1
|
An J, Lv KP, Chau CV, Lim JH, Parida R, Huang X, Debnath S, Xu Y, Zheng S, Sedgwick AC, Lee JY, Luo D, Liu Q, Sessler JL, Kim JS. Lutetium Texaphyrin-Celecoxib Conjugate as a Potential Immuno-Photodynamic Therapy Agent. J Am Chem Soc 2024; 146:19434-19448. [PMID: 38959476 DOI: 10.1021/jacs.4c05978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.
Collapse
Affiliation(s)
- Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kong-Peng Lv
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhen 518000, Guangdong, China
- Department of Interventional Radiology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Rakesh Parida
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Xin Huang
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhen 518000, Guangdong, China
| | | | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Siqi Zheng
- Department of Interventional Radiology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Dixian Luo
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhen 518000, Guangdong, China
| | - Quan Liu
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhen 518000, Guangdong, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Qiao J, Liu S, Huang Y, Zhu X, Xue C, Wang Y, Xiong H, Yao J. Glycolysis-non-canonical glutamine dual-metabolism regulation nanodrug enhanced the phototherapy effect for pancreatic ductal adenocarcinoma treatment. J Colloid Interface Sci 2024; 665:477-490. [PMID: 38429120 DOI: 10.1016/j.jcis.2024.02.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.
Collapse
Affiliation(s)
- Jianan Qiao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shuhui Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yanfeng Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiang Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenyang Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yan Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hui Xiong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Jing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Yadav R, Das PP, Sharma S, Sengupta S, Kumar D, Sagar R. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. Med Oncol 2023; 40:347. [PMID: 37930458 DOI: 10.1007/s12032-023-02195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cervical cancer is a huge worldwide health burden, impacting women in impoverished nations in particular. Traditional therapeutic approaches, such as surgery, radiation therapy, and chemotherapy, frequently result in systemic toxicity and ineffectiveness. Nanomedicine has emerged as a viable strategy for targeted delivery of therapeutic drugs to cancer cells while decreasing off-target effects and increasing treatment success in recent years. Nanomedicine for cervical cancer introduces several novel aspects that distinguish it from previous treatment options such as tailored delivery system, precision targeting, combination therapies, real-time monitoring and diverse nanocarriers to overcome the limitations of one another. This abstract presents recent advances in nanomedicine-based tailored delivery systems for the treatment of cervical cancer. Liposomes, polymeric nanoparticles, dendrimers, and carbon nanotubes have all been intensively studied for their ability to transport chemotherapeutic medicines, nucleic acids, and imaging agents to cervical cancer cells. Because of the way these nanocarriers are designed, they may cross biological barriers and preferentially aggregate at the tumor site, boosting medicine concentration and lowering negative effects on healthy tissues. Surface modification of nanocarriers with targeting ligands like antibodies, peptides, or aptamers improves specificity for cancer cells by identifying overexpressed receptors or antigens on the tumor surface. Furthermore, nanomedicine-based techniques have made it possible to co-deliver numerous therapeutic drugs, allowing for synergistic effects and overcoming drug resistance. In preclinical and clinical investigations, combination treatments comprising chemotherapeutic medicines, gene therapy, immunotherapy, and photodynamic therapy have showed encouraging results, opening up new avenues for individualized and multimodal treatment regimens. Furthermore, the inclusion of contrast agents and imaging probes into nanocarrier systems has enabled real-time monitoring and imaging of treatment response. This enables the assessment of therapy efficacy, the early diagnosis of recurrence, and the optimization of treatment regimens.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Kerkhoff M, Grunewald S, Schaefer C, Zöllner SK, Plaumann P, Busch M, Dünker N, Ketzer J, Kersting J, Bauer S, Hardes J, Streitbürger A, Dirksen U, Hartmann W, Guder WK. Evaluation of the Effect of Photodynamic Therapy on CAM-Grown Sarcomas. Bioengineering (Basel) 2023; 10:bioengineering10040464. [PMID: 37106651 PMCID: PMC10136229 DOI: 10.3390/bioengineering10040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Resection margin adequacy plays a critical role in the local control of sarcomas. Fluorescence-guided surgery has increased complete resection rates and local recurrence-free survival in several oncological disciplines. The purpose of this study was to determine whether sarcomas exhibit sufficient tumor fluorescence (photodynamic diagnosis (PDD)) after administration of 5-aminolevulinic acid (5-ALA) and whether photodynamic therapy (PDT) has an impact on tumor vitality in vivo. Sixteen primary cell cultures were derived from patient samples of 12 different sarcoma subtypes and transplanted onto the chorio-allantoic membrane (CAM) of chick embryos to generate 3-dimensional cell-derived xenografts (CDXs). After treatment with 5-ALA, the CDXs were incubated for another 4 h. Subsequently accumulated protoporphyrin IX (PPIX) was excited by blue light and the intensity of tumor fluorescence was analyzed. A subset of CDXs was exposed to red light and morphological changes of both CAMs and tumors were documented. Twenty-four hours after PDT, the tumors were excised and examined histologically. High rates of cell-derived engraftments on the CAM were achieved in all sarcoma subtypes and an intense PPIX fluorescence was observed. PDT of CDXs resulted in a disruption of tumor-feeding vessels and 52.4% of CDXs presented as regressive after PDT treatment, whereas control CDXs remained vital in all cases. Therefore, 5-ALA mediated PDD and PDT appear to be promising tools in defining sarcoma resection margins (PDD) and adjuvant treatment of the tumor bed (PDT).
Collapse
Affiliation(s)
- Maximilian Kerkhoff
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Susanne Grunewald
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Christiane Schaefer
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Stefan K Zöllner
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Pauline Plaumann
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Maike Busch
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- Department of Neuroanatomy, Institute for Anatomy II, University Hospital Essen, 45147 Essen, Germany
| | - Nicole Dünker
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- Department of Neuroanatomy, Institute for Anatomy II, University Hospital Essen, 45147 Essen, Germany
| | - Julia Ketzer
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Josephine Kersting
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Jendrik Hardes
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- Department of Orthopedic Oncology, University Hospital Essen, 45147 Essen, Germany
| | - Arne Streitbürger
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- Department of Orthopedic Oncology, University Hospital Essen, 45147 Essen, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, West German Cancer Center, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Wiebke K Guder
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, 45141 Essen, Germany
- Department of Orthopedic Oncology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
5
|
Kundeková B, Máčajová M, Meta M, Čavarga I, Huntošová V, Datta S, Miškovský P, Kronek J, Bilčík B. The Japanese quail chorioallantoic membrane as a model to study an amphiphilic gradient copoly(2-oxazoline)s- based drug delivery system for photodynamic diagnosis and therapy research. Photodiagnosis Photodyn Ther 2022; 40:103046. [PMID: 35917905 DOI: 10.1016/j.pdpdt.2022.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Amphiphilic gradient copoly(2-oxazoline)s are widely researched in the field of drug delivery. They could be used as a transport system for hydrophobic drugs such as hypericin (HYP). We prepared six gradient copolymers (EtOx)-grad-(ROPhOx) by living cationic ring-opening polymerization of a hydrophilic comonomer 2-ethyl-2-oxazoline (EtOx) and a hydrophobic comonomer 2-(4-alkyloxyphenyl)-2-oxazoline (ROPhOx), with different composition ratio (88:12 and 85:15) and three different alkyl chain lengths of alkyl (R) substituents. As an experimental model, Japanese quail chorioallantoic membrane (CAM) was used. The effect of nanoparticles loaded with HYP was evaluated by the changes of fluorescence intensity during photodynamic diagnosis (PDD) monitored under 405 nm LED light before administration, and 0,1,3 and 24 h after topical administration. The effectiveness of photodynamic therapy (PDT) (405 nm, 285 mW/cm2) applied 1h after the administration of HYP-loaded nanoparticles was evaluated using vascular damage score and histological sections. Molecular analysis was done by measuring angiogenesis-related gene expression by qPCR. The application of nanoparticles unloaded or loaded with HYP proved to be biocompatible, non-toxic, and undamaging to the CAM tissue, while they successfully altered the HYP fluorescence. We observed a possible anti-angiogenic potential of prepared nanoparticles, which could present an advantage for PDT used for tumour treatment.
