1
|
Mei JL, Wang SF, Zhao YY, Xu T, Luo Y, Xiong LL. Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer's disease based on transcriptome analysis. IBRAIN 2024; 10:323-344. [PMID: 39346794 PMCID: PMC11427814 DOI: 10.1002/ibra.12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.
Collapse
Affiliation(s)
- Jin-Lin Mei
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Shi-Feng Wang
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yang-Yang Zhao
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Ting Xu
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yong Luo
- Department of Neurology Third Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Liu-Lin Xiong
- School of Anesthesiology Zunyi Medical University Zunyi China
- Clinical and Health Sciences University of South Australia Adelaide South Australia Australia
| |
Collapse
|
2
|
Guan Y, Mei J, Gao X, Wang C, Jia M, Ahmad S, Muhammad FN, Ai H. Prediction of the 3D conformation of a small peptide vaccine targeting Aβ42 oligomers. Phys Chem Chem Phys 2024; 26:20087-20102. [PMID: 39007924 DOI: 10.1039/d4cp02078b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The original etiology of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) proteins, which starts from the aggregation of the Aβ oligomers. The optimal therapeutic strategy targeting Aβ oligomer aggregation is the development of AD vaccines. Despite the fact that positive progress has been made for experimental attempts at AD vaccines, the physicochemical and even structural properties of these AD vaccines remain unclear. In this study, through immunoinformatic and molecular dynamics (MD) simulations, we first designed and simulated an alternative of vaccine TAPAS and found that the structure of the alternative can reproduce the 3D conformation of TAPAS determined experimentally. Meanwhile, immunoinformatic methods were used to analyze the physicochemical properties of TAPAS, including immunogenicity, antigenicity, thermal stability, and solubility, which confirm well the efficacy and safety of the vaccine, and validate the scheme reliability of immunoinformatic and MD simulations in designing and simulating the TAPAS vaccine. Using the same scheme, we predicted the 3D conformation of the optimized ACI-24 peptide vaccine, an Aβ peptide with the first 15 residues of Aβ42 (Aβ1-15). The vaccine was verified once to be effective against both full-length Aβ1-42 and truncated Aβ4-42 aggregates, but an experimental 3D structure was absent. We have also explored the immune mechanism of the vaccine at the molecular level and found that the optimized ACI-24 and its analogues can block the growth of either full-length Aβ1-42 or truncated Aβ4-42 pentamer by contacting the hydrophobic residues within the N-terminus and β1 region on the contact surface of either pentamer. Additionally, residues (D1, D7, S8, H13, and Q15) were identified as the key residues of the vaccine to contact either of the two Aβ oligomers. This work provides a feasible implementation scheme of immunoinformatic and MD simulations for the development of AD small peptide vaccines, validating the power of the scheme as a parallel tool to the experimental approaches and injecting molecular-level information into the understanding and design of anti-AD vaccines.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Fahad Nouman Muhammad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
3
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
4
|
Guan Y, Li Y, Gao W, Mei J, Xu W, Wang C, Ai H. Aggregation Dynamics Characteristics of Seven Different Aβ Oligomeric Isoforms-Dependence on the Interfacial Interaction. ACS Chem Neurosci 2024; 15:155-168. [PMID: 38109178 DOI: 10.1021/acschemneuro.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The aggregation of β-amyloid (Aβ) peptides has been confirmed to be associated with the onset of Alzheimer's disease (AD). Among the three phases of Aβ aggregation, the lag phase has been considered to be the best time for early Aβ pathological deposition clinical intervention and prevention for potential patients with normal cognition. Aβ peptide exists in various lengths in vivo, and Aβ oligomer in the early lag phase is neurotoxic but polymorphous and metastable, depending on Aβ length (isoform), molecular weight, and specific phase, and therefore hardly characterized experimentally. To cope with the problem, molecular dynamics simulation was used to investigate the aggregation process of five monomers for each of the seven common Aβ isoforms during the lag phase. Results showed that Aβ(1-40) and Aβ(1-38) monomers aggregated faster than their truncated analogues Aβ(4-40) and Aβ(4-38), respectively. However, the aggregation rate of Aβ(1-42) was slower than that of its truncated analogues Aβ(4-42) rather than that of Aβpe(3-42). More importantly, Aβ(1-38) is first predicted as more likely to form stable hexamer than the remaining five Aβ isoforms, as Aβ(1-42) does. It is hydrophobic interaction mainly (>50%) from the interfacial β1 and β2 regions of two reactants, pentamer and monomer, aggregated by Aβ(1-38)/Aβ(1-42) rather than by other Aβ isoforms, that drives the hexamer stably as a result of the formation of the effective hydrophobic collapse. This paper provides new insights into the aggregation characteristics of Aβ with different lengths and the conditions necessary for Aβ to form oligomers with a high molecular weight in the early lag phase, revealing the dependence of Aβ hexamer formation on the specific interfacial interaction.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
5
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
6
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
8
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Rostagno AA. Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010107. [PMID: 36613544 PMCID: PMC9820480 DOI: 10.3390/ijms24010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, accounting for 60% to 80% of all cases [...].
