATP receptors are essential for PMN activation; however, the dynamics remain poorly understood. Two new fluorescent chemosensors, PMAP-1 and MitoAP-1, were developed to detect ATP in the plasma membrane and mitochondria of living cells, respectively. In this study, we aimed to evaluate ATP localization using these chemosensors in PMNs of sepsis patients. Methods Live PMNs isolated from 16 sepsis patients and healthy controls (HCs) were stained with these chemosensors and observed by confocal microscopy, and their mean fluorescence intensities (MFIs) were evaluated using flow cytometry. CD11b expression in PMNs was also evaluated. Results The MFIs of PMAP-1 and MitoAP-1 and CD11b expression in PMNs from sepsis patients on days 0–1 were significantly higher than those of HCs. The MFI of PMAP-1 and CD11b expression on days 3–4 decreased significantly compared to those observed at days 0–1, whereas MitoAP-1 MFI was maintained at a high level. The PMAP-1 MFI was significantly positively correlated with CD11b expression, white blood cell counts, neutrophil counts, and C-reactive protein levels in patients. Conclusions The higher MFIs of PMAP-1 and MitoAP-1 in sepsis patients suggest a pivotal role of ATP for PMN activation. The temporal difference in ATP levels suggests that ATP plays different roles in the mitochondria and on the cell surface. These data should contribute to the understanding of the dynamics of ATP in PMNs and help to develop a novel therapy for sepsis.
Collapse
Affiliation(s)
- Koichiro Sueyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Yuka Sumi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Yoko Kuroda
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Kumiko Ishii
- Lipid Biology Laboratory, Riken Advanced Science Institute, Wako, Saitama, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Yasutaka Kurishita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hajime Shigemitsu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
18
|
Wang S, Peng DQ, Yi Y. The unsolved mystery of apoA-I recycling in adipocyte. Lipids Health Dis 2016; 15:35. [PMID: 26911989 PMCID: PMC4765186 DOI: 10.1186/s12944-016-0203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/24/2023] Open
Abstract
As the major storage site for triglycerides and free cholesterol, adipose tissue plays a central role in energy metabolism. ApoA-I is the main constituent of HDL and plays an important role in removal of excess cholesterol from peripheral tissues. Recently, multiple studies have shown beneficial effects of apoA-I on adipose metabolism and function. ApoA-I was reported to improve insulin sensitivity and exert anti-inflammatory, anti-obesity effect in animal studies. Interestingly, Uptake and resecretion of apoA-I by adipocytes has been detected. However, the significance of apoA-I recycling by adipocytes is still not clear. This article reviewed methods used to study cellular recycling of apoA-I and summarized the current knowledge on the mechanisms involved in apoA-I uptake by adipocytes. Since the main function of apoA-I is to mediate reverse cholesterol transport from peripheral tissues, the role of apoA-I internalization and re-secretion by adipocytes in intracellular cholesterol transport under physiological and pathological conditions were discussed. In addition, findings on the correlation between apoA-I recycling and obesity were discussed. Finally, it was proposed that during intracellular transport, apoA-I-protein complex may acquire cargoes other than lipids and deliver regulatory information when they were resecreted into the plasma. Although apoA-I recycling by adipocytes is still an unsolved mystery, it's likely that it is more than a redundant pathway especially under pathological conditions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dao-quan Peng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yuhong Yi
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Comelli M, Domenis R, Buso A, Mavelli I. F1FO ATP Synthase Is Expressed at the Surface of Embryonic Rat Heart-Derived H9c2 Cells and Is Affected by Cardiac-Like Differentiation. J Cell Biochem 2016; 117:470-82. [PMID: 26223201 DOI: 10.1002/jcb.25295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023]
Abstract
Taking advantage from the peculiar features of the embryonic rat heart-derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac-like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase-β) and of the peripheral stalk, responsible for the correct F1-FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase-β, ATP synthase-b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto-F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto-F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo-F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1-FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin-insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub-assemblies together evoking more regulation by IF1.