Collapse
Affiliation(s)
- Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Majlinda Meta
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia; SAFTRA Photonics s r o., Moldavská cesta 51, Košice 04011, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84541, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia.
| |
Collapse
|
6
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
7
|
Guo LY, Xia QS, Qin JL, Yang M, Yang TY, You FT, Chen ZH, Liu B, Peng HS. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. J Colloid Interface Sci 2022; 616:81-92. [DOI: 10.1016/j.jcis.2022.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
|
8
|
Liu Y, Deng F, Zheng R, Chen X, Zhao L, Yu B, Chen A, Jiang X, Cheng H, Li S. Self-delivery nanomedicine for vascular disruption-supplemented chemo-photodynamic tumor therapy. J Colloid Interface Sci 2022; 612:562-571. [PMID: 35026565 DOI: 10.1016/j.jcis.2021.12.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Tumor vascular blockade is a promising strategy for adjuvant cancer treatment. In this work, a self-delivery nanomedicine is developed based on a vascular disruptor and photosensitizer for tumor synergistic therapy. Specifically, this nanomedicine (designated as CeCA) is comprised of combretastatin A4 (CA4) and chlorine e6 (Ce6) by self-assembly technique. Among which, CA4 could not only induce tubulin inhibition for chemotherapy but also disrupt the vasculature to cause tumor hemorrhage. Moreover, Ce6 is able to generate lots of singlet oxygen (1O2) for synergistic photodynamic therapy (PDT) under light irradiation. It is interesting that the carrier-free CeCA possessed a favorable stability and an improved cellular uptake behavior. After intravenous administration, CeCA prefers to accumulate at tumor site for vascular disruption-supplemented chemo-photodynamic therapy. Notably, CeCA is prepared without additional carriers, which avoids the system toxicity raised by excipients. Consequently, CeCA greatly inhibits the tumor growth and leads to a low side effect in vivo. It might open a window in the development of self-supplementary nanomedicine for synergistic tumor treatment.
Collapse
Affiliation(s)
- Yibin Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fuan Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rongrong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiayun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Linping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Baixue Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Ali Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xueyan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
9
|
Kim HS, Seo M, Park TE, Lee DY. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. J Nanobiotechnology 2022; 20:14. [PMID: 34983539 PMCID: PMC8725459 DOI: 10.1186/s12951-021-01220-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background The outcome of phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) for glioblastoma multiforme (GBM), is disappointing due to insufficient photoconversion efficiency and low targeting rate. The development of phototherapeutic agents that target GBM and generate high heat and potent ROS is important to overcome the weak anti-tumor effect. Results In this study, nanoconjugates composed of gold nanoparticles (AuNPs) and photosensitizers (PSs) were prepared by disulfide conjugation between Chlorin e6 (Ce6) and glutathione coated-AuNP. The maximum heat dissipation of the nanoconjugate was 64.5 ± 4.5 °C. Moreover, the proximate conjugation of Ce6 on the AuNP surface resulted in plasmonic crossover between Ce6 and AuNP. This improves the intrinsic ROS generating capability of Ce6 by 1.6-fold compared to that of unmodified-Ce6. This process is called generation of metal-enhanced reactive oxygen species (MERos). PEGylated-lactoferrin (Lf-PEG) was incorporated onto the AuNP surface for both oral absorption and GBM targeting of the nanoconjugate (denoted as Ce6-AuNP-Lf). In this study, we explored the mechanism by which Ce6-AuNP-Lf interacts with LfR at the intestinal and blood brain barrier (BBB) and penetrates these barriers with high efficiency. In the orthotopic GBM mice model, the oral bioavailability and GBM targeting amount of Ce6-AuNP-Lf significantly improved to 7.3 ± 1.2% and 11.8 ± 2.1 μg/kg, respectively. The order of laser irradiation, such as applying PDT first and then PTT, was significant for the treatment outcome due to the plasmonic advantages provided by AuNPs to enhance ROS generation capability. As a result, GBM-phototherapy after oral administration of Ce6-AuNP-Lf exhibited an outstanding anti-tumor effect due to GBM targeting and enhanced photoconversion efficiency. Conclusions The designed nanoconjugates greatly improved ROS generation by plasmonic crossover between AuNPs and Ce6, enabling sufficient PDT for GBM as well as PTT. In addition, efficient GBM targeting through oral administration was possible by conjugating Lf to the nanoconjugate. These results suggest that Ce6-AuNP-Lf is a potent GBM phototherapeutic nanoconjugate that can be orally administered. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01220-9.
Collapse
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minwook Seo
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea. .,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea. .,Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| |
Collapse
|
10
|
Guerra Guimarães T, Menezes Cardoso K, Tralhão P, Marto CM, Alexandre N, Botelho MF, Laranjo M. Current Therapeutics and Future Perspectives to Ocular Melanocytic Neoplasms in Dogs and Cats. Bioengineering (Basel) 2021; 8:bioengineering8120225. [PMID: 34940378 PMCID: PMC8698280 DOI: 10.3390/bioengineering8120225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neoplasms of melanocytic origin are diseases relevant to dogs and cats' ophthalmic oncology due to their incidence, potential visual loss, and consequent decrease in life quality and expectancy. Despite its non-specific clinical presentation, melanocytic neoplasms can be histologically distinguished in melanocytomas, which present benign characteristics, and malignant melanomas. The diagnosis often occurs in advanced cases, limiting the therapeutic options. Surgery, cryotherapy, radiotherapy, photodynamic therapy (PDT), and laser are currently available therapeutic strategies. As no clinical guidelines are available, the treatment choice is primarily based on the clinician's preference, proficiency, and the owner's financial constraints. While surgery is curative in benign lesions, ocular melanomas present a variable response to treatments, besides the potential of tumour recurrences or metastatic disease. This review presents the currently available therapies for ocular melanocytic neoplasms in dogs and cats, describing the therapeutic, indications, and limitations. Additionally, new therapeutics being developed are presented and discussed, as they can improve the current treatment options.
