1
|
Zheng Y, Young ND, Campos TL, Korhonen PK, Wang T, Sumanam SB, Taki AC, Byrne JJ, Chang BCH, Song J, Gasser RB. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int J Parasitol 2024; 54:705-715. [PMID: 39168434 DOI: 10.1016/j.ijpara.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Millions of livestock animals worldwide are infected with the haematophagous barber's pole worm, Haemonchus contortus, the aetiological agent of haemonchosis. Despite the major significance of this parasite worldwide and its widespread resistance to current treatments, the lack of a high-quality genome for the well-defined strain of this parasite from Australia, called Haecon-5, has constrained research in a number of areas including host-parasite interactions, drug discovery and population genetics. To enable research in these areas, we report here a chromosome-contiguous genome (∼280 Mb) for Haecon-5 with high-quality models for 19,234 protein-coding genes. Comparative genomic analyses show significant genomic similarity (synteny) with a UK strain of H. contortus, called MHco3(ISE).N1 (abbreviated as "ISE"), but we also discover marked differences in genomic structure/gene arrangements, distribution of nucleotide variability (single nucleotide polymorphisms (SNPs) and indels) and orthology between Haecon-5 and ISE. We used the genome and extensive transcriptomic resources for Haecon-5 to predict a subset of essential single-copy genes employing a "cross-species" machine learning (ML) approach using a range of features from nucleotide/protein sequences, protein orthology, subcellular localisation, single-cell RNA-seq and/or histone methylation data available for the model organisms Caenorhabditis elegans and Drosophila melanogaster. From a set of 1,464 conserved single copy genes, transcribed in key life-cycle stages of H. contortus, we identified 232 genes whose homologs have critical functions in C. elegans and/or D. melanogaster, and prioritised 10 of them for further characterisation; nine of the 10 genes likely play roles in neurophysiological processes, germline, hypodermis and/or respiration, and one is an unknown (orphan) gene for which no detailed functional information exists. Future studies of these genes/gene products are warranted to elucidate their roles in parasite biology, host-parasite interplay and/or disease. Clearly, the present Haecon-5 reference genome and associated resources now underpin a broad range of fundamental investigations of H. contortus and could assist in accelerating the discovery of novel intervention targets and drug candidates to combat haemonchosis.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tulio L Campos
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Sunita B Sumanam
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph J Byrne
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Mekic R, Zolotovskaia MA, Sorokin M, Mohammad T, Shaban N, Musatov I, Tkachev V, Modestov A, Simonov A, Kuzmin D, Buzdin A. Number of human protein interactions correlates with structural, but not regulatory conservation of the respective genes. Front Genet 2024; 15:1472638. [PMID: 39534081 PMCID: PMC11554504 DOI: 10.3389/fgene.2024.1472638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The differential ratio of nonsynonymous to synonymous nucleotide substitutions (dN/dS) is a common measure of the rate of structural evolution in proteincoding genes. In addition, we recently suggested that the proportion of transposable elements in gene promoters that host functional genomic sites serves as a marker of the rate of regulatory evolution of genes. Such functional genomic regions may include transcription factor binding sites and modified histone binding loci. Methods Here, we constructed a model of the human interactome based on 600,136 documented molecular interactions and investigated the overall relationship between the number of interactions of each protein and the rate of structural and regulatory evolution of the corresponding genes. Results By evaluating a total of 4,505 human genes and 1,936 molecular pathways we found a general correlation between structural and regulatory evolution rate metrics (Spearman 0.08-0.16 and 0.25-0.37 for gene and pathway levels, respectively, p < 0.01). Further exploration revealed in the established human interactome model lack of correlation between the rate of gene regulatory evolution and the number of protein interactions on gene level, and weak negative correlation (∼0.15) on pathway level. We also found a statistically significant negative correlation between the rate of gene structural evolution and the number of protein interactions (Spearman -0.11 and -0.3 for gene and pathway levels, respectively, p < 0.01). Discussion Our result suggests stronger structural rather than regulatory conservation of genes whose protein products have multiple interaction partners.
Collapse
Affiliation(s)
- Rijalda Mekic
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tharaa Mohammad
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Nina Shaban
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan Musatov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Modestov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Simonov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis Kuzmin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Buzdin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
3
|
Mohammad T, Zolotovskaia MA, Suntsova MV, Buzdin AA. Cancer fusion transcripts with human non-coding RNAs. Front Oncol 2024; 14:1415801. [PMID: 38919532 PMCID: PMC11196610 DOI: 10.3389/fonc.2024.1415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.
Collapse
Affiliation(s)
- Tharaa Mohammad
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Anton A. Buzdin
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Ragusa MA, Naselli F, Cruciata I, Volpes S, Schimmenti C, Serio G, Mauro M, Librizzi M, Luparello C, Chiarelli R, La Rosa C, Lauria A, Gentile C, Caradonna F. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023; 15:3495. [PMID: 37571432 PMCID: PMC10420994 DOI: 10.3390/nu15153495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Autophagy is an evolutionarily conserved process critical in maintaining cellular homeostasis. Recently, the anticancer potential of autophagy inducers, including phytochemicals, was suggested. Indicaxanthin is a betalain pigment found in prickly pear fruit with antiproliferative and pro-apoptotic activities in colorectal cancer cells associated with epigenetic changes in selected methylation-silenced oncosuppressor genes. Here, we demonstrate that indicaxanthin induces the up-regulation of the autophagic markers LC3-II and Beclin1, and increases autophagolysosome production in Caco-2 cells. Methylomic studies showed that the indicaxanthin-induced pro-autophagic activity was associated with epigenetic changes. In addition to acting as a hypermethylating agent at the genomic level, indicaxanthin also induced significant differential methylation in 39 out of 47 autophagy-related genes, particularly those involved in the late stages of autophagy. Furthermore, in silico molecular modelling studies suggested a direct interaction of indicaxanthin with Bcl-2, which, in turn, influenced the function of Beclin1, a key autophagy regulator. External effectors, including food components, may modulate the epigenetic signature of cancer cells. This study demonstrates, for the first time, the pro-autophagic potential of indicaxanthin in human colorectal cancer cells associated with epigenetic changes and contributes to outlining its potential healthy effect in the pathophysiology of the gastrointestinal tract.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara Schimmenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Maurizio Mauro
- Department of Obstetrics & Gynecology and Women’s Health, Michael F. Price Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Mariangela Librizzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Turin, Italy;
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Zakharova G, Modestov A, Pugacheva P, Mekic R, Savina E, Guryanova A, Rachkova A, Yakushov S, Alimov A, Kulaeva E, Fedoseeva E, Kleyman A, Vasin K, Tkachev V, Garazha A, Sekacheva M, Suntsova M, Sorokin M, Buzdin A, Zolotovskaia MA. Distinct Traits of Structural and Regulatory Evolutional Conservation of Human Genes with Specific Focus on Major Cancer Molecular Pathways. Cells 2023; 12:cells12091299. [PMID: 37174700 PMCID: PMC10177184 DOI: 10.3390/cells12091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.