Collapse
Affiliation(s)
- Marina Comelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| | - Rossana Domenis
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Alessia Buso
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Irene Mavelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| |
Collapse
|
20
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
21
|
Kon V, Yang H, Fazio S. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein. Arch Med Res 2015; 46:379-91. [PMID: 26009251 DOI: 10.1016/j.arcmed.2015.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Haichun Yang
- Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
22
|
Ferrari D, Vitiello L, Idzko M, la Sala A. Purinergic signaling in atherosclerosis. Trends Mol Med 2015; 21:184-92. [PMID: 25637413 DOI: 10.1016/j.molmed.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/28/2022]
Abstract
Cell surface expression of specific receptors and ecto-nucleotidases makes extracellular nucleotides such as ATP, ADP, UTP, and adenosine suitable as signaling molecules for physiological and pathological events, including tissue stress and damage. Recent data have revealed the participation of purinergic signaling in atherosclerosis, depicting a scenario in which, in addition to some exceptions reflecting dual effects of individual receptor subtypes, adenosine and most P1 receptors, as well as ecto-nucleotidases, show a protective, anti-atherosclerotic function. By contrast, P2 receptors promote atherosclerosis. In consideration of these findings, modulation of purinergic signaling would represent an innovative and valuable tool to counteract atherosclerosis. We summarize recent developments on the participation of the purinergic network in atheroma formation and evolution.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Sciences and Biotechnology, Biotechnology Centre, University of Ferrara, 44121 Ferrara, Italy.
| | - Laura Vitiello
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| | - Marco Idzko
- Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Andrea la Sala
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| |
Collapse
|
23
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
24
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Numerous epidemiologic studies revealed that high-density lipoprotein (HDL) is an important risk factor for coronary heart disease. There are several well-documented HDL functions such as reversed cholesterol transport, inhibition of inflammation, or inhibition of platelet activation that may account for the atheroprotective effects of this lipoprotein. Mechanistically, these functions are carried out by a direct interaction of HDL particle or its components with receptors localized on the cell surface followed by generation of intracellular signals. Several HDL-associated receptor ligands such as apolipoprotein A-I (apoA-I) or sphingosine-1-phosphate (S1P) have been identified in addition to HDL holoparticles, which interact with surface receptors such as ATP-binding cassette transporter A1 (ABCA1); S1P receptor types 1, 2, and 3 (S1P1, S1P2, and S1P3); or scavenger receptor type I (SR-BI) and activate intracellular signaling cascades encompassing kinases, phospholipases, trimeric and small G-proteins, and cytoskeletal proteins such as actin or junctional protein such as connexin43. In addition, depletion of plasma cell cholesterol mediated by ABCA1, ATP-binding cassette transporter G1 (ABCG1), or SR-BI was demonstrated to indirectly inhibit signaling over proinflammatory or proliferation-stimulating receptors such as Toll-like or growth factor receptors. The present review summarizes the current knowledge regarding the HDL-induced signal transduction and its relevance to athero- and cardioprotective effects as well as other physiological effects exerted by HDL.
Collapse
|
26
|
Lu J, Hübner K, Nanjee MN, Brinton EA, Mazer NA. An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway. PLoS Comput Biol 2014; 10:e1003509. [PMID: 24625468 PMCID: PMC3952822 DOI: 10.1371/journal.pcbi.1003509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the potential utility of the model in drug development.