Collapse
Affiliation(s)
- Tarcísio Guerra Guimarães
- Institute of Research and Advanced Training (IIFA), University of Évora, 7002-554 Évora, Portugal; (T.G.G.); (K.M.C.)
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, 7006-554 Évora, Portugal;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.M.M.); (M.F.B.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Karla Menezes Cardoso
- Institute of Research and Advanced Training (IIFA), University of Évora, 7002-554 Évora, Portugal; (T.G.G.); (K.M.C.)
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, 7006-554 Évora, Portugal;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.M.M.); (M.F.B.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pedro Tralhão
- Center of Veterinary Ophthalmology, Oftalvet, 4050-102 Porto, Portugal;
| | - Carlos Miguel Marto
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.M.M.); (M.F.B.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Nuno Alexandre
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, 7006-554 Évora, Portugal;
- Department of Veterinary Medicine, University of Évora, 7004-516 Évora, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.M.M.); (M.F.B.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.M.M.); (M.F.B.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
12
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
13
|
Weng X, Wei D, Yang Z, Pang W, Pang K, Gu B, Wei X. Photodynamic therapy reduces metastasis of breast cancer by minimizing circulating tumor cells. BIOMEDICAL OPTICS EXPRESS 2021; 12:3878-3886. [PMID: 34457386 PMCID: PMC8367230 DOI: 10.1364/boe.429947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Cancer metastasis after traditional surgery introduces a high barrier to therapy efficacy. Photodynamic therapy (PDT) for cancer is based on a photochemical process of photosensitizers that concentrate in tumors and release oxidant species under light excitation to destroy cells. Compared with traditional surgery, PDT provides minimal invasion and targeted therapy. In this in vivo study, we monitor the real-time and long-term dynamics of circulating tumor cells (CTCs) after a single round of PDT and after surgical resection in a breast cancer animal model. The CTC level is low after PDT treatment, and the recurrence of the primary tumor is postponed in the PDT group compared with the resection group. We find that metastasis is correlated with the CTC level, and the PDT-treated mice show no metastasis in the lung or liver. Our results suggest PDT can effectively reduce metastasis by minimizing CTCs after treatment and is a great technology for breast cancer therapy.
Collapse
Affiliation(s)
- Xiaofu Weng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Dan Wei
- Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai 200030, China
| | - Wen Pang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science and Technology University, Beijing 100192, China
| | - Bobo Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Biomedical Engineering Department, Peking University, Beijing, 100081, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
14
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
15
|
Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021; 13:818. [PMID: 34072719 PMCID: PMC8229084 DOI: 10.3390/pharmaceutics13060818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy (PDT) is a method of cancer treatment that leads to the disintegration of cancer cells and has developed significantly in recent years. The clinically used photosensitizers are primarily porphyrin, which absorbs light in the red spectrum and their absorbance maxima are relatively short. This review presents group of compounds and their derivatives that are considered to be potential photosensitizers in PDT. Cyanine dyes are compounds that typically absorb light in the visible to near-infrared-I (NIR-I) spectrum range (750-900 nm). This meta-analysis comprises the current studies on cyanine dye derivatives, such as indocyanine green (so far used solely as a diagnostic agent), heptamethine and pentamethine dyes, squaraine dyes, merocyanines and phthalocyanines. The wide array of the cyanine derivatives arises from their structural modifications (e.g., halogenation, incorporation of metal atoms or organic structures, or synthesis of lactosomes, emulsions or conjugation). All the following modifications aim to increase solubility in aqueous media, enhance phototoxicity, and decrease photobleaching. In addition, the changes introduce new features like pH-sensitivity. The cyanine dyes involved in photodynamic reactions could be incorporated into sets of PDT agents.
Collapse
Affiliation(s)
- Natalia Lange
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
16
|
Jung E, Lee J, Lee Y, Seon S, Park M, Song C, Lee D. Tumor-Targeting H 2O 2-Responsive Photosensitizing Nanoparticles with Antiangiogenic and Immunogenic Activities for Maximizing Anticancer Efficacy of Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:4450-4461. [PMID: 35006857 DOI: 10.1021/acsabm.1c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) uses photosensitizers and light to kill cancer cells and has become a promising therapeutic modality because of advantages such as minimal invasiveness and high cancer selectivity. However, PTT or PDT as a single treatment modality has insufficient therapeutic efficacy. Moreover, oxygen consumption by PDT activates angiogenic factors and leads to cancer recurrence and progression. Therefore, the therapeutic outcomes of phototherapy would be maximized by employing photosensitizers for concurrent PTT and PDT and suppressing angiogenic factors. Therefore, integrating photosensitive agents and antiangiogenic agents in a single nanoplatform would be a promising strategy to maximize the therapeutic efficacy of phototherapy. In this study, we developed hyaluronic acid-coated fluorescent boronated polysaccharide (HA-FBM) nanoparticles as a combination therapeutic agent for phototherapy and antiangiogenic therapy. Upon a single near-infrared laser irradiation, HA-FBM nanoparticles generated heat and singlet oxygen simultaneously to kill cancer cells and also induced immunogenic cancer cell death. Beside their fundamental roles as photosensitizers, HA-FBM nanoparticles exerted antiangiogenic effects by suppressing the vascular endothelial growth factor (VEGF) and cancer cell migration. In a mouse xenograft model, intravenously injected HA-FBM nanoparticles targeted tumors by binding CD44-overexpressing cancer cells and suppressed angiogenic VEGF expression. Upon laser irradiation, HA-FBM nanoparticles remarkably eradicated tumors and increased anticancer immunity. Given their synergistic effects of phototherapy and antiangiogenic therapy from tumor-targeting HA-FBM nanoparticles, we believe that integrating the photosensitizers and antiangiogenic agents into a single nanoplatform presents an attractive strategy to maximize the anticancer therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Jeonghun Lee
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Semee Seon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
17
|
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis Photodyn Ther 2021; 34:102091. [PMID: 33453423 DOI: 10.1016/j.pdpdt.2020.102091] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023]
Abstract
Cancer remains a main public health issue and the second cause of mortality worldwide. Photodynamic therapy is a clinically approved therapeutic option. Effective photodynamic therapy induces cancer damage and death through a multifactorial manner including reactive oxygen species-mediated damage and killing, vasculature damage, and immune defense activation. Anticancer efficiency depends on the improvement of photosensitizers drugs used in photodynamic therapy, their selectivity, enhanced photoproduction of reactive species, absorption at near-infrared spectrum, and drug-delivery strategies. Both experimental and clinical studies using first- and second-generation photosensitizers had pointed out the need for developing improved photosensitizers for photodynamic applications and achieving better therapeutic outcomes. Bioconjugation and encapsulation with targeting moieties appear as a main strategies for the development of photosensitizers from their precursors. Factors influencing cellular biodistribution and uptake are briefly discussed, as well as their roles as cancer diagnostic and therapeutic (theranostics) agents. The two-photon photodynamic approach using third-generation photosensitizers is present as an attempt in treating deeper tumors. Although significant advances had been made over the last decade, the development of next-generation photosensitizers is still mainly in the developmental stage.