Collapse
Affiliation(s)
- Agueda A Rostagno
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
10
|
Michno W, Koutarapu S, Camacho R, Toomey C, Stringer K, Minta K, Ge J, Jha D, Fernandez‐Rodriguez J, Brinkmalm G, Zetterberg H, Blennow K, Ryan NS, Lashley T, Hanrieder J. Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer's dementias. J Neurochem 2022; 163:233-246. [PMID: 36102248 PMCID: PMC9828067 DOI: 10.1111/jnc.15694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/β-amyloid (Aβ) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aβ, while in contrast no Aβ deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aβ co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aβ x-42 and Aβ x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aβ. When compared with FDD, Aβ in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aβ3pE-40 and Aβ3-40 but not with Aβx-42 species. This suggests an increased aggregation propensity of Aβ in FDD that promotes co-aggregation of both Aβ and ADan. Further, CAA maturity appears to be mainly governed by Aβ content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
- Department of Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Srinivas Koutarapu
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Rafael Camacho
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Christina Toomey
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Katie Stringer
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Karolina Minta
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Junyue Ge
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Durga Jha
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Julia Fernandez‐Rodriguez
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Natalie S. Ryan
- UK Dementia Research Institute, UCLLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Jörg Hanrieder
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
11
|
Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD. The Role of Amyloid PET in Imaging Neurodegenerative Disorders: A Review. J Nucl Med 2022; 63:13S-19S. [PMID: 35649652 DOI: 10.2967/jnumed.121.263195] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Imaging of amyloid deposition using PET has been available in research studies for 2 decades and has been approved for clinical use by the U.S. Food and Drug Administration, the European Medicines Agency, and other regulatory agencies around the world. Amyloid PET is a crucial tool for the diagnosis of Alzheimer disease, as it allows the noninvasive detection of amyloid plaques, a core neuropathologic feature that defines the disease. The clinical use of amyloid PET is expected to increase with recent accelerated approval in the United States of aducanumab, an antiamyloid monoclonal antibody, for the treatment of mild cognitive impairment and mild dementia due to Alzheimer disease. However, amyloid pathology can also be found in cognitively unimpaired older adults and in patients with other neurodegenerative disorders. The aim of this review is to provide an up-to-date overview of the application of amyloid PET in neurodegenerative diseases. We provide an in-depth analysis of the clinical, pathologic, and imaging correlates; a comparison with other available biomarkers; and a review of the application of amyloid PET in clinical trials and clinical utility studies.
Collapse
Affiliation(s)
- Marianne Chapleau
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; and.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
12
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
13
|
Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review. Biomolecules 2022; 12:biom12050694. [PMID: 35625622 PMCID: PMC9139049 DOI: 10.3390/biom12050694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease (HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical needs worldwide. Despite a significantly developed understanding of disease development and pathology, treatments that stop AD progression are not yet available. The recent approval of sodium oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural products for the treatment of neurodegenerative disorders. Many current clinical studies include the administration of a natural compound as a single and combination treatment. The most prominent mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular survival. Here, we review current natural products that are either approved or are in testing for a treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin, we also put special emphasis on compounds from algae, given their neuroprotective activity and their underlying mechanisms of neuroprotection.