Collapse
Affiliation(s)
- James Lu
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Clinical Pharmacology, Basel, Switzerland
- * E-mail:
| | - Katrin Hübner
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - M. Nazeem Nanjee
- Division of Cardiovascular Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Eliot A. Brinton
- Utah Foundation for Biomedical Research, Salt Lake City, Utah, United States of America
| | - Norman A. Mazer
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Clinical Pharmacology, Basel, Switzerland
| |
Collapse
|
27
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
28
|
XING SANLI, SHEN DINGZHU, CHEN CHUAN, WANG JIAN, LIU TE, YU ZHIHUA. Regulation of neuronal toxicity of β-amyloid oligomers by surface ATP synthase. Mol Med Rep 2013; 8:1689-94. [DOI: 10.3892/mmr.2013.1722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 11/05/2022] Open
|
29
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Ono K. Current concept of reverse cholesterol transport and novel strategy for atheroprotection. J Cardiol 2012; 60:339-43. [DOI: 10.1016/j.jjcc.2012.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/27/2022]
|
31
|
Sparks DL, Chatterjee C. Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 2012; 30:1333-9. [PMID: 23095900 DOI: 10.1159/000343322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a compound obesity disorder, wherein the abnormal metabolism of glucose and lipid is associated with the development of chronic inflammatory diseases. The prevalence of this disease is increasing in the developed world, but the causative linkage between these metabolic disorders has remained obscure. Metabolic disease may be associated with chronic nucleotide secretion, purinergic signaling and activation of inflammatory pathways. Purinergic signaling has been implicated in impaired glucose metabolism and inflammatory disease and may contribute to dyslipidemia. Our research shows that purinergic signaling disrupts hepatic lipoprotein metabolism by blocking insulin receptor signaling and by activating cellular autophagic pathways. Chronic stimulation of purinergic signaling may therefore be causative to glucose and lipid metabolic disorders and associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daniel L Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | | |
Collapse
|
32
|
Fausther M, Sheung N, Saiman Y, Bansal MB, Dranoff JA. Activated hepatic stellate cells upregulate transcription of ecto-5'-nucleotidase/CD73 via specific SP1 and SMAD promoter elements. Am J Physiol Gastrointest Liver Physiol 2012; 303:G904-14. [PMID: 22899823 PMCID: PMC3469697 DOI: 10.1152/ajpgi.00015.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/13/2012] [Indexed: 01/31/2023]
Abstract
Adenosine is a potent modulator of liver fibrosis and inflammation. Adenosine has been shown to regulate such diverse activities as chemotaxis, contraction, and matrix production in hepatic stellate cells (HSC). Ecto-5'-nucleotidase/CD73 [EC 3.1.3.5] is the rate-limiting enzyme in adenosine production. Cd73-deficient mice are resistant to experimental liver fibrosis and have impaired adenosine generation. However, cell-specific expression and regulation of CD73 within the fibrotic liver have not been defined. In particular, prior evidence demonstrating that liver myofibroblasts, the cells believed to be responsible for matrix formation in the liver, express CD73 is lacking. Thus we tested the hypothesis that HSC and portal fibroblasts (PF), cells that undergo differentiation into liver myofibroblasts, express CD73 in a regulated fashion. We found that CD73 is weakly expressed in quiescent HSC and PF but is markedly upregulated at the transcriptional level in myofibroblastic HSC and PF. We furthermore found that CD73 protein and its functional activity are strongly increased in fibrous septa in rats subjected to experimental fibrosis. To determine the mechanism for the upregulation of Cd73 gene, we cloned the rat Cd73 promoter and then used serial truncation and site-directed mutagenesis to identify key regulatory elements. We identified two consensus SP1 motifs and one SMAD binding site, each of which was necessary for Cd73 gene upregulation. In conclusion, activated HSC upregulate Cd73 gene expression, via specific SP1 and SMAD promoter elements, after myofibroblastic differentiation. The ecto-5'-nucleotidase/CD73 enzyme is a novel cellular marker of activated liver myofibroblasts in vivo and in vitro and thus represents a promising molecular target for antifibrotic therapies in liver diseases.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
33
|
Xiao F, Waldrop SL, Khimji AK, Kilic G. Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol 2012; 303:C1034-44. [PMID: 22972801 DOI: 10.1152/ajpcell.00175.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatocyte lipoapoptosis induced by saturated free fatty acids (FFA) contributes to hepatic inflammation in lipotoxic liver injury, and the cellular mechanisms involved have not been defined. Recent studies have shown that apoptosis in nonhepatic cells stimulates ATP release via activation of pannexin1 (panx1), and extracellular ATP functions as a proinflammatory signal for recruitment and activation of the inflammatory cells. However, it is not known whether lipoapoptosis stimulates ATP release in liver cells. We found that lipoapoptosis induced by saturated FFA stimulated ATP release in liver cells that increased extracellular ATP concentration by more than fivefold above the values observed in healthy cells. This sustained pathophysiological ATP release was not dependent on caspase-3/7 activation. Inhibition of c-Jun NH(2)-terminal kinase (JNK), a key mediator of lipoapoptosis, with SP600125 blocked pathophysiological ATP release in a dose-dependent manner. RT-PCR analysis indicated that panx1 is expressed in hepatocytes and multiple liver cell lines. Notably, inhibition of panx1 expression with short hairpin (sh)RNA inhibited in part pathophysiological ATP release. Moreover, lipoapoptosis stimulated uptake of a membrane impermeable dye YoPro-1 (indicative of panx1 activation), which was inhibited by panx1 shRNA, probenecid, and mefloquine. These results suggest that panx1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated FFA. Thus panx1 may play an important role in hepatic inflammation by mediating an increase in extracellular ATP concentration in lipotoxic liver injury.