Collapse
Affiliation(s)
- Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Alexander Modestov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Polina Pugacheva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rijalda Mekic
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ekaterina Savina
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Anastasia Guryanova
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anastasia Rachkova
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Semyon Yakushov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrei Alimov
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Elizaveta Kulaeva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Elena Fedoseeva
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Artem Kleyman
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Kirill Vasin
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | | - Marina Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maria Suntsova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maksim Sorokin
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton Buzdin
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Marianna A Zolotovskaia
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
6
|
Liu M, Jia L, Guo X, Zhai X, Li H, Liu Y, Han J, Zhang B, Wang X, Li T, Wang Y, Li J, Yu C, Li L. Identification and Characterization of the HERV-K (HML-8) Group of Human Endogenous Retroviruses in the Genome. AIDS Res Hum Retroviruses 2023; 39:176-194. [PMID: 36656667 DOI: 10.1089/aid.2022.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human endogenous retroviruses (HERVs) can be vertically transmitted in a Mendelian fashion, are stably maintained in the human genome, and are estimated to constitute ∼8% of the genome. HERVs affect human physiology and pathology through their provirus-encoded protein or long terminal repeat (LTR) element effect. Characterization of the genomic distribution is an essential step to understanding the relationships between endogenous retrovirus expression and diseases. However, the poor characterization of human MMTV-like (HML)-8 prevents a detailed understanding of the regulation of the expression of this family in humans and its impact on the host genome. In light of this, the definition of an accurate and updated HERV-K HML-8 genomic map is urgently needed. In this study, we report the results of a comprehensive analysis of HERV-K HML-8 sequence presence and distribution within the human genome and hominoids, with a detailed description of the different structural and phylogenetic aspects characterizing the group. A total of 40 proviruses and 5 solo LTR elements for human were characterized, which included a detailed description of provirus structure, integration time, potentially regulated genes, transcription factor-binding sites, and primer-binding site features. Besides, 9 chimpanzee sequences, 8 gorilla sequences, and 10 orangutan sequences belonging to the HML-8 subgroup were identified. The integration time results showed that the HML-8 elements were integrated into the primate lineage around 35 and 42 million years ago (mya), during primates evolutionary speciation. Overall, the results clarified the composition of the HML-8 groups, providing an exhaustive background for subsequent functional studies.
Collapse
Affiliation(s)
- Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xing Guo
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China.,Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiuli Zhai
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China.,Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiaolin Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Tianyi Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yanglan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jingyun Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
7
|
Wang Y, Liu M, Guo X, Zhang B, Li H, Liu Y, Han J, Jia L, Li L. Endogenous Retrovirus Elements Are Co-Expressed with IFN Stimulation Genes in the JAK-STAT Pathway. Viruses 2022; 15:60. [PMID: 36680099 PMCID: PMC9861321 DOI: 10.3390/v15010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Endogenous retrovirus (ERV) elements can act as proximal regulatory elements in promoting interferon (IFN) responses. Previous relevant studies have mainly focused on IFN-stimulated genes (ISGs). However, the role of ERV elements as cis-regulatory motifs in regulating genes of the JAK-STAT pathway remains poorly understood. In our study, we analyzed the changes in ERV elements and genes under both IFN stimulation and blockade of the signaling pathway. Methods: The effects of interferon on cells under normal conditions and knockout of the receptor were compared based on the THP1_IFNAR1_KO and THP1_IFNAR2_mutant cell lines. The correlation between differentially expressed ERVs (DHERVs) and differentially expressed genes (DEGs) as DEHERV-G pairs was explored with construction of gene regulatory networks related to ERV and induced by proinflammatory cytokines. Results: A total of 430 DEHERV loci and 190 DEGs were identified in 842 DEHERV-G pairs that are common to the three groups. More than 87% of DEHERV-G pairs demonstrated a consistent expression pattern. ISGs such as AIM2, IFIT1, IFIT2, IFIT3, STAT1, and IRF were activated via the JAK-STAT pathway in response to interferon stimulation. Thus, STAT1, STAT2, and IRF1 appear to play core roles in regulatory networks and are closely associated with ERVs. Conclusions: The RNA expression of ISGs and ERV elements is correlated, indicating that ERV elements are closely linked to host innate immune responses.
Collapse
Affiliation(s)
- Yanglan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Guo
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| |
Collapse
|
8
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
9
|
Population genomics of the neotropical palm Copernicia prunifera (Miller) H. E. Moore: Implications for conservation. PLoS One 2022; 17:e0276408. [PMID: 36327224 PMCID: PMC9632875 DOI: 10.1371/journal.pone.0276408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products obtained from its leaf extracts are a source of income for local families and the agroindustry. Owing to the reduction of natural habitats and the absence of a sustainable management plan, the maintenance of the natural populations of this palm tree has been compromised. Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera populations using single nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing (GBS) to provide information that contributes to the conservation of this species. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior and may reflect responses to natural selection. Overall, the level of genomic diversity was compatible with the biological aspects of this species. The inbreeding coefficient (f) was negative for all populations, indicating excess heterozygotes. Most genetic variations occurred within populations (77.26%), and a positive correlation existed between genetic and geographic distances. The population structure evaluated through discriminant analysis of principal components (DAPC) revealed low genetic differentiation between populations. The results highlight the need for efforts to conserve C. prunifera as well as its distribution range to preserve its global genetic diversity and evolutionary potential.
Collapse
|
10
|
Son JH, Do H, Han J. Intragenic L1 Insertion: One Possibility of Brain Disorder. Life (Basel) 2022; 12:life12091425. [PMID: 36143463 PMCID: PMC9505610 DOI: 10.3390/life12091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE1, L1) is a retrotransposon comprising ~17% of the human genome. A subset of L1s maintains the potential to mobilize and alter the genomic landscape, consequently contributing to the change in genome integrity and gene expression. L1 retrotransposition occurs in the human brain regardless of disease status. However, in the brain of patients with various brain diseases, the expression level and copy number of L1 are significantly increased. In this review, we briefly introduce the methodologies applied to measure L1 mobility and identify genomic loci where new insertion of L1 occurs in the brain. Then, we present a list of genes disrupted by L1 transposition in the genome of patients with brain disorders. Finally, we discuss the association between genes disrupted by L1 and relative brain disorders.