Collapse
|
14
|
Vargas-George S, Dave KR. Models of cerebral amyloid angiopathy-related intracerebral hemorrhage. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Silva PCD, de Oliveira LLV, Teixeira RLP, Brito MLDA, Filippe ARTM. Executive Functions in Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis Rep 2022. [DOI: 10.3233/adr-210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: In Alzheimer’s disease, in addition to memory, attention has been given to cognitive testing due to its interface and connection with memory. Objective: The aim of this study is to take a global view of executive functions and place the concept within the theoretical framework of Alzheimer’s disease dementia, verifying their role in the cognitive functioning of the human mind, as well as how they are compromised in this pathology. Methods: An initial search was carried out in databases such as PubMed, ScienceDirect, and Web of Science. The guiding question presented at the end of the introduction was elaborated from the PICO/PIO/PEO strategy. The selected articles, therefore, answered the guiding question, were made available in full, and published in the period from 2000 to 2020. Studies without specific methodology and which correlated with other diseases or other types of dementia were excluded. To meet the objective, an integrative literature review was adopted. Results: The results indicate that, although the tests to verify the performance of cognitive functions have their limitations, they bring some evidence that they have been compromised, especially when analyzed periodically during the development of dementia. Conclusion: It is concluded that there is an interference of executive functions in function of Alzheimer’s and that memory and attention are the most evident in this type of dementia.
Collapse
Affiliation(s)
| | | | | | - Max Leandro de Araújo Brito
- Faculdade de Engenharia, Letras e Ciências Sociais do Seridó da Universidade Federal do Rio Grande do Norte, State of Rio Grande do Norte, Brazil
| | | |
Collapse
|
16
|
Dimache AM, Șalaru DL, Sascău R, Stătescu C. The Role of High Triglycerides Level in Predicting Cognitive Impairment: A Review of Current Evidence. Nutrients 2021; 13:2118. [PMID: 34203094 PMCID: PMC8234148 DOI: 10.3390/nu13062118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
The burden of cognitive disorders is huge and still growing, however the etiology and the degree of cognitive impairment vary considerably. Neurodegenerative and vascular mechanisms were most frequently assessed in patients with dementia. Recent studies have shown the possible involvement of triglycerides levels in cognitive function through putative mechanisms such as brain blood barrier dysfunction or amyloid metabolism imbalance, but not all research in the field found this association. Several clinical studies evaluated the relationship between different forms of cognitive decline and levels of serum triglycerides, independent of other cardiovascular risk factors. This review focuses on the role of triglycerides in cognitive decline, cerebral amyloidosis and vascular impairment. Considering that the management of hypertriglyceridemia benefits from lifestyle modification, diet, and specific drug therapy, future studies are requested to appraise the triglycerides-cognitive impairment relationship.
Collapse
Affiliation(s)
- Alina Mihaela Dimache
- Neurology Outpatient Clinic, Department of Chronic Diseases, Hospital of Chronic Diseases Târgu Frumos, 705300 Iași, Romania;
| | - Delia Lidia Șalaru
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iași, Romania; (R.S.); (C.S.)
- Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| | - Radu Sascău
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iași, Romania; (R.S.); (C.S.)
- Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| | - Cristian Stătescu
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iași, Romania; (R.S.); (C.S.)
- Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| |
Collapse
|
17
|
Daoutsali E, Hailu TT, Buijsen RAM, Pepers BA, van der Graaf LM, Verbeek MM, Curtis D, de Vlaam T, van Roon-Mom WMC. Antisense Oligonucleotide-Induced Amyloid Precursor Protein Splicing Modulation as a Therapeutic Approach for Dutch-Type Cerebral Amyloid Angiopathy. Nucleic Acid Ther 2021; 31:351-363. [PMID: 34061681 PMCID: PMC8823675 DOI: 10.1089/nat.2021.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein (APP) gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (Aβ) domain of APP, and leads to accumulation of toxic Aβ peptide in and around the cerebral vasculature. We have designed an antisense oligonucleotide (AON) approach that results in skipping of exon 17, generating a shorter APP isoform that lacks part of the Aβ domain and the D-CAA mutation. We demonstrate efficient AON-induced skipping of exon 17 at RNA level and the occurrence of a shorter APP protein isoform in three different cell types. This resulted in a reduction of Aβ40 in neuronally differentiated, patient-derived induced pluripotent stem cells. AON-treated wild-type mice showed successful exon skipping on RNA and protein levels throughout the brain. These results illustrate APP splice modulation as a promising therapeutic approach for D-CAA.