Collapse
Affiliation(s)
- Ivan S Mfouo-Tynga
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil.
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Natalia M Inada
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| |
Collapse
|
18
|
Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Delsuc N, Low ML. Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy. Molecules 2020; 25:E4176. [PMID: 32932573 PMCID: PMC7571230 DOI: 10.3390/molecules25184176] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is emerging as a significant complementary or alternative approach for cancer treatment. PDT drugs act as photosensitisers, which upon using appropriate wavelength light and in the presence of molecular oxygen, can lead to cell death. Herein, we reviewed the general characteristics of the different generation of photosensitisers. We also outlined the emergence of rhenium (Re) and more specifically, Re(I) tricarbonyl complexes as a new generation of metal-based photosensitisers for photodynamic therapy that are of great interest in multidisciplinary research. The photophysical properties and structures of Re(I) complexes discussed in this review are summarised to determine basic features and similarities among the structures that are important for their phototoxic activity and future investigations. We further examined the in vitro and in vivo efficacies of the Re(I) complexes that have been synthesised for anticancer purposes. We also discussed Re(I) complexes in conjunction with the advancement of two-photon PDT, drug combination study, nanomedicine, and photothermal therapy to overcome the limitation of such complexes, which generally absorb short wavelengths.
Collapse
Affiliation(s)
- Hui Shan Liew
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Mohd Zulkefeli
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Thiagarajan Madheswaran
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France;
| | - May Lee Low
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| |
Collapse
|
19
|
Wang D, Liu W, Wang L, Wang Y, Liao CK, Chen J, Hu P, Hong W, Huang M, Chen Z, Xu P. Suppression of cancer proliferation and metastasis by a versatile nanomedicine integrating photodynamic therapy, photothermal therapy, and enzyme inhibition. Acta Biomater 2020; 113:541-553. [PMID: 32562802 DOI: 10.1016/j.actbio.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer therapeutics are varied and target diverse processes in cancer progression. Photodynamic therapy (PDT), photothermal therapy (PTT), and the inhibition of pro-cancer proteases are non-invasive anticancer therapeutics that attract increasing attentions for their enhanced specificities and milder systemic toxicities compared to traditional therapeutics. These modalities offer advantages to compensate for the shortcomings of their counterparts. For instance, PDT or PTT efficiently eliminates locally confined tumor cells while exhibiting no effect on metastatic tumor cells. In contrast, the inhibition of pro-cancer proteases systemically suppresses the proliferation and metastasis of cancer cells but does not eradicate existing cancer cells. To synergize these therapeutics, we hereby report a versatile nanoparticle that integrates the effects of PDT, PTT, and enzyme-inhibition. This nanoparticle (CIKP-NP) was synthesized by covalently or non-covalently modifying a photothermal nanoparticle with a photosensitizer, a pro-cancer protease inhibitor, and an albumin-binding molecule. After confirming the PDT, PTT, albumin-binding, and enzyme-inhibition properties at the molecular level, we demonstrated that CIKP-NP killed tumor cells through PDT or PTT and suppressed tumor cell invasion through enzyme-inhibition. In addition, through a breast cancer xenograft mouse model, we demonstrated that CIKP-NP suppressed tumor growth by PDT or PTT effect. Notably, the synergism of PDT and PTT significantly enhanced its anticancer efficiency. Furthermore, CIKP-NP significantly suppressed cancer metastasis in a lung metastatic mouse model. Last, biodistribution and the in vivo retention of CIKP-NP confirmed the tumor-targeting property. Beyond demonstrating the anti-tumor and anti-metastatic efficacy of CIKP-NP, our study also suggests a new strategy to synergize multiple anticancer therapeutics.
Collapse
|
20
|
Otvagin VF, Kuzmina NS, Krylova LV, Volovetsky AB, Nyuchev AV, Gavryushin AE, Meshkov IN, Gorbunova YG, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY. Water-Soluble Chlorin/Arylaminoquinazoline Conjugate for Photodynamic and Targeted Therapy. J Med Chem 2019; 62:11182-11193. [PMID: 31782925 DOI: 10.1021/acs.jmedchem.9b01294] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new water-soluble conjugate, consisting of a chlorin-e6 photosensitizer part, a 4-arylaminoquinazoline moiety with affinity to epidermal growth factor receptors, and a hydrophilic β-d-maltose fragment, was synthesized starting from methylpheophorbide-a in seven steps. The prepared conjugate exhibited low levels of dark cytotoxicity and pronounced photoinduced cytotoxicity at submicromolar concentrations in vitro, with an IC50(dark)/IC50(light) ratio of ∼368 and a singlet oxygen quantum yield of about 20%. In tumor-bearing Balb/c nude mice, conjugate 1 preferentially accumulates in the tumor tissue. Irradiation of the nude mice bearing A431 xenograft tumors after intravenous administration of the prepared conjugate with a relatively low light dose (50 J/cm2) produced an excellent therapeutic effect with profound tumor regression and low systemic toxicity.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Arthur B Volovetsky
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | | | - Ivan N Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia.,Kurnakov Institute of General and Inorganic Chemistry , Russian Academy of Sciences , Leninsky pr. 31 , Moscow 119991 , Russia
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Oscar I Koifman
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| |
Collapse
|
21
|
Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol 2019; 95:1288-1305. [PMID: 31602649 PMCID: PMC6878142 DOI: 10.1111/php.13173] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) is a potentially immunogenic and FDA-approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage-associated molecular patterns and tumor-specific antigens. Subsequently, the T-lymphocyte (T cell)-mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T-cell repertoire with tumor-reactive activated T cells, diversifying their tumor-specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T-cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2019; 25:5540-5563. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is one of the most aggressive malignant tumors, with unpredictable evolution. Despite numerous therapeutic options, like chemotherapy, BRAF inhibitors and immunotherapy, advanced melanoma prognosis remains severe. Photodynamic therapy (PDT) has been successfully used as the first line or palliative therapy for the treatment of lung, esophageal, bladder, non melanoma skin and head and neck cancers. However, classical PDT has shown some drawbacks that limit its clinical application in melanoma. OBJECTIVE The most important challenge is to overcome melanoma resistance, due to melanosomal trapping, presence of melanin, enhanced oxidative stress defense, defects in the apoptotic pathways, immune evasion, neoangiogenesis stimulation. METHOD In this review we considered: (1) main signaling molecular pathways deregulated in melanoma as potential targets for personalized therapy, including PDT, (2) results of the clinical studies regarding PDT of melanoma, especially advanced metastatic stage, (3) progresses made in the design of anti-melanoma photosensitizers (4) inhibition of tumor neoangiogenesis, as well as (5) advantages of the derived therapies like photothermal therapy, sonodynamic therapy. RESULTS PDT represents a promising alternative palliative treatment for advanced melanoma patients, mainly due to its minimal invasive character and low side effects. Efficient melanoma PDT requires: (1) improved, tumor targeted, NIR absorbing photosensitizers, capable of inducing high amounts of different ROS inside tumor and vasculature cells, possibly allowing a theranostic approach; (2) an efficient adjuvant immune therapy. CONCLUSION Combination of PDT with immune stimulation might be the key to overcome the melanoma resistance and to obtain better, sustainable clinical results.