Collapse
Affiliation(s)
- Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
11
|
Jia L, Liu M, Yang C, Li H, Liu Y, Han J, Zhai X, Wang X, Li T, Li J, Zhang B, Yu C, Li L. Comprehensive identification and characterization of the HERV-K (HML-9) group in the human genome. Retrovirology 2022; 19:11. [PMID: 35676699 PMCID: PMC9178832 DOI: 10.1186/s12977-022-00596-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) result from ancestral infections caused by exogenous retroviruses that became incorporated into the germline DNA and evolutionarily fixed in the human genome. HERVs can be transmitted vertically in a Mendelian fashion and be stably maintained in the human genome, of which they are estimated to comprise approximately 8%. HERV-K (HML1-10) transcription has been confirmed to be associated with a variety of diseases, such as breast cancer, lung cancer, prostate cancer, melanoma, rheumatoid arthritis, and amyotrophic lateral sclerosis. However, the poor characterization of HML-9 prevents a detailed understanding of the regulation of the expression of this family in humans and its impact on the host genome. In light of this, a precise and updated HERV-K HML-9 genomic map is urgently needed to better evaluate the role of these elements in human health. RESULTS We report a comprehensive analysis of the presence and distribution of HERV-K HML-9 elements within the human genome, with a detailed characterization of the structural and phylogenetic properties of the group. A total of 23 proviruses and 47 solo LTR elements were characterized, with a detailed description of the provirus structure, integration time, potential regulated genes, transcription factor binding sites (TFBS), and primer binding site (PBS) features. The integration time results showed that the HML-9 elements found in the human genome integrated into the primate lineage between 17.5 and 48.5 million years ago (mya). CONCLUSION The results provide a clear characterization of HML-9 and a comprehensive background for subsequent functional studies.
Collapse
Affiliation(s)
- Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Caiqin Yang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Xiuli Zhai
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Xiaolin Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Tianyi Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Jingyun Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071 China
| |
Collapse
|
12
|
Rejano-Gordillo C, Ordiales-Talavero A, Nacarino-Palma A, Merino JM, González-Rico FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Front Cell Dev Biol 2022; 10:884004. [PMID: 35465323 PMCID: PMC9022225 DOI: 10.3389/fcell.2022.884004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.
Collapse
Affiliation(s)
- Claudia Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Nacarino-Palma
- Chronic Diseases Research Centre (CEDOC), Rua Do Instituto Bacteriológico, Lisboa, Portugal
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| |
Collapse
|
13
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
14
|
Solovyeva A, Levakin I, Zorin E, Adonin L, Khotimchenko Y, Podgornaya O. Transposons-Based Clonal Diversity in Trematode Involves Parts of CR1 (LINE) in Eu- and Heterochromatin. Genes (Basel) 2021; 12:1129. [PMID: 34440303 PMCID: PMC8392823 DOI: 10.3390/genes12081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023] Open
Abstract
Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.
Collapse
Affiliation(s)
- Anna Solovyeva
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Ivan Levakin
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Evgeny Zorin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin 8, 196608 Saint Petersburg, Russia;
| | - Leonid Adonin
- Moscow Institute of Physics and Technology, Institutskiy per 9, 141701 Dolgoprudny, Russia;
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Sukhanova St 8, 690091 Vladivostok, Russia;
| | - Olga Podgornaya
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya Nab 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
15
|
Aslam M, Sugita K, Qin Y, Rahman A. Aux/IAA14 Regulates microRNA-Mediated Cold Stress Response in Arabidopsis Roots. Int J Mol Sci 2020; 21:E8441. [PMID: 33182739 PMCID: PMC7697755 DOI: 10.3390/ijms21228441] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators of plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. To better understand the role of microRNA (miR) in the crosstalk between auxin and cold stress responses, we took advantage of the mutants of Arabidopsis thaliana with altered response to auxin transport and signal. Screening of the mutants for root growth recovery after cold stress at 4 °C revealed that the auxin signaling mutant, solitary root 1 (slr1; mutation in Aux/IAA14), shows a hypersensitive response to cold stress. Genome-wide expression analysis of miRs in the wild-type and slr1 mutant roots using next-generation sequencing revealed 180 known and 71 novel cold-responsive microRNAs. Cold stress also increased the abundance of 26-31 nt small RNA population in slr1 compared with wild type. Comparative analysis of microRNA expression shows significant differential expression of 13 known and 7 novel miRs in slr1 at 4 °C compared with wild type. Target gene expression analysis of the members from one potential candidate miR, miR169, revealed the possible involvement of miR169/NF-YA module in the Aux/IAA14-mediated cold stress response. Taken together, these results indicate that SLR/IAA14, a transcriptional repressor of auxin signaling, plays a crucial role in integrating miRs in auxin and cold responses.
Collapse
Affiliation(s)
- Mohammad Aslam
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kenji Sugita
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abidur Rahman
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Agri-Innovation Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
16
|
Topham JT, Titmuss E, Pleasance ED, Williamson LM, Karasinska JM, Culibrk L, Lee MKC, Mendis S, Denroche RE, Jang GH, Kalloger SE, Wong HL, Moore RA, Mungall AJ, O'Kane GM, Knox JJ, Gallinger S, Loree JM, Mager DL, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Mol Cancer Ther 2020; 19:1889-1897. [PMID: 32518206 DOI: 10.1158/1535-7163.mct-20-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing of solid tumors has revealed variable signatures of immunogenicity across tumors, but underlying molecular characteristics driving such variation are not fully understood. Although expression of endogenous retrovirus (ERV)-containing transcripts can provide a source of tumor-specific neoantigen in some cancer models, associations between ERV levels and immunogenicity across different types of metastatic cancer are not well established. We performed bioinformatics analysis of genomic, transcriptomic, and clinical data across an integrated cohort of 199 patients with metastatic breast, colorectal, and pancreatic ductal adenocarcinoma tumors. Within each cancer type, we identified a subgroup of viral mimicry tumors in which increased ERV levels were coupled with transcriptional signatures of autonomous antiviral response and immunogenicity. In addition, viral mimicry colorectal and pancreatic tumors showed increased expression of DNA demethylation gene TET2 Taken together, these data demonstrate the existence of an ERV-associated viral mimicry phenotype across three distinct metastatic cancer types, while indicating links between ERV abundance, epigenetic dysregulation, and immunogenicity.