Collapse
Affiliation(s)
- Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Daniel Curtis
- Amylon Therapeutics, Leiden, the Netherlands.,Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
18
|
Single Point Mutation from E22-to-K in A β Initiates Early-Onset Alzheimer's Disease by Binding with Catalase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4981204. [PMID: 33425208 PMCID: PMC7775154 DOI: 10.1155/2020/4981204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Amyloid-beta (Aβ) is a critical etiological factor for late-onset familial Alzheimer's disease (AD). However, an early-onset AD has been found to be related with an Aβ mutation in glutamic acid 22-to-lysine (Italian type E22K). Why only one single point mutation at E22 residue induces AD remains unclear. Here, we report that a Chinese familial AD pedigree with E22K mutation was associated with higher levels of serum hydrogen peroxide (H2O2) and lower activity of catalase (a H2O2 degrading enzyme) than controls. Further, we found that E22K binding with catalase caused more severe H2O2 accumulation in the brains of E22K-injected rats than Aβ-injected rats. Unexpectedly, H2O2 bound with the mutation site 22K residue of E22K and elicited more rapid aggregation of E22K than Aβ in vitro. Moreover, H2O2 acted with E22K synergistically to induce higher cellular toxicity than with Aβ. Notably, intrahippocampal infusion of E22K led to more severe plaque deposition, neuron death, and more rapid memory decline than Aβ-injected rats. However, L-cysteine, a H2O2 scavenger, not only prevented self-aggregation of E22K but also reduced H2O2-promoted E22K assembly in vitro; subsequently, it alleviated Alzheimer-related phenotypes. Hence, E22K binding with catalase promotes the early onset of familial AD, and L-cys may reverse this disease.
Collapse
|
19
|
Parodi-Rullán R, Sone JY, Fossati S. Endothelial Mitochondrial Dysfunction in Cerebral Amyloid Angiopathy and Alzheimer's Disease. J Alzheimers Dis 2020; 72:1019-1039. [PMID: 31306129 DOI: 10.3233/jad-190357] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Cerebrovascular dysfunction is one of the earliest events in the pathogenesis of AD, as well as in vascular and mixed dementias. Cerebral amyloid angiopathy (CAA), the deposition of amyloid around cerebral vessels, is observed in up to 90% of AD patients and in approximately 50% of elderly individuals over 80 years of age. CAA is a strong contributor to vascular dysfunction in AD. CAA-laden brain vessels are characterized by dysfunctional hemodynamics and leaky blood-brain barrier (BBB), contributing to clearance failure and further accumulation of amyloid-β (Aβ) in the cerebrovasculature and brain parenchyma. Mitochondrial dysfunction is increasingly recognized as an important early initiator of the pathogenesis of AD and CAA. The objective of this review is to discuss the effects of Aβ on cerebral microvascular cell function, focusing on its impact on endothelial mitochondria. After introducing CAA and its etiology and genetic risk factors, we describe the pathological relationship between cerebrovascular amyloidosis and brain microvascular endothelial cell dysfunction, critically analyzing its roles in disease progression, hypoperfusion, and BBB integrity. Then, we focus on discussing the effect of Aβ challenge on endothelial mitochondrial dysfunction pathways, and their contribution to the progression of neurovascular dysfunction in AD and dementia. Finally, we report potential pharmacological and non-pharmacological mitochondria-targeted therapeutic strategies which may help prevent or delay cerebrovascular failure.
