1
|
Wang L, Ma S, Su H, Nie D, Wang L. The molecular mechanism of gemcitabine in inhibiting the HIF-1α/VEGFB/FGF2/FGFR1 signaling pathway for ovarian cancer treatment. Discov Oncol 2025; 16:3. [PMID: 39752011 PMCID: PMC11699178 DOI: 10.1007/s12672-024-01723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation. In vitro experiments validate the mechanistic role of HIF-1α in GEM treatment, demonstrating that overexpression of HIF-1α reverses the drug's effects on ovarian cancer cells while silencing fibroblast growth factor receptor 1 (FGFR1) can restore treatment efficacy. These findings provide essential molecular targets and a theoretical foundation for the development of novel treatment strategies for ovarian cancer in the future.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Shanshan Ma
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Huiwen Su
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Dandan Nie
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Lihua Wang
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China.
| |
Collapse
|
2
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Comlekoglu T, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease. PNAS NEXUS 2025; 4:pgae551. [PMID: 39720203 PMCID: PMC11667245 DOI: 10.1093/pnasnexus/pgae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines. We integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (EC) and pericytes, the cells that comprise microvessels. Nintedanib, an Food and Drug Administration-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can predict and explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Samuel M J Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - David J Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor G Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Tien Comlekoglu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Catherine A Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Syromiatnikova VY, Kvon AI, Starostina IG, Gomzikova MO. Strategies to enhance the efficacy of FGF2-based therapies for skin wound healing. Arch Dermatol Res 2024; 316:405. [PMID: 38878084 DOI: 10.1007/s00403-024-02953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
Basic fibroblast growth factor (FGF2 or bFGF) is critical for optimal wound healing. Experimental studies show that local application of FGF2 is a promising therapeutic approach to stimulate tissue regeneration, including for the treatment of chronic wounds that have a low healing potential or are characterised by a pathologically altered healing process. However, the problem of low efficiency of growth factors application due to their rapid loss of biological activity in the aggressive proteolytic environment of the wound remains. Therefore, ways to preserve the efficacy of FGF2 for wound treatment are being actively developed. This review considers the following strategies to improve the effectiveness of FGF2-based therapy: (1) use of vehicles/carriers for delivery and gradual release of FGF2; (2) chemical modification of FGF2 to increase the stability of the molecule; (3) use of genetic constructs encoding FGF2 for de novo synthesis of protein in the wound. In addition, this review discusses FGF2-based therapeutic strategies that are undergoing clinical trials and demonstrating the efficacy of FGF2 for skin wound healing.
Collapse
Affiliation(s)
- V Y Syromiatnikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - A I Kvon
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
4
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585249. [PMID: 38559112 PMCID: PMC10979947 DOI: 10.1101/2024.03.15.585249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samuel M. J. Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David J. Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tara N. Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A. Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffery J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J. Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Gutmann M, Reinhardt D, Seidensticker C, Raschig M, Hahn L, Moscaroli A, Behe M, Meinel L, Lühmann T. Matrix Metalloproteinase-Responsive Delivery of PEGylated Fibroblast Growth Factor 2. ACS Biomater Sci Eng 2024; 10:156-165. [PMID: 37988287 DOI: 10.1021/acsbiomaterials.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Attachment of polyethylene glycol (PEG) chains is a common, well-studied, and Food and Drug Administration-approved method to address the pharmacokinetic challenges of therapeutic proteins. Occasionally, PEGylation impairs the activity of pharmacodynamics (PD). To overcome this problem, disease-relevant cleavable linkers between the polymer and the therapeutic protein can unleash full PD by de-PEGylating the protein at its target site. In this study, we engineered a matrix metalloproteinase (MMP)-responsive fibroblast growth factor 2 (FGF-2) mutant that was site-specifically extended with a PEG polymer chain. Using bioinspired strategies, the bioconjugate was designed to release the native protein at the desired structure/environment with preservation of the proliferative capacity in vitro on NIH3T3 cells. In vivo, hepatic exposure was diminished but not its renal distribution over time compared to unconjugated FGF-2. By releasing the growth factor from the PEG polymer in response to MMP cleavage, restored FGF-2 may enter hard-to-reach tissues and activate cell surface receptors or nuclear targets.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Debora Reinhardt
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Christian Seidensticker
- Medizinische Klinik und Poliklinik Für Innere Medizin II, Klinikum Rechts der Isar der TU München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| |
Collapse
|
6
|
Tian X, Jia Y, Guo Y, Liu H, Cai X, Li Y, Tian Z, Sun C. Fibroblast growth factor 2 acts as an upstream regulator of inhibition of pulmonary fibroblast activation. FEBS Open Bio 2023; 13:1895-1909. [PMID: 37583315 PMCID: PMC10549223 DOI: 10.1002/2211-5463.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling plays a crucial role in lung development and repair. Fibroblast growth factor 2 (FGF2) can inhibit fibrotic gene expression and suppress the differentiation of pulmonary fibroblasts (PFs) into myofibroblasts in vitro, suggesting that FGF2 is a potential target for inhibiting pulmonary fibrosis. To gain deeper insights into the molecular mechanism underlying FGF2-mediated regulation of PFs, we performed mRNA sequencing analysis to systematically and globally uncover the regulated genes and biological functions of FGF2 in PFs. Gene Ontology analysis revealed that the differentially expressed genes regulated by FGF2 were enriched in multiple cellular functions including extracellular matrix (ECM) organization, cytoskeleton formation, β-catenin-independent Wnt signaling pathway, supramolecular fiber organization, epithelial cell proliferation, and cell adhesion. Gene Set Enrichment Analysis and cellular experiments confirmed that FGF2 can suppress ECM and actin filament organization and increase PFs proliferation. Taken together, these findings indicate that FGF2 acts as an upstream regulator of the inhibition of PFs activation and may play a regulatory role in pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated HospitalXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xinhua Cai
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolUK
| | - Zhuangzhuang Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
7
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
8
|
Ruiter FAA, King J, Swapnasrita S, Giselbrecht S, Truckenmüller R, LaPointe VLS, Baker MB, Carlier A. Optimization of Media Change Intervals through Hydrogels Using Mathematical Models. Biomacromolecules 2023; 24:604-612. [PMID: 36724373 PMCID: PMC9930106 DOI: 10.1021/acs.biomac.2c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion. We observed a dampening effect of the hydrogel that slowed the response to concentration changes and the creation of a diffusion gradient in the hydrogel by media refreshment. Our designed model combined with measurements provides a practical point of reference for diffusion coefficients in real-world culture conditions, enabling more informed choices on hydrogel culture conditions. This model can be improved in the future to simulate more complicated intrinsic hydrogel properties and study the effects of secondary interactions on the diffusion of analytes through the hydrogel.