Collapse
Affiliation(s)
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Shehara Mendis
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Grainne M O'Kane
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janessa Laskin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada. .,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Pitzianti MB, Spiridigliozzi S, Bartolucci E, Esposito S, Pasini A. New Insights on the Effects of Methylphenidate in Attention Deficit Hyperactivity Disorder. Front Psychiatry 2020; 11:531092. [PMID: 33132928 PMCID: PMC7561436 DOI: 10.3389/fpsyt.2020.531092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
This narrative review describes an overview of the multiple effects of methylphenidate (MPH) in attention-deficit/hyperactivity disorder (ADHD) and its potential neurobiological targets. It addressed the following aspects: 1) MPH effects on attention and executive functions in ADHD; 2) the relation between MPH efficacy and dopamine transporter gene (DAT) polymorphism; and 3) the role of MPH as an epigenetic modulator in ADHD. Literature analysis showed that MPH, the most commonly used psychostimulant in the therapy of ADHD, acts on multiple components of the disorder. Marked improvements in attentional and executive dysfunction have been observed in children with ADHD during treatment with MPH, as well as reductions in neurological soft signs. MPH efficacy may be influenced by polymorphisms in the DAT, and better responses to treatment were associated with the 10/10 genotype. Innovative lines of research have suggested that ADHD etiopathogenesis and its neuropsychological phenotypes also depend on the expression levels of human endogenous retrovirus (HERV). In particular, several studies have revealed that ADHD is associated with HERV-H over-expression and that MPH administration results in decreased expression levels of this retroviral family and a reduction in the main symptoms of the disorder. In conclusion, there is a confirmed role for MPH as an elective drug in the therapy of ADHD alone or in association with behavioral therapy. Its effectiveness can vary based on DAT polymorphisms and can act as a modulator of HERV-H gene expression, pointing to targets for a precision medicine approach.
Collapse
Affiliation(s)
- Maria Bernarda Pitzianti
- Division of Child Neuropsychiatry, Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy.,Department of Child Neuropsychiatry, USL Umbria 2, Terni, Italy
| | - Simonetta Spiridigliozzi
- Division of Child Neuropsychiatry, Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | - Susanna Esposito
- Paediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, Università of Parma, Parma, Italy
| | - Augusto Pasini
- Division of Child Neuropsychiatry, Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy.,Department of Child Neuropsychiatry, USL Umbria 2, Terni, Italy
| |
Collapse
|
18
|
Nikitin D, Kolosov N, Murzina A, Pats K, Zamyatin A, Tkachev V, Sorokin M, Kopylov P, Buzdin A. Retroelement-Linked H3K4me1 Histone Tags Uncover Regulatory Evolution Trends of Gene Enhancers and Feature Quickly Evolving Molecular Processes in Human Physiology. Cells 2019; 8:cells8101219. [PMID: 31597351 PMCID: PMC6830109 DOI: 10.3390/cells8101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. Methods: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. Results: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. Conclusion: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.
Collapse
Affiliation(s)
- Daniil Nikitin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
| | | | | | - Karina Pats
- ITMO University, 195251 Saint-Petersburg, Russia.
| | | | | | - Maxim Sorokin
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Philippe Kopylov
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Anton Buzdin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
19
|
Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D, Tkachev V, Penzar D, Nikitin DM, Buzdin A. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells 2019; 8:E1034. [PMID: 31491936 PMCID: PMC6770625 DOI: 10.3390/cells8091034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transposons are selfish genetic elements that self-reproduce in host DNA. They were active during evolutionary history and now occupy almost half of mammalian genomes. Close insertions of transposons reshaped structure and regulation of many genes considerably. Co-evolution of transposons and host DNA frequently results in the formation of new regulatory regions. Previously we published a concept that the proportion of functional features held by transposons positively correlates with the rate of regulatory evolution of the respective genes. METHODS We ranked human genes and molecular pathways according to their regulatory evolution rates based on high throughput genome-wide data on five histone modifications (H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K9me3) linked with transposons for five human cell lines. RESULTS Based on the total of approximately 1.5 million histone tags, we ranked regulatory evolution rates for 25075 human genes and 3121 molecular pathways and identified groups of molecular processes that showed signs of either fast or slow regulatory evolution. However, histone tags showed different regulatory patterns and formed two distinct clusters: promoter/active chromatin tags (H3K4me3, H3K9ac, H3K27ac) vs. heterochromatin tags (H3K27me3, H3K9me3). CONCLUSION In humans, transposon-linked histone marks evolved in a coordinated way depending on their functional roles.
Collapse
Affiliation(s)
- Anna A Igolkina
- Mathematical Biology & Bioinformatics Laboratory, Institute of Applied Mathematics and Mechanics, Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
- Laboratory of Microbiological Monitoring and Bioremediation of Soil, All-Russia Research Institute for Agricultural Microbiology, Podbel'skogo, 3, St. Petersburg 196608, Russia.
| | - Arsenii Zinkevich
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | | | - Aleksey A Popov
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | - Maria V Selifanova
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | - Daria Nikolaeva
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | | | - Dmitry Penzar
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
- Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina 3, Moscow 119991, Russia
| | - Daniil M Nikitin
- Omicsway Corp., Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA 91789, USA.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
20
|
Abstract
This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution.
Collapse
|
21
|
Berezovskaya F, Karev GP, Katsnelson MI, Wolf YI, Koonin EV. Stable coevolutionary regimes for genetic parasites and their hosts: you must differ to coevolve. Biol Direct 2018; 13:27. [PMID: 30621743 PMCID: PMC6822691 DOI: 10.1186/s13062-018-0230-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background Genetic parasites are ubiquitous satellites of cellular life forms most of which host a variety of mobile genetic elements including transposons, plasmids and viruses. Theoretical considerations and computer simulations suggest that emergence of genetic parasites is intrinsic to evolving replicator systems. Results Using methods of bifurcation analysis, we investigated the stability of simple models of replicator-parasite coevolution in a well-mixed environment. We first analyze what appears to be the simplest imaginable system of this type, one in which the parasite evolves during the replication of the host genome through a minimal mutation that renders the genome of the emerging parasite incapable of producing the replicase but able to recognize and recruit it for its own replication. This model has only trivial or “semi-trivial”, parasite-free equilibria: an inefficient parasite is outcompeted by the host and dies off, whereas an efficient one pushes the host out of existence, leading to the collapse of the entire system. We show that stable host-parasite coevolution (a non-trivial equilibrium) is possible in a modified model where the parasite is qualitatively distinct from the host replicator in that the replication of the parasite depends solely on the availability of the host but not on the carrying capacity of the environment. Conclusions We analytically determine the conditions for stable coevolution of genetic parasites and their hosts coevolution in simple mathematical models. It is shown that the evolutionary dynamics of a parasite that initially evolves from the host through the loss of the ability to replicate autonomously must substantially differ from that of the host, for a stable host-parasite coevolution regime to be established. Electronic supplementary material The online version of this article (10.1186/s13062-018-0230-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Faina Berezovskaya
- Department of Mathematics, Howard University, Washington, DC, 20059, USA
| | - Georgy P Karev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, 6525AJ, Nijmegen, Netherlands
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