Collapse
Affiliation(s)
- Rebecca Parodi-Rullán
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Je Yeong Sone
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Karkisaval AG, Rostagno A, Azimov R, Ban DK, Ghiso J, Kagan BL, Lal R. Ion channel formation by N-terminally truncated Aβ (4-42): relevance for the pathogenesis of Alzheimer's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102235. [PMID: 32531337 DOI: 10.1016/j.nano.2020.102235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Aβ deposition is a pathological hallmark of Alzheimer's disease (AD). Besides the full-length amyloid forming peptides (Aβ1-40 and Aβ1-42), biochemical analyses of brain deposits have identified a variety of N- and C-terminally truncated Aβ variants in sporadic and familial AD patients. However, their relevance for AD pathogenesis remains largely understudied. We demonstrate that Aβ4-42 exhibits a high tendency to form β-sheet structures leading to fast self-aggregation and formation of oligomeric assemblies. Atomic force microscopy and electrophysiological studies reveal that Aβ4-42 forms highly stable ion channels in lipid membranes. These channels that are blocked by monoclonal antibodies specifically recognizing the N-terminus of Aβ4-42. An Aβ variant with a double truncation at phenylalanine-4 and leucine 34, (Aβ4-34), exhibits unstable channel formation capability. Taken together the results presented herein highlight the potential benefit of C-terminal proteolytic cleavage and further support an important pathogenic role for N-truncated Aβ species in AD pathophysiology.
Collapse
Affiliation(s)
- Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Agueda Rostagno
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Rustam Azimov
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States
| | - Deependra K Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Jorge Ghiso
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Bruce L Kagan
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States.
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, 92092, USA; Materials Science and Engineering, University of California San Diego, La Jolla, California, 92092, USA.
| |
Collapse
|
21
|
Discovering the Italian phenotype of cerebral amyloid angiopathy (CAA): the SENECA project. Neurol Sci 2020; 41:2193-2200. [PMID: 32166471 DOI: 10.1007/s10072-020-04306-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is one of the major types of cerebral small vessel disease, and a leading cause of spontaneous intracerebral hemorrhage and cognitive decline in elderly patients. Although increasingly detected, a number of aspects including the pathophysiology, the clinical and neuroradiological phenotype, and the disease course are still under investigation. The incomplete knowledge of the disease limits the implementation of evidence-based guidelines on patient's clinical management and the development of treatments able to prevent or reduce disease progression. The SENECA (SEarchiNg biomarkErs of Cerebral Angiopathy) project is the first Italian multicenter cohort study aimed at better defining the disease natural history and identifying clinical and neuroradiological markers of disease progression. By a multidisciplinary approach and the collection of a large and well-phenotyped series and biorepository of CAA patients, the study is ultimately expected to improve the diagnosis and the knowledge of CAA pathophysiological mechanisms.
Collapse
|
22
|
Sotolongo K, Ghiso J, Rostagno A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. ALZHEIMERS RESEARCH & THERAPY 2020; 12:13. [PMID: 31931869 PMCID: PMC6958642 DOI: 10.1186/s13195-019-0578-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
Background Mounting evidence points to a crucial role of amyloid-β (Aβ) in the pathophysiology of Alzheimer’s disease (AD), a disorder in which brain glucose hypometabolism, downregulation of central elements of phosphorylation pathways, reduced ATP levels, and enhanced oxidative damage coexist, and sometimes precede, synaptic alterations and clinical manifestations. Since the brain has limited energy storage capacity, mitochondria play essential roles in maintaining the high levels of energy demand, but, as major consumers of oxygen, these organelles are also the most important generators of reactive oxygen species (ROS). Thus, it is not surprising that mitochondrial dysfunction is tightly linked to synaptic loss and AD pathophysiology. In spite of their relevance, the mechanistic links among ROS homeostasis, metabolic alterations, and cell bioenergetics, particularly in relation to Aβ, still remain elusive. Methods We have used classic biochemical and immunocytochemical approaches together with the evaluation of real-time changes in global energy metabolism in a Seahorse Metabolic Analyzer to provide insights into the detrimental role of oligAβ in SH-SY5Y and primary neurons testing their pharmacologic protection by small molecules. Results Our findings indicate that oligomeric Aβ induces a dramatic increase in ROS production and severely affects neuronal metabolism and bioenergetics. Assessment of global energy metabolism in real time demonstrated Aβ-mediated reduction in oxygen consumption affecting basal and maximal respiration and causing decreased ATP production. Pharmacologic targeting of Aβ-challenged neurons with a set of small molecules of known antioxidant and cytoprotective activity prevented the metabolic/bioenergetic changes induced by the peptide, fully restoring mitochondrial function while inducing an antioxidant response that counterbalanced the ROS production. Search for a mechanistic link among the protective small molecules tested identified the transcription factor Nrf2—compromised by age and downregulated in AD and transgenic models—as their main target and the PI3K/GSK-3 axis as the central pathway through which the compounds elicit their Aβ protective action. Conclusions Our study provides insights into the complex molecular mechanisms triggered by oligAβ which profoundly affect mitochondrial performance and argues for the inclusion of small molecules targeting the PI3K/GSK-3 axis and Nrf2-mediated pathways as part of the current or future combinatorial therapies.