Collapse
Affiliation(s)
- Floor A A Ruiter
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Jasia King
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
9
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
10
|
Horrocks MS, Kollmetz T, O'Reilly P, Nowak D, Malmström J. Quantitative analysis of biomolecule release from polystyrene- block-polyethylene oxide thin films. SOFT MATTER 2022; 18:4513-4526. [PMID: 35674502 DOI: 10.1039/d2sm00383j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Block copolymers have garnered recent attention due to their ability to contain molecular cargo within nanoscale domains and release said cargo in aqueous environments. However, the release kinetics of cargo from these thin-films has not yet been reported. Knowledge of the release quantities and release profiles of these systems is paramount for applications of these systems. Here, Polystyrene-block-poly(ethylene oxide) (PS-b-PEO) was co-assembled with fluorescein isothiocyanate isomer I-lysozyme (FITC-LZ) and fluorescein isothiocyanate isomer I-TAT (FITC-TAT), such that these molecular cargos arrange within the PEO domains of the thin films. We show that high loading ratios of cargo/PS-b-PEO do not significantly impact the nanostructure of the films; however, a loading limit appears to be present with aggregates of protein forming at the microscale with higher loading ratios. The presence of lysozyme (LZ) within the films was confirmed qualitatively after aqueous exposure through photo-induced force microscopy (PiFM) imaging at the Amide I characteristic peak (∼1650 cm-1). Furthermore, we demonstrate that LZ maintains activity and structure after exposure to the polymer solvent (benzene/methanol/water mix). Finally, we demonstrate quantitatively 20-80 ng cm-2 of cargo is released from these films, depending on the cargo incorporated. We show that the larger molecule lysozyme is released over a longer time than the smaller TAT peptide. Finally, we demonstrate the ability to tune the quantity of cargo released by altering the thickness of the PS-b-PEO thin-films during fabrication.
Collapse
Affiliation(s)
- Matthew S Horrocks
- Chemical and Materials Engineering, The University of Auckland, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tarek Kollmetz
- Chemical and Materials Engineering, The University of Auckland, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | | | | | - Jenny Malmström
- Chemical and Materials Engineering, The University of Auckland, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
11
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
12
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
13
|
Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, Krejci P. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med 2021; 13:13/592/eaba4226. [PMID: 33952673 DOI: 10.1126/scitranslmed.aba4226] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023]
Abstract
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.
Collapse
Affiliation(s)
- Takeshi Kimura
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | | | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Kie Yasuda
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | | | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Regina Gomolkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Silvie Belaskova
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,First Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital, Masaryk University, 65691 Brno, Czech Republic
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | | | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Josef Kaiser
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yoshikazu Nakamura
- RIBOMIC Inc., Tokyo 108-0071, Japan. .,Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
14
|
Chen M, Wu W, Liu D, Lv Y, Deng H, Gao S, Gu Y, Huang M, Guo X, Liu B, Zhao B, Pang Q. Evolution and Structure of API5 and Its Roles in Anti-Apoptosis. Protein Pept Lett 2021; 28:612-622. [PMID: 33319655 DOI: 10.2174/0929866527999201211195551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Apoptosis, also named programmed cell death, is a highly conserved physiological mechanism. Apoptosis plays crucial roles in many life processes, such as tissue development, organ formation, homeostasis maintenance, resistance against external aggression, and immune responses. Apoptosis is regulated by many genes, among which Apoptosis Inhibitor-5 (API5) is an effective inhibitor, though the structure of API5 is completely different from the other known Inhibitors of Apoptosis Proteins (IAPs). Due to its high expression in many types of tumors, API5 has received extensive attention, and may be an effective target for cancer treatment. In order to comprehensively and systematically understand the biological roles of API5, we summarized the evolution and structure of API5 and its roles in anti-apoptosis in this review.