22
|
Szafranski P, Kośmider E, Liu Q, Karolak JA, Currie L, Parkash S, Kahler SG, Roeder E, Littlejohn RO, DeNapoli TS, Shardonofsky FR, Henderson C, Powers G, Poisson V, Bérubé D, Oligny L, Michaud JL, Janssens S, De Coen K, Van Dorpe J, Dheedene A, Harting MT, Weaver MD, Khan AM, Tatevian N, Wambach J, Gibbs KA, Popek E, Gambin A, Stankiewicz P. LINE- and Alu-containing genomic instability hotspot at 16q24.1 associated with recurrent and nonrecurrent CNV deletions causative for ACDMPV. Hum Mutat 2018; 39:1916-1925. [PMID: 30084155 DOI: 10.1002/humu.23608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/20/2023]
Abstract
Transposable elements modify human genome by inserting into new loci or by mediating homology-, microhomology-, or homeology-driven DNA recombination or repair, resulting in genomic structural variation. Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal neonatal developmental lung disorder caused by point mutations or copy-number variant (CNV) deletions of FOXF1 or its distant tissue-specific enhancer. Eighty-five percent of 45 ACDMPV-causative CNV deletions, of which junctions have been sequenced, had at least one of their two breakpoints located in a retrotransposon, with more than half of them being Alu elements. We describe a novel ∼35 kb-large genomic instability hotspot at 16q24.1, involving two evolutionarily young LINE-1 (L1) elements, L1PA2 and L1PA3, flanking AluY, two AluSx, AluSx1, and AluJr elements. The occurrence of L1s at this location coincided with the branching out of the Homo-Pan-Gorilla clade, and was preceded by the insertion of AluSx, AluSx1, and AluJr. Our data show that, in addition to mediating recurrent CNVs, L1 and Alu retrotransposons can predispose the human genome to formation of variably sized CNVs, both of clinical and evolutionary relevance. Nonetheless, epigenetic or other genomic features of this locus might also contribute to its increased instability.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ewelina Kośmider
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lauren Currie
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Canada
| | - Sandhya Parkash
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Canada
| | - Stephen G Kahler
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | | | - Thomas S DeNapoli
- Department of Pathology, Children's Hospital of San Antonio, San Antonio, Texas
| | - Felix R Shardonofsky
- Pediatric Pulmonary Center, Children's Hospital of San Antonio, San Antonio, Texas
| | - Cody Henderson
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas.,Neonatal-Perinatal Medicine, Children's Hospital of San Antonio, San Antonio, Texas
| | - George Powers
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas.,Neonatal-Perinatal Medicine, Children's Hospital of San Antonio, San Antonio, Texas
| | | | | | | | | | - Sandra Janssens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Kris De Coen
- Department of Neonatal Intensive Care, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
| | | | | | | | - Amir M Khan
- McGovern Medical School at UTHealth, Houston, Texas
| | | | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Kathleen A Gibbs
- Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Anna Gambin
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
24
|
Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174:30-46. [PMID: 29458070 DOI: 10.1016/j.mad.2018.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Research Center on Aging (INRCA), via Birarelli 8, 60121 Ancona, Italy.
| |
Collapse
|
25
|
Kitano S, Kurasawa H, Aizawa Y. Transposable elements shape the human proteome landscape via formation of cis-acting upstream open reading frames. Genes Cells 2018; 23:274-284. [PMID: 29446201 DOI: 10.1111/gtc.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Transposons are major drivers of mammalian genome evolution. To obtain new insights into the contribution of transposons to the regulation of protein translation, we here examined how transposons affected the genesis and function of upstream open reading frames (uORFs), which serve as cis-acting elements to regulate translation from annotated ORFs (anORFs) located downstream of the uORFs in eukaryotic mRNAs. Among 39,786 human uORFs, 3,992 had ATG trinucleotides of a transposon origin, termed "transposon-derived upstream ATGs" or TuATGs. Luciferase reporter assays suggested that many TuATGs modulate translation from anORFs. Comparisons with transposon consensus sequences revealed that most TuATGs were generated by nucleotide substitutions in non-ATG trinucleotides of integrated transposons. Among these non-ATG trinucleotides, GTG and ACG were converted into TuATGs more frequently, indicating a CpG methylation-mediated process of TuATG formation. Interestingly, it is likely that this process accelerated human-specific upstream ATG formation within transposon sequences in 5' untranslated regions after divergence between human and nonhuman primates. Methylation-mediated TuATG formation seems to be ongoing in the modern human population and could alter the expression of disease-related proteins. This study shows that transposons have potentially been shaping the human proteome landscape via cis-acting uORF creation.
Collapse
Affiliation(s)
- Shohei Kitano
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Hikaru Kurasawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasunori Aizawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
26
|
Nikitin D, Penzar D, Garazha A, Sorokin M, Tkachev V, Borisov N, Poltorak A, Prassolov V, Buzdin AA. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins. Front Immunol 2018; 9:30. [PMID: 29441061 PMCID: PMC5797644 DOI: 10.3389/fimmu.2018.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome.
Collapse
Affiliation(s)
- Daniil Nikitin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Penzar
- The Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Maxim Sorokin
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nicolas Borisov
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Alexander Poltorak
- Program in Immunology, Sackler Graduate School, Tufts University, Boston, MA, United States
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anton A Buzdin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
27
|
Jung YD, Lee HE, Jo A, Hiroo I, Cha HJ, Kim HS. Activity analysis of LTR12C as an effective regulatory element of the RAE1 gene. Gene 2017; 634:22-28. [PMID: 28867566 DOI: 10.1016/j.gene.2017.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Ribonucleic acid export 1 (RAE1) plays an important role in the export of mature mRNAs from the nucleus to the cytoplasm. Long terminal repeats (LTRs) became integrated into the human genome during primate evolution. One such repeat element, LTR12C, lies within a predicted regulatory region located upstream of the RAE1 gene. We examined the transcriptional activity of LTR12C by using the luciferase assay, and showed that the tandem repeat region (TRR) located within LTR12C was required for its regulatory function. A bioinformatics analysis revealed that the LTR12C element had multiple transcription factor binding sites specific for nuclear transcription factor Y (NF-Y), and the promoter activity of LTR12C was significantly decreased after NF-Y knockdown. Additionally, we discovered novel data indicating that LTR12C was initially inserted into the gorilla genome. Taken together, our results reveal that the TRR of LTR12C has powerful regulatory activity due to its NF-Y binding sites, and the integration of the LTR12C element into the primate genome during evolution may have affected RAE1 transcription.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Imai Hiroo
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
Abstract
Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24-32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders.
Collapse
Affiliation(s)
- Lingjun Zuo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
29
|
Small RNA Pathways That Protect the Somatic Genome. Int J Mol Sci 2017; 18:ijms18050912. [PMID: 28445427 PMCID: PMC5454825 DOI: 10.3390/ijms18050912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Transposable elements (TEs) are DNA elements that can change their position within the genome, with the potential to create mutations and destabilize the genome. As such, special molecular systems have been adopted in animals to control TE activity in order to protect the genome. PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), are well known to play a critical role in silencing germline TEs. Although initially thought to be germline-specific, the role of PIWI–piRNA pathways in controlling TEs in somatic cells has recently begun to be explored in various organisms, together with the role of endogenous small interfering RNAs (endo-siRNAs). This review summarizes recent results suggesting that these small RNA pathways have been critically implicated in the silencing of somatic TEs underlying various physiological traits, with a special focus on the Drosophila model organism.