Collapse
Affiliation(s)
- Ioana Baldea
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Lorin Giurgiu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Diana Teacoe
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, Brasov, Romania
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari HR, Fereidoonnezhad M, Khosropour AR, Beyzavi MH. Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2018.1542597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hamid R. Shahsavari
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad R. Khosropour
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - M. Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
24
|
Dalmolin LF, Lopez RFV. Nanoemulsion as a Platform for Iontophoretic Delivery of Lipophilic Drugs in Skin Tumors. Pharmaceutics 2018; 10:pharmaceutics10040214. [PMID: 30400343 PMCID: PMC6320873 DOI: 10.3390/pharmaceutics10040214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/20/2023] Open
Abstract
Lipophilic drugs do not usually benefit from iontophoresis mainly because they do not solubilize in aqueous formulations suitable for the application of electric current. To explore the influence of iontophoresis on penetration of these drugs, a cationic nanoemulsion was developed to solubilize zinc phthalocyanine (ZnPc), a promising drug for the treatment of skin cancer. To verify the influence of particle size on iontophoresis, an emulsion of nanoemulsion-like composition was also developed. The formulations were characterized and cutaneous and tumor penetration studies were performed in vitro and in vivo, respectively. With particles of about 200 nm, the nanoemulsion solubilized 2.5-fold more ZnPc than the 13-µm emulsion. At the same concentration of ZnPc, in vitro passive penetration studies showed that the nanoemulsion increased, after 1 h of treatment, by almost 4 times the penetration of ZnPc into the viable layers of the skin when compared to the emulsion, whereas iontophoresis of nanoemulsion resulted in a 16-fold increase in ZnPc penetration in only 30 min. An in vivo study in a murine model of melanoma showed that ZnPc reached the tumor after iontophoresis of the nanoemulsion. Therefore, iontophoresis of nanoemulsions appears to be a promising strategy for the topical treatment of tumors with lipophilic drugs.
Collapse
Affiliation(s)
- Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto 14040-903, SP, Brazil.
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto 14040-903, SP, Brazil.
| |
Collapse
|
25
|
Hwang HS, Shin H, Han J, Na K. Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018; 48:143-151. [PMID: 30680248 PMCID: PMC6323106 DOI: 10.1007/s40005-017-0377-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/02/2017] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is performed using a photosensitizer and light of specific wavelength in the presence of oxygen to generate singlet oxygen and reactive oxygen species(ROS) in the cancer cells. The accumulated photosensitizers in target sites induce ROS generation upon light activation, then the generated cytotoxic reactive oxygen species lead to tumor cell death via apoptosis or necrosis, and damages the target sites which results tumor destruction. As a consequence, the PDT-mediated cell death is associated with anti-tumor immune response. In this paper, the effects of PDT and immune response on tumors are reviewed. Activation of an immune response regarding the innate and adaptive immune response, interaction with immune cells and tumor cells that associated with antitumor efficacy of PDT are also discussed.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonni-gu, Bucheno-si, Gyeonggido 14662 South Korea
| | - Heejun Shin
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonni-gu, Bucheno-si, Gyeonggido 14662 South Korea
| | - Jieun Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonni-gu, Bucheno-si, Gyeonggido 14662 South Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonni-gu, Bucheno-si, Gyeonggido 14662 South Korea
| |
Collapse
|
26
|
Yakavets I, Lassalle HP, Scheglmann D, Wiehe A, Zorin V, Bezdetnaya L. Temoporfin-in-Cyclodextrin-in-Liposome-A New Approach for Anticancer Drug Delivery: The Optimization of Composition. NANOMATERIALS 2018; 8:nano8100847. [PMID: 30340318 PMCID: PMC6215177 DOI: 10.3390/nano8100847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022]
Abstract
The main goal of this study was to use hybrid delivery system for effective transportation of temoporfin (meta-tetrakis(3-hydroxyphenyl)chlorin, mTHPC) to target tissue. We suggested to couple two independent delivery systems (liposomes and inclusion complexes) to achieve drug-in-cyclodextrin-in-liposome (DCL) nanoconstructs. We further optimized the composition of DCLs, aiming to alter in a more favorable way a distribution of temoporfin in tumor tissue. We have prepared DCLs with different compositions varying the concentration of mTHPC and the type of β-cyclodextrin (β-CD) derivatives (Hydroxypropyl-, Methyl- and Trimethyl-β-CD). DCLs were prepared by thin-hydration technique and mTHPC/β-CD complexes were added at hydration step. The size was about 135 nm with the surface charge of (−38 mV). We have demonstrated that DCLs are stable and almost all mTHPC is bound to β-CDs in the inner aqueous liposome core. Among all tested DCLs, trimethyl-β-CD-based DCL demonstrated a homogenous accumulation of mTHPC across tumor spheroid volume, thus supposing optimal mTHPC distribution.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | | | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Strasse 15, 07745 Jena, Germany.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
- International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
27
|
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018; 23:E826. [PMID: 29617302 PMCID: PMC6017446 DOI: 10.3390/molecules23040826] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promising field in cancer treatment. In this review, the recent studies on combinational therapy based on chemotherapy will be systematically discussed. Furthermore, as a current trend in cancer treatment, advance in theranostic nanoparticles based on chemotherapy will be exemplified briefly. Finally, the present challenges and improvement tips will be presented in combination therapy and nano-theranostics.
Collapse
Affiliation(s)
| | | | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhong-Min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
28
|
Civantos FJ, Karakullukcu B, Biel M, Silver CE, Rinaldo A, Saba NF, Takes RP, Vander Poorten V, Ferlito A. A Review of Photodynamic Therapy for Neoplasms of the Head and Neck. Adv Ther 2018; 35:324-340. [PMID: 29417455 DOI: 10.1007/s12325-018-0659-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) involves the use of a phototoxic drug which is activated by low powered laser light to destroy neoplastic cells. Multiple photosensitizers have been studied and tumors have been treated in a variety of head and neck sites over the last 30 years. PDT can effectively treat head and neck tumors, particularly those of the superficial spreading type, and the classic application of this technology has been in the patient with a wide field of dysplastic change and superficial carcinomatosis. Interstitial treatment has been used to treat more invasive cancer. Data is available from case series and institutional experiences, but very little randomized data is available. We review the mechanisms of action, historical development, available data, and current knowledge regarding PDT for the various head and neck subsites, and discuss possible future directions, with an emphasis on clinical application.