Collapse
Affiliation(s)
- Feng Xiao
- Deptartment of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | | | | | | |
Collapse
|
34
|
Chatterjee C, Sparks DL. Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS One 2012; 7:e36916. [PMID: 22590634 PMCID: PMC3349634 DOI: 10.1371/journal.pone.0036916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/16/2012] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel L. Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
36
|
Xing SL, Chen B, Shen DZ, Zhu CQ. β-amyloid peptide binds and regulates ectopic ATP synthase α-chain on neural surface. Int J Neurosci 2012; 122:290-7. [PMID: 22185089 DOI: 10.3109/00207454.2011.649867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accumulation of the amyloid β protein (Aβ) in the brain is an important step in the pathogenesis of Alzheimer's disease. Many molecules could bind with Aβ, among which some molecules mediate Aβ neuronal toxicity. Thus, it is of interest to study the binding proteins of Aβ, and the functions that might be affected by Aβ. In the present study, we observed that accumulation of α-subunit of ATP synthase is associated with aggregates of Aβ proteins in amyloid plaques of amyloid precursor protein/presennillin-1 transgenic mice, and identified the α-subunit of ATP synthase as one of the Aβ binding proteins on the plasma membrane of neural cells by Western blot and mass spectrometry. In order to evaluate the consequences of the interaction between Aβ and surface α-subunit of ATP synthase, the extracellular ATP generation was analyzed, which showed that aggregated Aβ partially inhibited the extracellular generation of ATP, but was unable to significantly induce a decrease in cell surface ATP synthase α on neurons. These results suggest that the cell surface ATP synthase α is a binding protein for Aβ on neural cells, the functional inhibition of surface ATP synthase might be involved in machinery of brain malfunction in Aβ-mediated pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- San-Li Xing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
37
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
38
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
40
|
Fausther M, Sévigny J. Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 2011; 334:100-17. [PMID: 21333941 DOI: 10.1016/j.crvi.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/17/2010] [Accepted: 12/09/2010] [Indexed: 12/22/2022]
Abstract
Nucleosides and nucleotides are now considered as extracellular signalling molecules, like neurotransmitters and hormones. Hepatic cells, amongst other cells, ubiquitously express specific transmembrane receptors that transduce the physiological signals induced by extracellular nucleosides and nucleotides, as well as various cell surface enzymes that regulate the levels of these mediators in the extracellular medium. Here, we cover various aspects of the signalling pathways initiated by extracellular nucleosides and nucleotides in the liver, and discuss their overall impact on hepatic physiology.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, QC, Canada
| | | |
Collapse
|
41
|