Collapse
Affiliation(s)
- Meishan Chen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Weiwei Wu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Sijia Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yaqi Gu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Mujie Huang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiao Guo
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
15
|
Yamamura A, Nayeem MJ, Sato M. [Roles of growth factors on vascular remodeling in pulmonary hypertension]. Nihon Yakurigaku Zasshi 2021; 156:161-165. [PMID: 33952845 DOI: 10.1254/fpj.21006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pulmonary hypertension (PH) is defined as mean pulmonary arterial pressure at rest ≥25 mmHg. Pulmonary arterial hypertension (PAH) is classified as group 1 of PH and is a progressive and fatal disease of the pulmonary artery. The pathogenesis is sustained pulmonary vasoconstriction and pulmonary vascular remodeling, which cause progressive elevations in pulmonary vascular resistance and pulmonary arterial pressure. Elevated pulmonary arterial pressure leads to right heart failure and finally death. The pulmonary vascular remodeling is triggered by an increase in cytosolic Ca2+ concentration ([Ca2+]cyt). [Ca2+]cyt is regulated by the stimulation of vasoconstrictors and growth factors though their receptors and ion channels on the plasma membrane. It has been reported that the epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are involved in the development of PAH. Upon binding of these growth factors with their specific receptor tyrosine kinases, their receptors activate cytosolic Ca2+ signaling and signal transduction cascades to induce cell proliferation, differentiation, and migration. Expressions of some growth factors and their receptors upregulate in PAH patients, which contributes to the formation of vascular remodeling and plexiform lesions in PAH. We have recently found that enhanced Ca2+-sensing receptor (CaSR) function is involved the development of PAH and CaSR expression is upregulated by PDGF in pulmonary arterial smooth muscle cells (PASMCs) from idiopathic PAH patients. This review will be discussed the physiological and pathological roles of growth factors in PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University
| | | | | |
Collapse
|
16
|
Plumbagin Inhibits Proliferation, Migration, and Invasion of Retinal Pigment Epithelial Cells Induced by FGF-2. Tissue Cell 2021; 72:101547. [PMID: 33964605 DOI: 10.1016/j.tice.2021.101547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a serious ophthalmic disease and characterized by the formation of proliferative membranes by retinal pigment epithelial (RPE) cells. In PVR, the contraction and traction of the fibrocellular membranes cause retinal detachment, which can cause reduction surgery for retinal detachment to fail. Fibroblast growth factor-2 (FGF-2) causes RPE cells to form extracellular matrix (ECM), promotes chemotaxis, mitosis, and positively promotes the disease process of PVR. Plumbagin (PLB) is a plant small molecule naphthoquinone compound. It has the functions in anti-tumor, anti-inflammatory, inhibit proliferation. We tried to investigate the possible effects of PLB on the biological behavior of ARPE-19 cells induced by FGF-2 and its underlying mechanisms. Our study confirmed that proliferation, migration, and invasion of ARPE-19 cells induced by FGF-2 (10 ng/ml) were significantly inhibited by PLB. PLB also significantly inhibits the expression of MMP-2/-9, collagen I Alpha 1 (Col1A1), collagen IV Alpha 1 (Col4A1), collagen VI Alpha 1 (Col6A1), and the phosphorylation of FGF receptor (FGFR)-1, FGFR-2, ERK, p38, JNK of FGF-2-induced ARPE-19 cells. In summary, PLB inhibits FGF-2-stimulated proliferation, migration, and invasion of ARPE-19 cells, which may take place through inhibiting the expression of MMP-2/-9, Col1A1, Col4A1, Col6A1, and the mitogen-activated protein kinase (MAPK) pathway. PLB may have a preventive effect on proliferation, migration, and invasion of FGF-2-induced ARPE-19 cells.
Collapse
|
17
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
18
|
Impacts of chemically different surfaces of implants on a biological activity of fibroblast growth factor-2-apatite composite layers formed on the implants. Orthop Traumatol Surg Res 2021; 107:102748. [PMID: 33316452 DOI: 10.1016/j.otsr.2020.102748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Implants coated with fibroblast growth factor-2 (FGF-2)-apatite composite layers were previously reported to enhance soft-tissue formation, bone formation, and angiogenesis around the implants owing to the biological activity of FGF-2. However, it is unclear whether the chemistries of the material and surface of implants have some impact on the retention of the biological activity of FGF-2 in FGF-2-apatite composite layers on them. Since magnitude of the impact should be evaluated for extensive application of the composite layer to coat various implants, following items were examined; (1) surface chemistries of six implants, (2) mitogenic activities of FGF-2 in FGF-2-apatite composite layers on the implants, and (3) improved synthesis method of the composite layer for retention of the mitogenic activity of FGF-2. HYPOTHESIS The biological activity of FGF-2 in the composite layer is affected by the chemistries of the material and surface of implants. MATERIALS AND METHODS Six commercial products of pins and screws having different surface chemistries were coated with FGF-2-apatite composite layers. The composite layers were quantitatively analyzed for calcium (Ca), phosphorus (P) and FGF-2, and also evaluated the mitogenic activities of FGF-2. Improvement of the synthesis method was then attempted using two pin products. RESULTS Each commercial product had a chemically and morphologically characteristic surface. FGF-2-apatite composite layers were formed on all the commercial products. Although the Ca, P, and FGF-2 contents (4.7±0.9μg/mm, 2.2±0.4μg/mm, and 21.1±3.7ng/mm, respectively) and the Ca/P molar ratios (1.69±0.01) of the composite layers were almost the same, rate of retention of the mitogenic activity of FGF-2 in the composite layers significantly decreased on some pin products (3/12-4/12). The decrease in rate of retention of the mitogenic activity of FGF-2 was prevented by a two-step synthesis method to form a composite layer on a precoating with calcium phosphate (9/12-12/12). DISCUSSION The chemistries of the implant surfaces had a significant impact on the retention of the mitogenic activity of FGF-2 in the composite layers formed on the implant. The two-step synthesis method was useful to retain mitogenic activity of FGF-2 regardless of the surface chemistries of the implants. The two-step synthesis method has potential to expand the applicability of FGF-2-apatite composite layers to a wider range of implants. LEVEL OF EVIDENCE III, Case control in vitro study.
Collapse
|
19
|
Liran M, Rahamim N, Ron D, Barak S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039271. [PMID: 31964648 DOI: 10.1101/cshperspect.a039271] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dorit Ron
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, California 94143-0663, USA
| | - Segev Barak
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
20
|
Bong SM, Bae SH, Song B, Gwak H, Yang SW, Kim S, Nam S, Rajalingam K, Oh SJ, Kim TW, Park S, Jang H, Lee BI. Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Res 2020; 48:6340-6352. [PMID: 32383752 PMCID: PMC7293033 DOI: 10.1093/nar/gkaa335] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5–FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.
Collapse
Affiliation(s)
- Seoung Min Bong
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - HyeRan Gwak
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Won Yang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology and Department of Genome Medicine and Science, Graduate School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | | | - Se Jin Oh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
21
|
Adeyemo A, Johnson C, Stiene A, LaSance K, Qi Z, Lemen L, Schultz JEJ. Limb functional recovery is impaired in fibroblast growth factor-2 (FGF2) deficient mice despite chronic ischaemia-induced vascular growth. Growth Factors 2020; 38:75-93. [PMID: 32496882 PMCID: PMC8601595 DOI: 10.1080/08977194.2020.1767612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.