Collapse
Affiliation(s)
- Francisco J Civantos
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| | - Barış Karakullukcu
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Merrill Biel
- University of Minnesota, Minneapolis, MN, USA
- Ear, Nose and Throat Specialty Care of Minnesota, Minneapolis, MN, USA
| | - Carl E Silver
- Department of Surgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
29
|
Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg Chem 2018; 57:1311-1331. [PMID: 29323880 PMCID: PMC8117114 DOI: 10.1021/acs.inorgchem.7b02747] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fifteen water-soluble rhenium compounds of the general formula [Re(CO)3(NN)(PR3)]+, where NN is a diimine ligand and PR3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1O2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1O2.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Hally C, Rodríguez-Amigo B, Bresolí-Obach R, Planas O, Nos J, Boix-Garriga E, Ruiz-González R, Nonell S. Photodynamic Therapy. THERANOSTICS AND IMAGE GUIDED DRUG DELIVERY 2018. [DOI: 10.1039/9781788010597-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy is a clinical technique for the treatment of cancers, microbial infections and other medical conditions by means of light-induced generation of reactive oxygen species using photosensitising drugs. The intrinsic fluorescence of many such drugs make them potential theranostic agents for simultaneous diagnosis and therapy. This chapter reviews the basic chemical and biological aspects of photodynamic therapy with an emphasis on its applications in theranostics. The roles of nanotechnology is highlighted, as well as emerging trends such as photoimmunotherapy, image-guided surgery and light- and singlet-oxygen dosimetry.
Collapse
Affiliation(s)
- Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | | | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Jaume Nos
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Ester Boix-Garriga
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva Switzerland
| | - Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
31
|
Shen L, Huang Y, Chen D, Qiu F, Ma C, Jin X, Zhu X, Zhou G, Zhang Z. pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy. Am J Cancer Res 2017; 7:4537-4550. [PMID: 29158843 PMCID: PMC5695147 DOI: 10.7150/thno.19546] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022] Open
Abstract
Rationale: Photodynamic therapy (PDT), an O2-dependent treatment for inhibition of cancer proliferation, suffers from the low therapeutic effect in clinical application due to the hypoxic microenvironment in tumor cells. Methods: To overcome this obstacle, a stimuli-responsive drug delivery system with O2 self-sufficiency for effective PDT was developed. In this study, pH-responsive aerobic nanoparticles were prepared by the electrostatic interaction between the O2-evolving protein Catalase and Chitosan. Subsequently, the photosensitizer Chlorin e6 (Ce6) was encapsulated in the nanoparticles. Results: The nanoparticles exhibited high stability in aqueous medium and efficient cellular uptake by tumor cells facilitating their accumulation in tumors by enhanced permeability and retention (EPR) effect. In acidic environment, irradiation caused disassembly of the nanoparticles resulting in the quick release of Catalase and the photosensitizer with continuous formation of cytotoxic singlet oxygen (1O2) greatly enhancing the PDT efficacy in hypoxic tumor tissues both in vitro and in vivo biological studies. Conclusion: Due to the unique O2 self-sufficiency, the nanoparticles, upon irradiation, exhibited higher anticancer activity than free Ce6 both in vitro and in vivo. Our work has identified a new pH-triggered strategy to overcome hypoxia for effective PDT against cancer cells.
Collapse
|
32
|
Ruiz-González R, Milán P, Bresolí-Obach R, Stockert JC, Villanueva A, Cañete M, Nonell S. Photodynamic Synergistic Effect of Pheophorbide a and Doxorubicin in Combined Treatment against Tumoral Cells. Cancers (Basel) 2017; 9:cancers9020018. [PMID: 28218672 PMCID: PMC5332941 DOI: 10.3390/cancers9020018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 02/11/2017] [Indexed: 11/16/2022] Open
Abstract
A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Paula Milán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Juan Carlos Stockert
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Angeles Villanueva
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Magdalena Cañete
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
33
|
Vascular alterations after photodynamic therapy mediated by 5-aminolevulinic acid in oral leukoplakia. Lasers Med Sci 2016; 32:379-387. [DOI: 10.1007/s10103-016-2127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
34
|
Duchi S, Ramos-Romero S, Dozza B, Guerra-Rebollo M, Cattini L, Ballestri M, Dambruoso P, Guerrini A, Sotgiu G, Varchi G, Lucarelli E, Blanco J. Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1885-1897. [DOI: 10.1016/j.nano.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
|
35
|
Gao W, Wang Z, Lv L, Yin D, Chen D, Han Z, Ma Y, Zhang M, Yang M, Gu Y. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues. Am J Cancer Res 2016; 6:1131-44. [PMID: 27279907 PMCID: PMC4893641 DOI: 10.7150/thno.15262] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023] Open
Abstract
Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effect of deep-tissue PDT on nanoparticle uptake in tumors. This platform employed c(RGDyK)-conjugated upconversion nanoparticles (UCNPs), which facilitate active targeting of the nanoconstruct to tumor vasculature and achieve the deep-tissue photosensitizer activation by NIR light irradiation. Results indicated that our PDT system efficiently enhanced intratumoral uptake of different nanoparticles in a deep-seated tumor model. The optimal light dose for deep-tissue PDT (34 mW/cm2) was determined and the most robust permeability enhancement was achieved by administering the nanoparticles within 15 minutes following PDT treatment. Further, a two-step treatment strategy was developed and validated featuring the capability of improving the therapeutic efficacy of Doxil while simultaneously reducing its cardiotoxicity. This two-step treatment resulted in a tumor inhibition rate of 79% compared with 56% after Doxil treatment alone. These findings provide evidence in support of the clinical application of deep-tissue PDT for enhanced nano-drug delivery.
Collapse
|
36
|
Grossman CE, Carter SL, Czupryna J, Wang L, Putt ME, Busch TM. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 2016; 17:ijms17010101. [PMID: 26784170 PMCID: PMC4730343 DOI: 10.3390/ijms17010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shirron L Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Julie Czupryna
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Le Wang
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mary E Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Abstract
In chemotherapy a fine balance between therapeutic and toxic effects needs to be found for each patient, adapting standard combination protocols each time. Nanotherapeutics has been introduced into clinical practice for treating tumors with the aim of improving the therapeutic outcome of conventional therapies and of alleviating their toxicity and overcoming multidrug resistance. Photodynamic therapy (PDT) is a clinically approved, minimally invasive procedure emerging in cancer treatment. It involves the administration of a photosensitizer (PS) which, under light irradiation and in the presence of molecular oxygen, produces cytotoxic species. Unfortunately, most PSs lack specificity for tumor cells and are poorly soluble in aqueous media, where they can form aggregates with low photoactivity. Nanotechnological approaches in PDT (nanoPDT) can offer a valid option to deliver PSs in the body and to solve at least some of these issues. Currently, polymeric nanoparticles (NPs) are emerging as nanoPDT system because their features (size, surface properties, and release rate) can be readily manipulated by selecting appropriate materials in a vast range of possible candidates commercially available and by synthesizing novel tailor-made materials. Delivery of PSs through NPs offers a great opportunity to overcome PDT drawbacks based on the concept that a nanocarrier can drive therapeutic concentrations of PS to the tumor cells without generating any harmful effect in non-target tissues. Furthermore, carriers for nanoPDT can surmount solubility issues and the tendency of PS to aggregate, which can severely affect photophysical, chemical, and biological properties. Finally, multimodal NPs carrying different drugs/bioactive species with complementary mechanisms of cancer cell killing and incorporating an imaging agent can be developed. In the following, we describe the principles of PDT use in cancer and the pillars of rational design of nanoPDT carriers dictated by tumor and PS features. Then we illustrate the main nanoPDT systems demonstrating potential in preclinical models together with emerging concepts for their advanced design.