Vaziri ND. Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr 2011; 20:S35-43. [PMID: 20797569 DOI: 10.1053/j.jrn.2010.05.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death from cardiovascular disease. Inflammation, oxidative stress, and dyslipidemia, which are common consequences of CKD, contribute to the pathogenesis of atherosclerosis and cardiovascular disease in this population. Dyslipidemia of CKD is characterized by diminished plasma high density lipoprotein (HDL) concentration, impaired HDL anti-oxidant and anti-inflammatory activities, and elevated plasma triglyceride, very low density lipoprotein (VLDL), intermediate density lipoprotein, chylomicron remnants, and oxidized lipids and lipoproteins. The constellation of inflammation, HDL deficiency, and oxidative modification of lipoproteins can cause atherosclerosis and progression of renal disease. We have recently found lipid accumulation in the remnant kidney and the wall of aorta in rats with CKD induced by 5/6 nephrectomy. This was mediated by up-regulation of scavenger receptors involved in the influx of oxidized lipids or lipoproteins, tubular reabsorption of lipid binding proteins through megalin-cubilin complexes, upregulation of fatty acid synthesis, and downregulation of fatty acid oxidation pathways. The combination of increased lipid influx, elevated production and reduced catabolism of lipids, and impaired HDL-mediated reverse cholesterol transport can promote atherosclerosis, glomerulosclerosis, and tubulointerstitial damage. Although statins can be effective in slowing CKD progression in patients with mild-to-moderate CKD, they have consistently failed to mitigate oxidative stress, inflammation, HDL deficiency, or cardiovascular mortality in the end-stage renal disease populations. Similarly, high doses of antioxidant vitamins have failed to either ameliorate oxidative stress, inflammation, or improve overall mortality in end-stage renal disease. This article is intended to provide a brief review of the effects of CKD on HDL structure and function and pathways of lipid influx, efflux, synthesis, and catabolism in the artery wall and the diseased kidney.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California, USA.
| |
Collapse
|
42
|
Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO. Ecto-F 1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 2010; 16:5925-35. [PMID: 21157968 PMCID: PMC3007107 DOI: 10.3748/wjg.v16.i47.5925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-I-mediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.
Collapse
|
43
|
The β-subunit of ATP synthase is involved in cellular uptake and resecretion of apoA-I but does not control apoA-I-induced lipid efflux in adipocytes. Mol Cell Biochem 2010; 348:155-64. [PMID: 21069432 DOI: 10.1007/s11010-010-0650-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Cellular uptake and resecretion of apoA-I (apoA-I recycling) could be an important factor in determining the circulating plasma levels of apoA-I and/or HDL. Using a novel method to study protein recycling, we have recently demonstrated recycling of apoA-I by adipocytes and suggested that this is a receptor mediated process independent of ABCA1 function. In the present study, it is shown that apoA-I recycling by adipocytes can be blocked by a monoclonal antibody against the β-subunit of ATP synthase, a protein that had been previously identified as an apoA-I receptor. Investigation of the cellular recycling of two other proteins, an apolipoprotein and a small globular protein, showed that recycling of apoA-I is a selective process. The present study also shows that blocking apoA-I recycling has no effect on the rate of apoA-I-induced cholesterol or phospholipid efflux. It is concluded that cellular recycling of apoA-I is a selective process that involves the ectopically expressed β-subunit of ATP synthase. The physiological function of apoA-I recycling remains to be elucidated. However, this study shows that the process of apoA-I uptake and resecretion is not required for apoA-I lipidation.