Collapse
Affiliation(s)
- Adeola Adeyemo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Christopher Johnson
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Andrew Stiene
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Zhihua Qi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa Lemen
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jo El J. Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
22
|
Lamus F, Martín C, Carnicero E, Moro J, Fernández J, Mano A, Gato Á, Alonso M. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: the involvement of embryonic cerebrospinal fluid. Dev Dyn 2019; 249:141-153. [DOI: 10.1002/dvdy.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- F. Lamus
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - C. Martín
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - E. Carnicero
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | | | - J.M.F. Fernández
- Departamento de Biología Celular, Histología y Farmacología; Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - A. Mano
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - Á. Gato
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - M.I. Alonso
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| |
Collapse
|
23
|
Wang Y, Xu S, Wang R, Chen W, Hou K, Tian C, Ji Y, Yang Q, Yu L, Lu Z, Zhao P, Xia Q, Wang F. Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomater Sci 2019; 7:4536-4546. [PMID: 31536077 DOI: 10.1039/c9bm01285k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional silk mats with improved cell proliferation activity are promising medical materials to accelerate damaged wound healing and tissue repair. In this study, novel functional silk mats were fabricated from human fibroblast growth factor (FGF)-containing cocoons generated by expressing human acid FGF1 and basic FGF2 in silkworms. First, functional silk mats containing FGF1 and FGF2 proteins alone or in combination were fabricated by physically cutting genetically engineered cocoons. Compared to those of normal silk mats, the physical properties of these functional silk mats such as silk fibre diameter, internal secondary structure, and mechanical properties were significantly changed. The expressed FGF1 and FGF2 proteins in these silk mats were efficiently and gradually released over 15 days. Moreover, these silk mats significantly promoted NIH/3T3 cell proliferation and growth by activating the extracellular signal-regulated kinase (ERK) pathway, and the silk mat containing FGF1 and FGF2 proteins showed higher cell proliferation. Importantly, this silk mat caused no obvious cytotoxicity or cell inflammation. These results suggest that these functional silk mats have potential medical applications.
Collapse
Affiliation(s)
- Yuancheng Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Sheng Xu
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Riyuan Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Wenjing Chen
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kai Hou
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Chi Tian
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yanting Ji
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qianqian Yang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China and Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Feng Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China and Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
24
|
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 2019; 156:33-46. [PMID: 31421589 DOI: 10.1016/j.rmed.2019.08.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
25
|
Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 2019; 28:16-25. [PMID: 30451736 DOI: 10.1097/mnh.0000000000000467] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The current review examines what is known about the FGF-23/α-Klotho co-dependent and independent pathophysiological effects, and whether FGF-23 and/or α-Klotho are potential therapeutic targets. RECENT FINDINGS FGF-23 is a hormone derived mainly from bone, and α-Klotho is a transmembrane protein. Together they form a trimeric signaling complex with FGFRs in target tissues to mediate the physiological functions of FGF-23. Local and systemic factors control FGF-23 release from osteoblast/osteocytes in bone, and circulating FGF-23 activates FGFR/α-Klotho complexes in kidney proximal and distal renal tubules to regulate renal phosphate excretion, 1,25 (OH)2D metabolism, sodium and calcium reabsorption, and ACE2 and α-Klotho expression. The resulting bone-renal-cardiac-immune networks provide a new understanding of bone and mineral homeostasis, as well as identify other biological effects FGF-23. Direct FGF-23 activation of FGFRs in the absence of α-Klotho is proposed to mediate cardiotoxic and adverse innate immune effects of excess FGF-23, particularly in chronic kidney disease, but this FGF-23, α-Klotho-independent signaling is controversial. In addition, circulating soluble Klotho (sKl) released from the distal tubule by ectodomain shedding is proposed to have beneficial health effects independent of FGF-23. SUMMARY Separation of FGF-23 and α-Klotho independent functions has been difficult in mammalian systems and understanding FGF-23/α-Klotho co-dependent and independent effects are incomplete. Antagonism of FGF-23 is important in treatment of hypophosphatemic disorders caused by excess FGF-23, but its role in chronic kidney disease is uncertain. Administration of recombinant sKl is an unproven therapeutic strategy that theoretically could improve the healt span and lifespan of patients with α-Klotho deficiency.
Collapse
|
26
|
Wang Y, Wang F, Xu S, Wang R, Chen W, Hou K, Tian C, Wang F, Yu L, Lu Z, Zhao P, Xia Q. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomater 2019; 86:148-157. [PMID: 30586645 DOI: 10.1016/j.actbio.2018.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
Functional silk is a promising material for future medical applications. These include fabrication of diverse silk fiber and silk protein-regenerated biomaterials such as silk sutures, hydrogel, films, and 3D scaffolds for wound healing and tissue regeneration and reconstruction. Here, a novel bi-functional silk with improved cell proliferation and anti-inflammatory activities was created by co-expressing the human basic fibroblast growth factor (FGF2) and transforming growth factor-β1 (TGF_β1) genes in silkworm. First, both FGF2 and TGF_β1 genes were confirmed to be successfully expressed in silk thread. The characterization of silk properties by SEM, FTIR, and mechanical tests showed that this new silk (FT silk) had a similar diameter, inner molecular composition, and mechanical properties as those of normal silk. Additionally, expressed FGF2 and TGF_β1 proteins were continuously and slowly released from FT silk for one week. Most importantly, the FGF2 and TGF_β1 contained in FT silk not only promoted cell proliferation by activating the ERK pathway but also significantly reduced LPS-induced inflammation responses in macrophages by mediating the Smad pathway. Moreover, this FT silk had no apparent toxicity for cell growth and caused no cell inflammation. These properties suggest that it has a potential for medical applications. STATEMENT OF SIGNIFICANCE: Silk spun by domestic silkworm is a promising material for fabricating various silk protein regenerated biomaterials in medical area, since it owes good biocompatibility, biodegradability and low immunogenicity. Recently, fabricating various functional silk fibers and regenerated silk protein biomaterials which has ability of releasing functional protein factor is the hot point field. This study is a first time to create a novel bi-functional silk material with the improved cell proliferation and anti-inflammatory activity by genetic engineered technology. This novel silk has a great application potential as new and novel medical material, and this study also provides a new strategy to create various functional or multifunctional silk fiber materials in future.