Collapse
|
30
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
31
|
Broecker F, Horton R, Heinrich J, Franz A, Schweiger MR, Lehrach H, Moelling K. The intron-enriched HERV-K(HML-10) family suppresses apoptosis, an indicator of malignant transformation. Mob DNA 2016; 7:25. [PMID: 27980690 PMCID: PMC5142424 DOI: 10.1186/s13100-016-0081-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) constitute 8% of the human genome and contribute substantially to the transcriptome. HERVs have been shown to generate RNAs that modulate host gene expression. However, experimental evidence for an impact of these regulatory transcripts on the cellular phenotype has been lacking. Results We characterized the previously little described HERV-K(HML-10) endogenous retrovirus family on a genome-wide scale. HML-10 invaded the ancestral genome of Old World monkeys about 35 Million years ago and is enriched within introns of human genes when compared to other HERV families. We show that long terminal repeats (LTRs) of HML-10 exhibit variable promoter activity in human cancer cell lines. One identified HML-10 LTR-primed RNA was in opposite orientation to the pro-apoptotic Death-associated protein 3 (DAP3). In HeLa cells, experimental inactivation of HML-10 LTR-primed transcripts induced DAP3 expression levels, which led to apoptosis. Conclusions Its enrichment within introns suggests that HML-10 may have been evolutionary co-opted for gene regulation more than other HERV families. We demonstrated such a regulatory activity for an HML-10 RNA that suppressed DAP3-mediated apoptosis in HeLa cells. Since HML-10 RNA appears to be upregulated in various tumor cell lines and primary tumor samples, it may contribute to evasion of apoptosis in malignant cells. However, the overall weak expression of HML-10 transcripts described here raises the question whether our result described for HeLa represent a rare event in cancer. A possible function in other cells or tissues requires further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland ; Current affiliation: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Roger Horton
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jochen Heinrich
- Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| | - Alexandra Franz
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: University of Zurich, Institute of Molecular Life Sciences, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Michal-Ruth Schweiger
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: Functional Epigenomics, CCG, Cologne University Hospital, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hans Lehrach
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Dahlem Centre for Genome Research and Medical Systems Biology, Fabeckstr. 60-62, 14195 Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| |
Collapse
|
32
|
Craddock EM. Profuse evolutionary diversification and speciation on volcanic islands: transposon instability and amplification bursts explain the genetic paradox. Biol Direct 2016; 11:44. [PMID: 27600528 PMCID: PMC5012101 DOI: 10.1186/s13062-016-0146-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/26/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Species-rich adaptive radiations arising from rare plant and animal colonizers are common on remote volcanic archipelagoes. However, they present a paradox. The severe genetic bottleneck of founder events and effects of inbreeding depression, coupled with the inherently stressful volcanic environment, would seem to predict reduced evolutionary potential and increased risk of extinction, rather than rapid adaptive divergence and speciation. Significantly, eukaryotic genomes harbor many families of transposable elements (TEs) that are mobilized by genome shock; these elements may be the primary drivers of genetic reorganization and speciation on volcanic islands. PRESENTATION OF THE HYPOTHESIS Here I propose that a central factor in the spectacular radiation and diversification of the endemic Hawaiian Drosophila and other terrestrial lineages on the Hawaiian and other oceanic islands has been repeated bursts of transposition of multiple TEs induced by the unique ecological features of volcanic habitats. Founder individuals and populations on remote volcanic islands experience significant levels of physiological and genomic stress as a consequence of both biotic and abiotic factors. This results in disruption of the usual epigenetic suppression of TEs, unleashing them to proliferate and spread, which in turn gives rise to novel genetic variation and remodels genomic regulatory circuits, facilitating rapid morphological, ecological and behavioral change, and adaptive radiation. TESTING THE HYPOTHESIS To obtain empirical support for the hypothesis, test organisms should be exposed to prolonged heat stress, high levels of carbon dioxide and other volcanic gases, along with inbreeding. Data from subsequent whole genome sequencing and bioinformatics screening for TE numbers and locations would then be compared with initial pre-exposure TE information for the test strains, a labor-intensive project. Several predicted outcomes arising from the hypothesis are discussed. Currently available data are consistent with the proposed concept of stress-induced TE mobilization as a trigger of evolutionary diversification and speciation on volcanic islands. IMPLICATIONS OF THE HYPOTHESIS The main implication is that both TEs and species should proliferate at a much higher rate on volcanic islands than elsewhere. Second, the evolvability of a lineage may correlate with the abundance and distribution of TEs in the genome. Successful colonizers of volcanic habitats with high genomic proportions of TEs may be best poised to found a speciose lineage that gives rise to a dramatic adaptive radiation. Colonizers that are depauperate in TEs are likely to be evolutionarily constrained and diversify little, if at all. REVIEWERS This article was reviewed by Dr. James Shapiro and Dr. Wolfgang Miller (nominated by Editorial Board member Dr. I. King Jordan).
Collapse
Affiliation(s)
- Elysse M Craddock
- School of Natural and Social Sciences, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577-1400, USA.
| |
Collapse
|
33
|
An assessment of spatio-temporal genetic variation in the South African abalone (Haliotis midae), using SNPs: implications for conservation management. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0879-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Trombetta B, Fantini G, D'Atanasio E, Sellitto D, Cruciani F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci Rep 2016; 6:28710. [PMID: 27346230 PMCID: PMC4921805 DOI: 10.1038/srep28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gloria Fantini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
35
|
Godakova SA, Sevast'yanova GA, Semyenova SK. [STRUCTURE AND DISTRIBUTION OF THE RETROTRANSPOSON BOV-B LINE]. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2016; 34:9-12. [PMID: 27183715 DOI: 10.3103/s0891416816010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The classification of mobile elements was discussed. Special attention was devoted to the retroelement of the LINE group: retrotransposon Bov-B LINE. The history of its origin and distribution in the nature was considered. The results of the phenomenon of horizontal transition of the retrotransposon Bov-B LINE between evolutionally distant classes were discussed.
Collapse
|
36
|
Brennan MT, Mougeot JLC. Alu retroelement-associated autoimmunity in Sjögren's syndrome. Oral Dis 2016; 22:345-7. [DOI: 10.1111/odi.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Michael T. Brennan
- Department of Oral Medicine; Carolinas Healthcare System; Charlotte NC USA
| | | |
Collapse
|
37
|
Garazha A, Ivanova A, Suntsova M, Malakhova G, Roumiantsev S, Zhavoronkov A, Buzdin A. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 2016; 14:1476-84. [PMID: 25853282 PMCID: PMC4612461 DOI: 10.1080/15384101.2015.1022696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of “domestication” of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.