Collapse
|
44
|
Kim BW, Lee JW, Choo HJ, Lee CS, Jung SY, Yi JS, Ham YM, Lee JH, Hong J, Kang MJ, Chi SG, Hyung SW, Lee SW, Kim HM, Cho BR, Min DS, Yoon G, Ko YG. Mitochondrial oxidative phosphorylation system is recruited to detergent-resistant lipid rafts during myogenesis. Proteomics 2010; 10:2498-515. [DOI: 10.1002/pmic.200900826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Abstract
End-stage renal disease (ESRD) is associated with accelerated atherosclerosis and premature death from cardiovascular disease. These events are driven by oxidative stress inflammation and lipid disorders. ESRD-induced lipid abnormalities primarily stem from dysregulation of high-density lipoprotein (HDL), triglyceride-rich lipoprotein metabolism, and oxidative modification of lipoproteins. In this context, production and plasma concentration of Apo-I and Apo-II are reduced, HDL maturation is impaired, HDL composition is altered, HDL antioxidant and anti-inflammatory functions are depressed, clearance of triglyceride-rich lipoproteins and their atherogenic remnants is impaired, their composition is altered, and their plasma concentration is elevated in ESRD. The associated defect in HDL maturation is largely caused by acquired lecithin-cholesterol acyltransferase deficiency while its triglyceride enrichment is due to hepatic lipase deficiency. Hypertriglyceridemia, abnormal composition, and impaired clearance of triglyceride-rich lipoproteins and their remnants are mediated by down-regulation of lipoprotein lipase, hepatic lipase, very low-density lipoprotein (VLDL) receptor, and LDL receptor-related protein, relative reduction in ApoC-II/ApoC-III ratio, up-regulation of acyl-CoA cholesterol acyltransferase, and elevated plasma level of cholesterol ester-poor prebeta HDL. Impaired clearance and accumulation of oxidation-prone VLDL and chylomicron remnants and abnormal LDL composition in the face of oxidative stress and inflammation favors their uptake by macrophages and resident cells in the artery wall. The effect of heightened influx of lipids is compounded by impaired HDL-mediated reverse cholesterol transport leading to foam cell formation which is the central event in atherosclerosis plaque formation and subsequent plaque rupture, thrombosis, and tissue damage.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Departments of Medicine, Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
46
|
Abstract
Chronic kidney disease (CKD) is associated with development of atherosclerosis and premature death from cardiovascular disease. The predisposition of patients with CKD to atherosclerosis is driven by inflammation, oxidative stress and dyslipidemia, all of which are common features of this condition. Markers of dyslipidemia in patients with advanced CKD are impaired clearance and heightened oxidation of apolipoprotein-B-containing lipoproteins and their atherogenic remnants, and a reduction of the plasma concentration, antioxidant, and anti-inflammatory properties of high-density lipoprotein (HDL). Studies in animal models of CKD indicate that the disease promotes lipid accumulation in the artery wall and kidney, leading to atherosclerosis, glomerulosclerosis and tubulointerstitial injury. These effects seem to be mediated by an increased cellular influx of lipids, elevated cellular production and reduced cellular catabolism of fatty acids, and impaired antioxidant, anti-inflammatory and reverse lipid transport properties of HDL. Available pharmacological therapies have been largely ineffective in ameliorating oxidative stress, inflammation, HDL deficiency and/or dysfunction, and the associated atherosclerosis and cardiovascular disease in patients with end-stage renal disease. This Review aims to provide an overview of the mechanisms and consequences of CKD-induced HDL deficiency and dysfunction.
Collapse
|
47
|
Pandey NR, Renwick J, Rabaa S, Misquith A, Kouri L, Twomey E, Sparks DL. An induction in hepatic HDL secretion associated with reduced ATPase expression. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1777-87. [PMID: 19717637 DOI: 10.2353/ajpath.2009.090082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Linoleic acid-phospholipids stimulate high-density lipoprotein (HDL) net secretion from liver cells by blocking the endocytic recycling of apoA-I. Experiments were undertaken to determine whether apoA-I accumulation in the cell media is associated with membrane ATPase expression. Treatment of HepG2 cells with dilinoeoylphosphatidylcholine (DLPC) increased apoA-I secretion fourfold. DLPC also significantly reduced cell surface F1-ATPase expression and reduced cellular ATP binding cassette (ABC)A1 and ABCG1 protein levels by approximately 50%. In addition, treatment of HepG2 cells with the ABC transporter inhibitor, glyburide, stimulated the apoA-I secretory effects of both DLPC and clofibrate. Pretreatment of HepG2 cells with compounds that increased ABC transport protein levels (TO901317, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, and resveratrol) blocked the DLPC-induced stimulation in apoA-I net secretion. Furthermore, whereas HepG2 cells normally secrete nascent prebeta-HDL, DLPC treatment promoted secretion of alpha-migrating HDL particles. These data show that an linoleic acid-phospholipid induced stimulation in hepatic HDL secretion is related to the expression and function of membrane ATP metabolizing proteins.