Collapse
|
27
|
Wang L, Li XX, Chen X, Qin XY, Kardami E, Cheng Y. Antidepressant-Like Effects of Low- and High-Molecular Weight FGF-2 on Chronic Unpredictable Mild Stress Mice. Front Mol Neurosci 2018; 11:377. [PMID: 30369869 PMCID: PMC6194172 DOI: 10.3389/fnmol.2018.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
The occurrence of depressive disorder has long been attributed to changes in monoamines, with the focus of drug treatment strategies being to change the effectiveness of monoamines. However, the success achieved by changing these processes is limited and further stimulates the exploration of alternative mechanisms and treatments. Fibroblast growth factor 2 (FGF-2), which occurs in a high-molecular weight (HMW) and low-molecular weight (LMW) form, is a potent developmental modulator and nervous system regulator that has been suggested to play an important role in various psychiatric disorders. In this study, we investigated the antidepressant effects of HMW and LMW FGF-2 on depression induced by chronic stress. Both peripheral LMW and HMW FGF-2 attenuated the depression-like behaviors in chronic unpredictable mild stress (CUMS) mice to a similar extent, as determined by the forced swimming, tail suspension, and sucrose preference tests. We then showed that CUMS-induced oxidative stresses in mice were inhibited by FGF-2 treatments both in central and peripheral. We also showed that both forms of FGF-2 increased the phosphorylation of ERK and AKT, increased Bcl-2 expression and inhibited caspase-3 activation in CUMS mice. Interestingly, HMW FGF-2 enhanced the activity of the brain-derived neurotrophic factor (BDNF) to a greater extent than did LMW FGF-2 in the hippocampus. Taken together, these results suggest that depressive symptoms can be relieved by administering different forms of FGF-2 peripherally in a CUMS-induced depression model through a similar antidepressant signaling pathway, therefore suggesting a potential clinical use for FGF-2 as a treatment for depression.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi-Xi Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi Chen
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
28
|
Even-Chen O, Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur J Neurosci 2018; 50:2552-2561. [PMID: 30144335 DOI: 10.1111/ejn.14133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a member of the FGF-family, which consists of 22 members, with four known FGF receptors (five in humans). Over the last 30 years, FGF2 has been extensively studied for its role in cell proliferation, differentiation, growth, survival and angiogenesis during development, as well as for its role in adult neurogenesis and regenerative plasticity. Over the past decade, FGF2 has been implicated in learning and memory, as well as in several neuropsychiatric disorders, including anxiety, stress, depression and drug addiction. In this review, we present accumulating evidence indicating the involvement of FGF2 in neuroadaptations caused by drugs of abuse, namely, amphetamine, cocaine, nicotine and alcohol. Moreover, evidence suggests that FGF2 is a positive regulator of alcohol and drug-related behaviors. Thus, although additional studies are yet required, we suggest that reducing FGF2 activity may provide a novel therapeutic approach for substance use disorders.
Collapse
Affiliation(s)
- Oren Even-Chen
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
30
|
Schuermann Y, Siddappa D, Pansera M, Duggavathi R. Activated receptor tyrosine kinases in granulosa cells of ovulating follicles in mice. Mol Reprod Dev 2018; 85:316-324. [DOI: 10.1002/mrd.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Dayananda Siddappa
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Melissa Pansera
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Raj Duggavathi
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
31
|
Yan H, Zhong L, Jiang Y, Yang J, Deng J, Wei S, Opara E, Atala A, Mao X, Damaser MS, Zhang Y. Controlled release of insulin-like growth factor 1 enhances urethral sphincter function and histological structure in the treatment of female stress urinary incontinence in a rat model. BJU Int 2017; 121:301-312. [PMID: 28805303 DOI: 10.1111/bju.13985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine the effects of controlled release of insulin-like growth factor 1 (IGF-1) from alginate-poly-L-ornithine-gelatine (A-PLO-G) microbeads on external urethral sphincter (EUS) tissue regeneration in a rat model of stress urinary incontinence (SUI), as SUI diminishes the quality of life of millions, particularly women who have delivered vaginally, which can injure the urethral sphincter. Despite several well-established treatments for SUI, growth factor therapy might provide an alternative to promote urethral sphincter repair. MATERIALS AND METHODS In all, 44 female Sprague-Dawley rats were randomised into four groups: vaginal distension (VD) followed by periurethral injection of IGF-1-A-PLO-G microbeads (VD + IGF-1 microbeads; 1 × 104 microbeads/1 mL normal saline); VD + empty microbeads; VD + saline; or sham-VD + saline (sham). RESULTS Urethral function (leak-point pressure, LPP) was significantly lesser 1 week after VD + saline [mean (sem) 23.9 (1.3) cmH2 O] or VD + empty microbeads [mean (sem) 21.7 (0.8) cmH2 O) compared to the sham group [mean (sem) 44.4 (3.4) cmH2 O; P < 0.05), indicating that the microbeads themselves do not create a bulking or obstructive effect in the urethra. The LPP was significantly higher 1 week after VD + IGF-1 microbeads [mean (sem) 28.4 (1.2) cmH2 O] compared to VD + empty microbeads (P < 0.05), and was not significantly different from the LPP in sham rats, demonstrating an initiation of a reparative effect even at 1 week after VD. Histological analysis showed well-organised skeletal muscle fibres and vascular development in the EUS at 1 week after VD + IGF-1 microbeads, compared to substantial muscle fibre attenuation and disorganisation, and less vascular formation at 1 week after VD + saline or VD + empty microbeads. CONCLUSION Periurethral administration of IGF-1-A-PLO-G microbeads facilitates recovery from SUI by promoting skeletal myogenesis and revascularisation. This therapy is promising, but detailed and longer term studies in animal models and humans are needed.