Collapse
Affiliation(s)
- Andrew Garazha
- a Group for Genomic Regulation of Cell Signaling Systems ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry ; Moscow , Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors. Genetics 2015; 202:107-21. [PMID: 26534950 DOI: 10.1534/genetics.115.177196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Movement of transposons causes insertions, deletions, and chromosomal rearrangements potentially leading to premature lethality in Drosophila melanogaster. To repress these elements and combat genomic instability, eukaryotes have evolved several small RNA-mediated defense mechanisms. Specifically, in Drosophila somatic cells, endogenous small interfering (esi)RNAs suppress retrotransposon mobility. EsiRNAs are produced by Dicer-2 processing of double-stranded RNA precursors, yet the origins of these precursors are unknown. We show that most transposon families are transcribed in both the sense (S) and antisense (AS) direction in Dmel-2 cells. LTR retrotransposons Dm297, mdg1, and blood, and non-LTR retrotransposons juan and jockey transcripts, are generated from intraelement transcription start sites with canonical RNA polymerase II promoters. We also determined that retrotransposon antisense transcripts are less polyadenylated than sense. RNA-seq and small RNA-seq revealed that Dicer-2 RNA interference (RNAi) depletion causes a decrease in the number of esiRNAs mapping to retrotransposons and an increase in expression of both S and AS retrotransposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and processed by Dicer-2 into esiRNAs that silence both sense and antisense retrotransposon transcripts. Reduction of sense retrotransposon transcripts potentially lowers element-specific protein levels to prevent transposition. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.
Collapse
|
39
|
Park SJ, Kim YH, Lee SR, Choe SH, Kim MJ, Kim SU, Kim JS, Sim BW, Song BS, Jeong KJ, Jin YB, Lee Y, Park YH, Park YI, Huh JW, Chang KT. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution. Mol Cells 2015; 38:950-8. [PMID: 26537194 PMCID: PMC4673409 DOI: 10.14348/molcells.2015.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022] Open
Abstract
BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crab-eating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3' splice site. Intriguingly, in rhesus and crab-eating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5' splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates.
Collapse
Affiliation(s)
- Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Myung-Jin Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Yeung-Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young Il Park
- Graduate School Department of Digital Media, Ewha Womans University, Seoul 120-750,
Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| |
Collapse
|
40
|
Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015; 72:3653-75. [PMID: 26082181 PMCID: PMC11113533 DOI: 10.1007/s00018-015-1947-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8% of human genome. Recent success of high-throughput experimental technologies facilitated understanding functional impact of HERVs for molecular machinery of human cells. HERVs encode active retroviral proteins, which may exert important physiological functions in the body, but also may be involved in the progression of cancer and numerous human autoimmune, neurological and infectious diseases. The spectrum of related malignancies includes, but not limits to, multiple sclerosis, psoriasis, lupus, schizophrenia, multiple cancer types and HIV. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g., by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this paper, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.
Collapse
Affiliation(s)
- Maria Suntsova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Andrew Garazha
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Alena Ivanova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Dmitry Kaminsky
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Alex Zhavoronkov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- Department of Translational and Regenerative Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow, 141700, Russia.
| | - Anton Buzdin
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova sq., Moscow, 123182, Russia.
| |
Collapse
|
41
|
Ishida K, Miyauchi K, Kimura Y, Mito M, Okada S, Suzuki T, Nakagawa S. Regulation of gene expression via retrotransposon insertions and the noncoding RNA 4.5S RNAH. Genes Cells 2015; 20:887-901. [PMID: 26333314 DOI: 10.1111/gtc.12280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
Short interspersed elements (SINEs) comprise a significant portion of mammalian genomes and regulate gene expression through a variety of mechanisms. Here, we show that Myodonta clade-specific 4.5S RNAH (4.5SH), an abundant nuclear noncoding RNA that is highly homologous to the retrotransposon SINE B1, controls the expression of reporter gene that contains the antisense insertion of SINE B1 via nuclear retention. The depletion of endogenous 4.5SH with antisense oligonucleotides neutralizes the nuclear retention and changes the subcellular distribution of the reporter transcripts containing the antisense SINE B1 insertion. Importantly, endogenous transcripts with antisense SINE B1 were increased in the cytoplasm after knockdown of 4.5SH, leading to a decrease in cellular growth. We propose a tentative hypothesis that the amplification of the 4.5SH cluster in specific rodent species might delineate their evolutionary direction via the regulation of genes containing the antisense insertion of SINE B1.
Collapse
Affiliation(s)
- Kentaro Ishida
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuko Kimura
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
42
|
Mehra M, Gangwar I, Shankar R. A Deluge of Complex Repeats: The Solanum Genome. PLoS One 2015; 10:e0133962. [PMID: 26241045 PMCID: PMC4524691 DOI: 10.1371/journal.pone.0133962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genome, Plant
- Humans
- INDEL Mutation
- Solanum lycopersicum/genetics
- MicroRNAs/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Alignment
- Solanum tuberosum/genetics
- Species Specificity
- Terminal Repeat Sequences
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| |
Collapse
|
43
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
44
|
Ayarpadikannan S, Lee HE, Han K, Kim HS. Transposable element-driven transcript diversification and its relevance to genetic disorders. Gene 2015; 558:187-94. [PMID: 25617522 DOI: 10.1016/j.gene.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
The human genome project and subsequent gene annotation projects have shown that the human genome contains 22,000-25,000 functional genes. Therefore, it is believed that the diversity of protein repertoire is achieved by the alternative splicing (AS) mechanism. Transposable elements (TEs) are mobile in nature and can therefore alter their position in the genome. The insertion of TEs into a new gene region can result in AS of a particular transcript through various mechanisms, including intron retention, and alternative donor or acceptor splice sites. TE-derived AS is thought to have played a part in primate evolution and in hominid radiation. However, TE-derived AS or genetic instability may sometimes result in genetic disorders. For the past two decades, numerous studies have been performed on TEs and their role in genomes. Accumulating evidence shows that the term 'junk DNA', previously used for TEs is a misnomer. Recent research has indicated that TEs may have clinical potential. However, to explore the feasibility of using TEs in clinical practice, additional studies are required. This review summarizes the available literature on TE-derived AS, alternative promoter, and alternative polyadenylation. The review covers the effects of TEs on coding genes and their clinical implications, and provides our perspectives and directions for future research.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
45
|
Goldenberg DM, Rooney RJ, Loo M, Liu D, Chang CH. In-vivo fusion of human cancer and hamster stromal cells permanently transduces and transcribes human DNA. PLoS One 2014; 9:e107927. [PMID: 25259521 PMCID: PMC4178054 DOI: 10.1371/journal.pone.0107927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
After demonstrating, with karyotyping, polymerase chain reaction (PCR) and fluorescence in-situ hybridization, the retention of certain human chromosomes and genes following the spontaneous fusion of human tumor and hamster cells in-vivo, it was postulated that cell fusion causes the horizontal transmission of malignancy and donor genes. Here, we analyzed gene expression profiles of 3 different hybrid tumors first generated in the hamster cheek pouch after human tumor grafting, and then propagated in hamsters and in cell cultures for years: two Hodgkin lymphomas (GW-532, GW-584) and a glioblastoma multiforme (GB-749). Based on the criteria of MAS 5.0 detection P-values ≤0.065 and at least a 2-fold greater signal expression value than a hamster melanoma control, we identified 3,759 probe sets (ranging from 1,040 to 1,303 in each transplant) from formalin-fixed, paraffin-embedded sections of the 3 hybrid tumors, which unambiguously mapped to 3,107 unique Entrez Gene IDs, representative of all human chromosomes; however, by karyology, one of the hybrid tumors (GB-749) had a total of 15 human chromosomes in its cells. Among the genes mapped, 39 probe sets, representing 33 unique Entrez Gene IDs, complied with the detection criteria in all hybrid tumor samples. Five of these 33 genes encode transcription factors that are known to regulate cell growth and differentiation; five encode cell adhesion- and transmigration-associated proteins that participate in oncogenesis and/or metastasis and invasion; and additional genes encode proteins involved in signaling pathways, regulation of apoptosis, DNA repair, and multidrug resistance. These findings were corroborated by PCR and reverse transcription PCR, showing the presence of human alphoid (α)-satellite DNA and the F11R transcripts in additional tumor transplant generations. We posit that in-vivo fusion discloses genes implicated in tumor progression, and gene families coding for the organoid phenotype. Thus, cancer cells can transduce adjacent stromal cells, with the resulting progeny having permanently transcribed genes with malignant and other gene functions of the donor DNA. Using heterospecific in-vivo cell fusion, genes encoding oncogenic and organogenic traits may be identified.