Collapse
|
38
|
Helander L, Sharma A, Krokan HE, Plaetzer K, Krammer B, Tortik N, Gederaas OA, Slupphaug G, Hagen L. Photodynamic treatment with hexyl-aminolevulinate mediates reversible thiol oxidation in core oxidative stress signaling proteins. MOLECULAR BIOSYSTEMS 2016; 12:796-805. [DOI: 10.1039/c5mb00744e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HAL-PDT mediates reversible cysteine oxidation in core proteins involved in oxidative stress and apoptotic signalling.
Collapse
Affiliation(s)
- Linda Helander
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| | - Hans E. Krokan
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms
- Department of Materials Science and Physics
- University of Salzburg
- Austria
| | - Barbara Krammer
- Division of Molecular Tumor Biology
- Department of Molecular Biology
- University of Salzburg
- Austria
| | - Nicole Tortik
- Laboratory of Photodynamic Inactivation of Microorganisms
- Department of Materials Science and Physics
- University of Salzburg
- Austria
| | - Odrun A. Gederaas
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| | - Lars Hagen
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| |
Collapse
|
39
|
Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015; 16:22094-136. [PMID: 26389879 PMCID: PMC4613299 DOI: 10.3390/ijms160922094] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S₀) to an excited singlet state (S₁-Sn), followed by intersystem crossing to an excited triplet state (T₁). The energy transferred from T₁ to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (¹O₂, H₂O₂, O₂*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| |
Collapse
|
40
|
Mion G, Gianferrara T, Bergamo A, Gasser G, Pierroz V, Rubbiani R, Vilar R, Leczkowska A, Alessio E. Phototoxic Activity and DNA Interactions of Water-Soluble Porphyrins and Their Rhenium(I) Conjugates. ChemMedChem 2015; 10:1901-14. [PMID: 26332425 DOI: 10.1002/cmdc.201500288] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/13/2015] [Indexed: 12/12/2022]
Abstract
In the search for alternative photosensitizers for use in photodynamic therapy (PDT), herein we describe two new water-soluble porphyrins, a neutral fourfold-symmetric compound and a +3-charged tris-methylpyridinium derivative, in which either four or one [1,4,7]-triazacyclononane (TACN) units are connected to the porphyrin macrocycle through a hydrophilic linker; we also report their corresponding tetracationic Re(I) conjugates. The in vitro (photo)toxic effects of the compounds toward the human cell lines HeLa (cervical cancer), H460M2 (non-small-cell lung carcinoma), and HBL-100 (non-tumorigenic epithelial cells) are reported. Three of the compounds are not cytotoxic in the dark up to 100 μm, and the fourfold-symmetric couple revealed very good phototoxic indexes (PIs). The intracellular localization of all derivatives was studied in HeLa cells by confocal fluorescence microscopy. Although low nuclear localization was observed for some of them, it still prompted us to investigate their capacity to bind both quadruplex and duplex DNA; we observed significant selectivity in the tris-methylpyridinium derivatives for G-quadruplex interactions.
Collapse
Affiliation(s)
- Giuliana Mion
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Teresa Gianferrara
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy.
| | - Alberta Bergamo
- Callerio Foundation Onlus, Via A. Fleming 22-31, 34127, Trieste, Italy
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Anna Leczkowska
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Enzo Alessio
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|
41
|
Rogers L, Sergeeva NN, Paszko E, Vaz GMF, Senge MO. Lead Structures for Applications in Photodynamic Therapy. 6. Temoporfin Anti-Inflammatory Conjugates to Target the Tumor Microenvironment for In Vitro PDT. PLoS One 2015; 10:e0125372. [PMID: 25992651 PMCID: PMC4437655 DOI: 10.1371/journal.pone.0125372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
Due to the ongoing development of clinical photodynamic therapy (PDT), the search continues for optimized photosensitizers that can overcome some of the side effects associated with this type of treatment modality. The main protagonists being: post-treatment photosensitivity, due to only limited cellular selectivity and post-treatment tumor regrowth, due to the up-regulation of pro-inflammatory agents within the tumor microenvironment. A photosensitizer that could overcome one or both of these drawbacks would be highly attractive to those engaged in clinical PDT. Certain non-steroidal anti-inflammatory drugs (NSAIDs) when used in combination with PDT have shown to increase the cytotoxicity of the treatment modality by targeting the tumor microenvironment. Temoporfin (m-THPC), the gold standard chlorin-based photosensitizer (PS) since its discovery in the 1980's, has successfully been conjugated to non-steroidal anti-inflammatory compounds, in an attempt to address the issue of post-treatment tumor regrowth. Using a modified Steglich esterification reaction, a library of "iPorphyrins" was successfully synthesized and evaluated for their PDT efficacy.