Collapse
Affiliation(s)
- Hao Yan
- Biomedical Engineering Department of the Lerner Research Institute, Cleveland, OH, USA.,Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liren Zhong
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaodong Jiang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Yang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Junhong Deng
- Department of Andrology, The First People's Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Emmanuel Opara
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Margot S Damaser
- Biomedical Engineering Department of the Lerner Research Institute, Cleveland, OH, USA.,The Advanced Platform Technology Center of the Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Garbarino Azúa DJ, Saucedo L, Giordana S, Magri ML, Buffone MG, Neuspiller F, Vazquez-Levin MH, Marín-Briggiler CI. Fibroblast growth factor 2 (FGF2) is present in human spermatozoa and is related with sperm motility. The use of recombinant FGF2 to improve motile sperm recovery. Andrology 2017; 5:990-998. [PMID: 28732140 DOI: 10.1111/andr.12398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate several functions of somatic cells. In a previous work, we reported FGFR expression in human spermatozoa and their involvement in motility. This study aimed to evaluate the presence and localization of fibroblast growth factor 2 (FGF2) in human spermatozoa, to determine the relationship of FGF2 levels with conventional semen parameters and to assess the effect of recombinant FGF2 (rFGF2) on sperm recovery in a selection procedure. Western immunoblotting analysis using an antibody against FGF2 revealed an 18-kDa band in sperm protein extracts. The protein was immunolocalized in the sperm flagellum and acrosomal region, as well as in all germ cells. Sperm FGF2 levels, assessed by flow cytometry, showed a positive (p < 0.05) correlation with sperm concentration, motility, total sperm number and total motile cells per ejaculate. Moreover, samples with abnormal motility depicted diminished (p < 0.01) FGF2 levels compared to those with normal motility. Spermatozoa exposed to rFGF2 bound the protein, exhibited higher (p < 0.05) total and motile sperm recoveries, and increased (p < 0.01) kinematic parameters after the swim-up. Findings herein presented lead to consider sperm FGF2 level as a potential marker of sperm quality, and rFGF2 as a supplement for improving sperm recovery in selection techniques.
Collapse
Affiliation(s)
- D J Garbarino Azúa
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - L Saucedo
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - S Giordana
- Instituto Valenciano de Infertilidad (IVI), Buenos Aires, Argentina
| | - M L Magri
- Instituto Valenciano de Infertilidad (IVI), Buenos Aires, Argentina
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - F Neuspiller
- Instituto Valenciano de Infertilidad (IVI), Buenos Aires, Argentina
| | - M H Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - C I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Vanova T, Konecna Z, Zbonakova Z, La Venuta G, Zoufalova K, Jelinkova S, Varecha M, Rotrekl V, Krejci P, Nickel W, Dvorak P, Kunova Bosakova M. Tyrosine Kinase Expressed in Hepatocellular Carcinoma, TEC, Controls Pluripotency and Early Cell Fate Decisions of Human Pluripotent Stem Cells via Regulation of Fibroblast Growth Factor-2 Secretion. Stem Cells 2017. [PMID: 28631381 DOI: 10.1002/stem.2660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.
Collapse
Affiliation(s)
- Tereza Vanova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zaneta Konecna
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Zbonakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Karolina Zoufalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | |
Collapse
|
34
|
Kikuchi S, Chen L, Xiong K, Saito Y, Azuma N, Tang G, Sobel M, Wight TN, Kenagy RD. Smooth muscle cells of human veins show an increased response to injury at valve sites. J Vasc Surg 2017. [PMID: 28647196 DOI: 10.1016/j.jvs.2017.03.447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Venous valves are essential but are prone to injury, thrombosis, and fibrosis. We compared the behavior and gene expression of smooth muscle cells (SMCs) in the valve sinus vs nonvalve sites to elucidate biologic differences associated with vein valves. METHODS Tissue explants of fresh human saphenous veins were prepared, and the migration of SMCs from explants of valve sinus vs nonvalve sinus areas was measured. Proliferation and death of SMCs were determined by staining for Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling. Proliferation and migration of passaged valve vs nonvalve SMCs were determined by cell counts and using microchemotaxis chambers. Global gene expression in valve vs nonvalve intima-media was determined by RNA sequencing. RESULTS Valve SMCs demonstrated greater proliferation in tissue explants compared with nonvalve SMCs (19.3% ± 5.4% vs 6.8% ± 2.0% Ki67-positive nuclei at 4 days, respectively; mean ± standard error of the mean, five veins; P < .05). This was also true for migration (18.2 ± 2.7 vs 7.5 ± 3.0 migrated SMCs/explant at 6 days, respectively; 24 veins, 15 explants/vein; P < .0001). Cell death was not different (39.6% ± 16.1% vs 41.5% ± 16.0% terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, respectively, at 4 days, five veins). Cultured valve SMCs also proliferated faster than nonvalve SMCs in response to platelet-derived growth factor subunit BB (2.9 ± 0.2-fold vs 2.1 ± 0.2-fold of control, respectively; P < .001; n = 5 pairs of cells). This was also true for migration (6.5 ± 1.2-fold vs 4.4 ± 0.8-fold of control, respectively; P < .001; n = 7 pairs of cells). Blockade of fibroblast growth factor 2 (FGF2) inhibited the increased responses of valve SMCs but had no effect on nonvalve SMCs. Exogenous FGF2 increased migration of valve but not of nonvalve SMCs. Unlike in the isolated, cultured cells, blockade of FGF2 in the tissue explants did not block migration of valve or nonvalve SMCs from the explants. Thirty-seven genes were differentially expressed by valve compared with nonvalve intimal-medial tissue (11 veins). Peptide-mediated inhibition of SEMA3A, one of the differentially expressed genes, increased the number of migrated SMCs of valve but not of nonvalve explants. CONCLUSIONS Valve compared with nonvalve SMCs have greater rates of migration and proliferation, which may in part explain the propensity for pathologic lesion formation in valves. Whereas FGF2 mediates these effects in cultured SMCs, the mediators of these stimulatory effects in the valve wall tissue remain unclear but may be among the differentially expressed genes discovered in this study. One of these genes, SEMA3A, mediates a valve-specific inhibitory effect on the injury response of valve SMCs.