Collapse
Affiliation(s)
- David M. Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, New Jersey, United States of America
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- * E-mail:
| | - Robert J. Rooney
- Genome Explorations, Inc., Memphis, Tennessee, United States of America
| | - Meiyu Loo
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
| | - Donglin Liu
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
| | - Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
| |
Collapse
|
46
|
Abstract
The cost of DNA sequencing is decreasing year by year, and the era of personalized medicine and the $1000 genome seems to be just around the corner. In order to link genetic variation to gene function, however, we need to learn more about the function of the non-coding genomic elements. The advance of high-throughput sequencing enabled rapid progress in mapping the functional elements in our genome. In the present article, I discuss how intronic mutations acting at Alu elements enable formation of new exons. I review the mutations that cause disease when promoting a major increase in the inclusion of Alu exon into mature transcripts. Moreover, I present the mechanism that represses such a major inclusion of Alu exons and instead enables a gradual evolution of Alu elements into new exons.
Collapse
|
47
|
Balestrieri E, Pitzianti M, Matteucci C, D'Agati E, Sorrentino R, Baratta A, Caterina R, Zenobi R, Curatolo P, Garaci E, Sinibaldi-Vallebona P, Pasini A. Human endogenous retroviruses and ADHD. World J Biol Psychiatry 2014; 15:499-504. [PMID: 24286278 DOI: 10.3109/15622975.2013.862345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Several lines of evidences suggest that human endogenous retroviruses (HERVs) are implicated in the development of many complex diseases with a multifactorial aetiology and a strong heritability, such as neurological and psychiatric diseases. Attention deficit hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that results from a complex interaction of environmental, biological and genetic factors. Our aim was to analyse the expression levels of three HERV families (HERV-H, K and W) in patients with ADHD. METHODS The expression of retroviral mRNAs from the three HERV families was evaluated in peripheral blood mononuclear cells (PBMCs) from 30 patients with ADHD and 30 healthy controls by quantitative RT-PCR. RESULTS The expression levels of HERV-H are significantly higher in patients with ADHD compared to healthy controls, while there are no differences in the expression levels of HERV-K and W. CONCLUSIONS Since the ADHD aetiology is due to a complex interaction of environmental, biological and genetic factors, HERVs may represent one link among these factors and clinical phenotype of ADHD. A future confirmation of HERV-H overexpression in a larger number of ADHD patients will make possible to identify it as a new parameter for this clinical condition, also contributing to deepen the study on the role of HERVs in the neurodevelopment diseases.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, "Tor Vergata" University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keane TM, Wong K, Adams DJ, Flint J, Reymond A, Yalcin B. Identification of structural variation in mouse genomes. Front Genet 2014; 5:192. [PMID: 25071822 PMCID: PMC4079067 DOI: 10.3389/fgene.2014.00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2014] [Indexed: 01/25/2023] Open
Abstract
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
Collapse
Affiliation(s)
| | - Kim Wong
- Wellcome Trust Sanger Institute Hinxton, Cambridge, UK
| | - David J Adams
- Wellcome Trust Sanger Institute Hinxton, Cambridge, UK
| | | | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne Lausanne, Switzerland
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne Lausanne, Switzerland ; Institute of Genetics and Molecular and Cellular Biology Illkirch, France
| |
Collapse
|
49
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana. Mol Genet Genomics 2014; 289:821-35. [PMID: 24770782 DOI: 10.1007/s00438-014-0855-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retrotransposons are ubiquitous components of plant genomes. They affect genome organization, and can also affect the expression patterns of neighboring genes. Retrotransposons are therefore important elements for changing genomic information. To understand the evolution of the Arabidopsis genome, we examined the distribution of certain retrotransposons, AtRE1s and AtRE2s, in the genomes of 12 natural variants (accessions) of Arabidopsis thaliana. AtRE1 and AtRE2 are copia-type retrotransposons that are potentially active. Their copy numbers are low, and they are absent from the genomes of some accessions. We detected four loci with AtRE1s inserted in six accessions, and one locus with an insertion of a solo-LTR-like sequence derived from AtRE1 in two accessions. Seven loci with AtRE2s inserted were detected on eight accessions. These loci were distributed in euchromatic regions of chromosomes 1, 2, 3, and 4. The AtRE1 and AtRE2 sequences at some loci identified in this study have not been recorded in the database of the 1001 Genome project. The sequences of AtRE1s and those of AtRE2s in different accessions and at different loci were highly conserved. There was a complete or almost complete conservation of sequences of both long terminal repeats in each AtRE1 and in each AtRE2. These results suggest that AtRE1 and AtRE2 appeared quite recently in the Arabidopsis genome. Furthermore, sequence comparisons of AtRE1 and AtRE2 loci among accessions revealed the possibility that large deletions containing entire sequences of AtRE1 and AtRE2 have occurred in some accessions.
Collapse
|