Collapse
Affiliation(s)
- Nihar R Pandey
- Lipoprotein and Atherosclerosis Research Group, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Evidence for aerobic metabolism in retinal rod outer segment disks. Int J Biochem Cell Biol 2009; 41:2555-65. [PMID: 19715769 DOI: 10.1016/j.biocel.2009.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022]
Abstract
The disks of the vertebrate retinal rod Outer Segment (OS), devoid of mitochondria, are the site of visual transduction, a very energy demanding process. In a previous proteomic study we reported the expression of the respiratory chain complexes I-IV and the oxidative phosphorylation Complex V (F(1)F(0)-ATP synthase) in disks. In the present study, the functional localization of these proteins in disks was investigated by biochemical analyses, oxymetry, membrane potential measurements, and confocal laser scanning microscopy. Disk preparations, isolated by Ficoll flotation, were characterized for purity. An oxygen consumption, stimulated by NADH and Succinate and reverted by rotenone, antimycin A and KCN was measured in disks, either in coupled or uncoupled conditions. Rhodamine-123 fluorescence quenching kinetics showed the existence of a proton potential difference across the disk membranes. Citrate synthase activity was assayed and found enriched in disks with respect to ROS. ATP synthesis by disks (0.7 micromol ATP/min/mg), sensitive to the common mitochondrial ATP synthase inhibitors, would largely account for the rod ATP need in the light. Overall, data indicate that an oxidative phosphorylation occurs in rod OS, which do not contain mitochondria, thank to the presence of ectopically located mitochondrial proteins. These findings may provide important new insight into energy production in outer segments via aerobic metabolism and additional information about protein components in OS disk membranes.
Collapse
|
49
|
Radojkovic C, Genoux A, Pons V, Combes G, de Jonge H, Champagne E, Rolland C, Perret B, Collet X, Tercé F, Martinez LO. Stimulation of Cell Surface F1-ATPase Activity by Apolipoprotein A-I Inhibits Endothelial Cell Apoptosis and Promotes Proliferation. Arterioscler Thromb Vasc Biol 2009; 29:1125-30. [DOI: 10.1161/atvbaha.109.187997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claudia Radojkovic
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Annelise Genoux
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Véronique Pons
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Guillaume Combes
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Hugo de Jonge
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Eric Champagne
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Corinne Rolland
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Bertrand Perret
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Xavier Collet
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - François Tercé
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Laurent O. Martinez
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| |
Collapse
|
50
|
Lin X, Kim YA, Lee BL, Söderhäll K, Söderhäll I. Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res 2009; 315:1171-80. [PMID: 19353765 DOI: 10.1016/j.yexcr.2009.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have recently isolated an invertebrate cytokine from a freshwater crayfish, which we named astakine 1. Interestingly this protein is expressed exclusively in hemocytes and hematopoietic tissue and is essential for the release of new hemocytes into the open circulatory system of these animals. This astakine has a prokineticin (PK) domain but lacks the N-terminal AVIT amino acids and hence receptor binding may differ from vertebrate PKs. Accordingly, here we report that a receptor for astakine 1 on hematopoietic tissue (Hpt) cells is identical to the beta-subunit of F1ATP synthase. In this study we have used several different methods to clearly demonstrate that ATP-synthase is located on the plasma membrane of a subpopulation of Hpt cells and there may function as a receptor for astakine, whereas mature blood cells (hemocytes) do not have any ATP-synthase on the outside of their plasma membranes. Our results clearly show that ATP synthase beta subunits are present on the cell surface of Hpt cells and highlight the need for more detailed studies on intracellular traffic connections between mitochondria and other membrane compartments.
Collapse
Affiliation(s)
- Xionghui Lin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|