Collapse
Affiliation(s)
- Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Lihua Chen
- Department of Surgery, University of Washington, Seattle, Wash
| | - Kevin Xiong
- Department of Surgery, University of Washington, Seattle, Wash
| | - Yukihiro Saito
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Gale Tang
- Department of Surgery, University of Washington, Seattle, Wash; Center for Cardiovascular Biology, University of Washington, Seattle, Wash; Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, Wash
| | - Michael Sobel
- Department of Surgery, University of Washington, Seattle, Wash; Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, Wash
| | - Thomas N Wight
- Center for Cardiovascular Biology, University of Washington, Seattle, Wash; Matrix Biology Program, Benaroya Research Institute, Seattle, Wash
| | - Richard D Kenagy
- Department of Surgery, University of Washington, Seattle, Wash; Center for Cardiovascular Biology, University of Washington, Seattle, Wash.
| |
Collapse
|
35
|
Vorgia E, Zaragkoulias A, Peraki I, Mavrothalassitis G. Suppression of Fgf2 by ETS2 repressor factor (ERF) is required for chorionic trophoblast differentiation. Mol Reprod Dev 2017; 84:286-295. [PMID: 28244611 DOI: 10.1002/mrd.22780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/26/2023]
Abstract
ETS2 repressor factor (ERF) is a ubiquitous transcriptional repressor regulated by Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Homozygous deletion of Erf in mice blocks chorionic trophoblast differentiation, resulting in the failure of chorioallantoic fusion and subsequent embryo death. Fibroblast growth factor (FGF) signaling is important for proper trophoblast stem cell (TSC) differentiation and development of the hemochorial placenta. Lack of Fgf2 promotes TSC differentiation, while FGF4 or FGF2 is required for murine TSC maintenance. Here, we show that low in vivo Fgf2 mRNA abundance occurs in patches of placental chorion cells and ex vivo in TSCs. This expression is repressed via direct interaction of ERF with the Fgf2 transcription unit is increased in the absence of ERF, and is decreased in the presence of an ERF mutant resistant to ERK phosphorylation. Thus, FGF2 inhibition by ERF appears to be necessary for proper chorionic TSC differentiation, and may account for the block of chorionic trophoblast differentiation in Erf-knockout animals. The differentiation of ERF-overexpressing TSC lines also suggests that ERF may have an FGF2-independent effect during the commitment towards syncytiotrophoblasts.
Collapse
Affiliation(s)
- Elena Vorgia
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | | | - Ioanna Peraki
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Mavrothalassitis
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| |
Collapse
|
36
|
Andreucci E, Bianchini F, Biagioni A, Del Rosso M, Papucci L, Schiavone N, Magnelli L. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med (Berl) 2016; 95:97-108. [PMID: 27558498 DOI: 10.1007/s00109-016-1463-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. KEY MESSAGE FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
37
|
Du E, Xiao L, Hurley MM. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice. J Cell Physiol 2016; 232:610-616. [PMID: 27306296 DOI: 10.1002/jcp.25458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
Abstract
High molecular weight FGF2 transgenic mice (HMWTg) phenocopy the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with phosphate wasting and abnormal fibroblast growth factor (FGF23), fibroblast growth factor receptor (FGFR), Klotho and mitogen activated protein kinases (MAPK) signaling in kidney. In this study, we assessed whether short-term (24 h) in vivo administration of FGF23 neutralizing antibody (FGF23Ab) could rescue hypophosphatemia and impaired FGFR signaling in kidneys of HMWTg male mice. Bone mineral density and bone mineral content in 1-month-old HMWTg mice were significantly reduced compared with Control/VectorTg mice. Serum FGF23 was significantly increased in HMWTg compared with VectorTg. Serum phosphate was significantly reduced in HMWTg and was rescued by FGF23Ab. Serum parathyroid hormone (PTH) was significantly increased in HMWTg but was not reduced by FGF23Ab. 1, 25(OH)2 D was inappropriately normal in serum of HMWTg and was significantly increased in both Vector and HMWTg by FGF23Ab. Analysis of HMWTg kidneys revealed significantly increased mRNA expression of the FGF23 co-receptor Klotho, transcription factor mRNAs for early growth response-1 transcription factor (Egr-1), and c-fos were all significantly decreased by FGF23Ab. A significant reduction in the phosphate transporter Npt2a mRNA was also observed in HMWTg kidneys, which was increased by FGF23Ab. FGF23Ab reduced p-FGFR1, p-FGFR3, KLOTHO, p-ERK1/2, C-FOS, and increased NPT2A protein in HMWTg kidneys. We conclude that FGF23 blockade rescued hypophosphatemia by regulating FGF23/FGFR downstream signaling in HMWTg kidneys. Furthermore, HMWFGF2 isoforms regulate PTH expression independent of FGF23/FGFR signaling. J. Cell. Physiol. 232: 610-616, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E Du
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - L Xiao
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - M M Hurley
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
38
|
Du E, Xiao L, Hurley MM. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice. J Cell Biochem 2016; 117:1991-2000. [PMID: 26762209 DOI: 10.1002/jcb.25493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
Abstract
High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erxia Du
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| | - Liping Xiao
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| | - Marja M Hurley
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| |
Collapse
|
39
|
Nakano SI, Nakamura K, Teramoto N, Yamanouchi K, Nishihara M. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells. Anim Sci J 2015; 87:99-108. [DOI: 10.1111/asj.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Shin-ichi Nakano
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
40
|
Pan RL, Xiang LX, Wang P, Liu XY, Nie L, Huang W, Shao JZ. Low-molecular-weight fibroblast growth factor 2 attenuates hepatic fibrosis by epigenetic down-regulation of Delta-like1. Hepatology 2015; 61:1708-20. [PMID: 25501710 DOI: 10.1002/hep.27649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
Abstract
UNLABELLED Liver fibrosis, a major cause of end-stage liver diseases, is closely regulated by multiple growth factors and cytokines. The correlation of fibroblast growth factor 2 (FGF2) with chronic liver injury has been reported, but the exact functions of different FGF2 isoforms in liver fibrogenesis remain unclear. Here, we report on the differential expression patterns and functions of low- and high-molecular-weight FGF2 (namely, FGF2(lmw) and FGF2(hmw) , respectively) in hepatic fibrogenesis using a CCl4 -induced mouse liver fibrosis model. FGF2(hmw) displayed a robust increase in CCl4 -induced hepatic fibrosis and promoted fibrogenesis. In contrast, endogenous FGF2(lmw) exhibited a slight increase in hepatic fibrosis and suppressed this pathological progression. Moreover, exogenous administration of recombinant FGF2(lmw) potently ameliorated CCl4 -induced liver fibrosis. Mechanistically, we showed that FGF2(lmw) treatment attenuated hepatic stellate cell activation and fibrosis by epigenetic down-regulation of Delta-like 1 expression through the p38 mitogen-activated protein kinase pathway. CONCLUSION FGF2(lmw) and FGF2(hmw) have distinct roles in liver fibrogenesis. These findings demonstrate a potent antifibrotic effect of FGF2(lmw) administration, which may provide a novel approach to treat chronic liver diseases.