Collapse
Affiliation(s)
- Luke Rogers
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Natalia N. Sergeeva
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Edyta Paszko
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Gisela M. F. Vaz
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
- * E-mail:
| |
Collapse
|
42
|
Mbakidi JP, Brégier F, Ouk TS, Granet R, Alves S, Rivière E, Chevreux S, Lemercier G, Sol V. Magnetic Dextran Nanoparticles That Bear Hydrophilic Porphyrin Derivatives: Bimodal Agents for Potential Application in Photodynamic Therapy. Chempluschem 2015; 80:1416-1426. [DOI: 10.1002/cplu.201500087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/13/2015] [Indexed: 01/08/2023]
|
43
|
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
| | - Khee Chee Soo
- Division
of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004
| |
Collapse
|
44
|
Abstract
Photodynamic therapy (PDT) is a light-based intervention with a long and successful clinical track record for both oncology and non-malignancies. In cancer patients, a photosensitizing agent is intravenously, orally or topically applied and allowed time to preferentially accumulate in the tumor region. Light of the appropriate wavelength and intensity to activate the particular photosensitizer employed is then introduced to the tumor bed. The light energy will activate the photosensitizer, which in the presence of oxygen should allow for creation of the toxic photodynamic reaction generating reactive oxygen species. The photodynamic reaction creates a cascading series of events including initiation of apoptotic and necrotic pathways both in tumor and neovasculature, leading to permanent lesion destruction often with upregulation of the immune system. Cutaneous phototoxicity from unintentional sunlight exposure remains the most common morbidity from PDT. This paper will highlight current research and outcomes from the basic science and clinical applications of oncologic PDT and interpret how these findings may lead to enhanced and refined future PDT.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
45
|
Xu D, Chen X, Chen K, Peng Y, Li Y, Ke Y, Gan D. Tetra-sulfonate phthalocyanine zinc-bovine serum albumin conjugate-mediated photodynamic therapy of human glioma. J Biomater Appl 2014; 29:378-85. [PMID: 24687093 DOI: 10.1177/0885328214529466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Glioma is the most common brain malignancy with poor prognosis. The current treatments for gliomas are mainly based on surgery, chemotherapy, and radiotherapy, which exhibit limited efficacy. Photodynamic therapy (PDT) using photosensitizers has been applied to glioma therapy. However, different photosensitizers usually lead to different therapeutic effects and adverse reactions. Objective This study investigates the anti-tumor effect of photosensitizer ZnPcS4-BSA in xenograft glioma tumors. Methods The xenograft glioma tumor model was established by inoculating nude mice with U251 cells. Tumor growth was evaluated by tumor volume, weight, and inhibition rate. Cell apoptosis was evaluated using TUNEL staining. Vascular endothelial growth factor (VEGF) expression and microvessel density were measured by immunohistochemistry. Results Significant decreases in tumor volume and weight as well as significant increases in tumor inhibition rate, cell apoptosis, VEGF expression, and microvessel density were observed in mice in the low- and high-dose PDT groups compared to the control, irradiation alone, and photosensitizer alone groups. No significant difference in cytotoxicity was observed between control group and photosensitizer alone group. Photosensitizer ZnPcS4-BSA significantly inhibited xenograft glioma tumor growth through induction of apoptosis. Conclusion PDT using ZnPcS4-BSA may be effective for the therapy of gliomas.
Collapse
Affiliation(s)
- Dianshuang Xu
- Department of Neurosurgery, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Xiangyu Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ke’en Chen
- Department of Neurosurgery, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Yiru Peng
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - Yingxin Li
- Laser medicine laboratory, Tianjin Medical University, Tianjin, P.R. China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Danhui Gan
- Department of Neurosurgery, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
46
|
Conte C, Ungaro F, Mazzaglia A, Quaglia F. Photodynamic Therapy for Cancer: Principles, Clinical Applications, and Nanotechnological Approaches. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
47
|
Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:161-9. [DOI: 10.1016/j.jphotobiol.2013.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
|
48
|
Rosàs E, Santomá P, Duran-Frigola M, Hernandez B, Llinàs MC, Ruiz-González R, Nonell S, Sánchez-García D, Edelman ER, Balcells M. Modifications of microvascular EC surface modulate phototoxicity of a porphycene anti-ICAM-1 immunoconjugate; therapeutic implications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9734-9743. [PMID: 23844929 PMCID: PMC3857026 DOI: 10.1021/la401067d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inflammation and shear stress can upregulate expression of cellular adhesion molecules in endothelial cells (EC). The modified EC surface becomes a mediating interface between the circulating blood elements and the endothelium, and grants opportunity for immunotherapy. In photodynamic therapy (PDT), immunotargeting might overcome the lack of selectivity of currently used sensitizers. In this study, we hypothesized that differential ICAM-1 expression modulates the effects of a drug targeted to surface ICAM-1. A novel porphycene-anti-ICAM-1 conjugate was synthesized and applied to treat endothelial cells from macro and microvasculature. Results show that the conjugate induces phototoxicity in inflamed, but not in healthy, microvascular EC. Conversely, macrovascular EC exhibited phototoxicity regardless of their state. These findings have two major implications; the relevance of ICAM-1 as a modulator of drug effects in microvasculature, and the potential of the porphycene bioconjugate as a promising novel PDT agent.
Collapse
Affiliation(s)
- Elisabet Rosàs
- Massachusetts Institute of Technology, Institute for Medical Engineering Sciences, 77 Massachusetts Avenue, Cambridge, MA 02139
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Pablo Santomá
- Massachusetts Institute of Technology, Institute for Medical Engineering Sciences, 77 Massachusetts Avenue, Cambridge, MA 02139
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Miquel Duran-Frigola
- Massachusetts Institute of Technology, Institute for Medical Engineering Sciences, 77 Massachusetts Avenue, Cambridge, MA 02139
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Bryan Hernandez
- Massachusetts Institute of Technology, Institute for Medical Engineering Sciences, 77 Massachusetts Avenue, Cambridge, MA 02139
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Maria C. Llinàs
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Rubén Ruiz-González
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Santi Nonell
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - David Sánchez-García
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Elazer R. Edelman
- Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Mercedes Balcells
- Massachusetts Institute of Technology, Institute for Medical Engineering Sciences, 77 Massachusetts Avenue, Cambridge, MA 02139
- IQS School of Engineering, Univ Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| |
Collapse
|
49
|
Photo-induced antitumor effect of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide. BIOMED RESEARCH INTERNATIONAL 2012; 2013:930281. [PMID: 23509809 PMCID: PMC3591141 DOI: 10.1155/2013/930281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
Abstract
We have applied a fluorescent molecule 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) for tumor targeting and treatment. In this study, we investigated the photo-induced antitumor effect of BMVC. In vitro cell line studies showed that BMVC significantly killed TC-1 tumor cells at light dose greater than 40 J/cm(2). The fluorescence of BMVC in the tumor peaked at 3 hours and then gradually decreased to reach the control level after 24 hours. In vivo tumor treatment studies showed BMVC plus light irradiation (iPDT) significantly inhibited the tumor growth. At day 24 after tumor implantation, tumor volume was measured to be 225 ± 79 mm(3), 2542 ± 181 mm(3), 1533 ± 766 mm(3), and 1317 ± 108 mm(3) in the iPDT, control, light-only, and BMVC-only groups, respectively. Immunohistochemistry studies showed the microvascular density was significantly lower in the iPDT group. Taken together, our results demonstrated that BMVC may be a potent tumor-specific photosensitizer (PS) for PDT.
Collapse
|
50
|
Mun J, Park J, Song M, Jwa S, Kim H, Ko H, Kim B, Kim M. The use of dermatoscopy to monitor therapeutic response of Bowen disease: a dermatoscopic pathological study. Br J Dermatol 2012; 167:1382-5. [DOI: 10.1111/j.1365-2133.2012.11124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J.‐H. Mun
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - J.‐M. Park
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
| | - M. Song
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
| | - S.‐W. Jwa
- Department of Dermatology, Pusan National University Yangsan Hospital, Gyeongsangnam‐do, Busan, Korea
| | - H.‐S. Kim
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
| | - H.‐C. Ko
- Department of Dermatology, Pusan National University Yangsan Hospital, Gyeongsangnam‐do, Busan, Korea
| | - B.‐S Kim
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
| | - M.‐B. Kim
- Department of Dermatology, School of Medicine, Pusan National University Hospital, 305 Guduk‐ro, Seo‐gu, Busan 602‐739, Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|