Collapse
Affiliation(s)
- Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Förthmann B, Grothe C, Claus P. A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 2015; 72:1651-62. [PMID: 25552245 PMCID: PMC11113852 DOI: 10.1007/s00018-014-1818-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023]
Abstract
Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Claudia Grothe
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
42
|
Patent Highlights. Pharm Pat Anal 2015. [DOI: 10.4155/ppa.14.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development
Collapse
|
43
|
Abstract
Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1)-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO)-null mice (Hyp;Fgfr1Dmp1-cKO) with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost), phosphate regulating endopeptidase on X chromosome (PHEX or Phex), matrix extracellular phosphoglycoprotein (Mepe), and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH)2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml), an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl) and 1,25(OH)2D (121±23 to 192±34 pg/ml) levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK−), PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF23 by both transcriptional and post-transcriptional mechanisms. This may serve to link local bone metabolism with systemic phosphate and vitamin D homeostasis.
Collapse
|
44
|
Lien IC, Horng LY, Hsu PL, Wu CL, Sung HC, Wu RT. Internal ribosome entry site of bFGF is the target of thalidomide for IMiDs development in multiple myeloma. Genes Cancer 2014; 5:127-41. [PMID: 25053990 PMCID: PMC4091528 DOI: 10.18632/genesandcancer.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 01/20/2023] Open
Abstract
Although new analogues of immunomodulatory drugs (IMiDs) are being developed for MM, the molecular mechanism of these drugs remains unclear. In the current study, we used MM cell lines as a model to investigate the molecular mechanism of thalidomide and to compare its potency with IMiDs such as pomalidomide. We determined that thalidomide did not inhibit cell proliferation of RPMI8226 and U266 MM cells, whereas pomalidomide showed a significant inhibitory effect on these two MM cell lines. Interestingly, we further demonstrated that although thalidomide down-regulated bFGF translation through the inhibition of IRES even at 0.1 μg/ml, pomalidomide did not have a similar affect bFGF levels. A colony formation assay demonstrated that thalidomide and the bFGF knock-down clones caused a significant reduction in the clonogenic ability of MM cells, and treatment with exogenous bFGF can recover the clonogenic ability of thalidomide-treated cells and knock-down clones, but not that of pomalidomide-treated cells. This implies that thalidomide, but not pomalidomide, targets the IRES of FGF-2. In conclusion, our results highlight a non-cytotoxic anticancer drug target for thalidomide, the IRES of bFGF, and provide the mechanistic rationale for developing IMiDs as anti-cancer therapeutics in MM patients, with improved potency and fewer side effects.
Collapse
Affiliation(s)
- I-Chia Lien
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, ROC (Taiwan)
| | - Lin-Yea Horng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, ROC (Taiwan) ; Research Centre for Drug Discovery, National Yang-Ming University, Taipei, ROC (Taiwan)
| | - Pei-Lun Hsu
- Research Centre for Drug Discovery, National Yang-Ming University, Taipei, ROC (Taiwan)
| | - Chia-Ling Wu
- Research Centre for Drug Discovery, National Yang-Ming University, Taipei, ROC (Taiwan)
| | - Hui-Ching Sung
- Research Centre for Drug Discovery, National Yang-Ming University, Taipei, ROC (Taiwan)
| | - Rong-Tsun Wu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, ROC (Taiwan) ; Research Centre for Drug Discovery, National Yang-Ming University, Taipei, ROC (Taiwan)
| |
Collapse
|
45
|
Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 2014; 9:e97281. [PMID: 24827991 PMCID: PMC4020823 DOI: 10.1371/journal.pone.0097281] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious (pro-fibrotic, pro-inflammatory, and pro-hypertrophic) responses in vitro. Selective targeting of Hi-FGF-2 production may, therefore, reduce pathological remodelling in the human heart.
Collapse
Affiliation(s)
- Jon-Jon Santiago
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie J. McNaughton
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xin Ma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Bestvater
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E. Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert R. Fandrich
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darren H. Freed
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rakesh C. Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
46
|
Conrad SJ, Essani K. Oncoselectivity in Oncolytic Viruses against Colorectal Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.513118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
48
|
Prudovsky I, Kumar TKS, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013; 14:3734-72. [PMID: 23396106 PMCID: PMC3588068 DOI: 10.3390/ijms14023734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022] Open
Abstract
Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | - Sarah Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| | - David Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| |
Collapse
|
49
|
Hotowy A, Sawosz E, Pineda L, Sawosz F, Grodzik M, Chwalibog A. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. NANOSCALE RESEARCH LETTERS 2012; 7:418. [PMID: 22827927 PMCID: PMC3507702 DOI: 10.1186/1556-276x-7-418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/14/2012] [Indexed: 05/25/2023]
Abstract
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level (FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA (P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Ewa Sawosz
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Lane Pineda
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Filip Sawosz
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Marta Grodzik
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - André Chwalibog
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| |
Collapse
|
50
|
Ratzka A, Baron O, Stachowiak MK, Grothe C. Fibroblast growth factor 2 regulates dopaminergic neuron development in vivo. J Neurochem 2012; 122:94-105. [DOI: 10.1111/j.1471-4159.2012.07768.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|