Collapse
Affiliation(s)
- Krystal Sotolongo
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Zhou C, Wu Q, Wang Z, Wang Q, Liang Y, Liu S. The Effect of Hormone Replacement Therapy on Cognitive Function in Female Patients With Alzheimer's Disease: A Meta-Analysis. Am J Alzheimers Dis Other Demen 2020; 35:1533317520938585. [PMID: 32677442 PMCID: PMC10624041 DOI: 10.1177/1533317520938585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous studies have indicated that estrogen may delay disease progression and minimize the cognitive decline in patients with Alzheimer's disease (AD). However, the evidence for an estrogen deficiency in women with dementia and cognitive dysfunction is inconsistent. In the present review, a fixed effect meta-analysis revealed that the hormone replacement therapy (HRT) group exhibited significant improvements in Alzheimer Disease Assessment Scale-Cognitive subscale scores relative to those observed in the placebo group, suggesting that HRT is feasible for treating cognitive decline in patients with AD. However, no significant differences in Mini-Mental State Examination and Clinical Dementia Rating scale scores were observed between the 2 groups. The results of our systematic review indicate that HRT can improve cognitive function in female patients with AD. Due to limitations in sample size and the available literature, further multicenter trials with larger sample sizes are required to support these findings.
Collapse
Affiliation(s)
- ChengCheng Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- ChengCheng Zhou and Qingguang Wu are co-authors and contributed equally to this article
| | - Qingguang Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- ChengCheng Zhou and Qingguang Wu are co-authors and contributed equally to this article
| | - Zongwei Wang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youya Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sijun Liu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Löhr M, Kessler AF, Monoranu CM, Grosche J, Linsenmann T, Ernestus RI, Härtig W. Primary brain amyloidoma, both a neoplastic and a neurodegenerative disease: a case report. BMC Neurol 2019; 19:59. [PMID: 30971206 PMCID: PMC6458836 DOI: 10.1186/s12883-019-1274-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Scattered extracellular deposits of amyloid within the brain parenchyma can be found in a heterogeneous group of diseases. Its condensed accumulation in the white matter without evidence for systemic amyloidosis is known as primary brain amyloidoma (PBA). Although originally considered as a tumor-like lesion by its space-occupying effect, this condition displays also common hallmarks of a neurodegenerative disorder. CASE PRESENTATION A 50-year-old woman presented with a mild cognitive decline and seizures with a right temporal, irregular and contrast-enhancing mass on magnetic resonance imaging. Suspecting a high-grade glioma, the firm tumor was subtotally resected. Neuropathological examination showed no glioma, but distinct features of a neurodegenerative disorder. The lesion was composed of amyloid AL λ aggregating within the brain parenchyma as well as the adjacent vessels, partially obstructing the vascular lumina. Immunostaining confirmed a distinct perivascular inflammatory reaction. After removal of the PBA, mnestic impairments improved considerably, the clinical course and MRI-results are stable in the 8-year follow-up. CONCLUSION Based on our histopathological findings, we propose to regard the clinicopathological entity of PBA as an overlap between a neoplastic and neurodegenerative disorder. Since the lesions are locally restricted, they might be amenable to surgery with the prospect of a definite cure.
Collapse
Affiliation(s)
- Mario Löhr
- Department of Neurosurgery, University Hospital of Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Almuth F Kessler
- Department of Neurosurgery, University Hospital of Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital of Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital of Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| |
Collapse
|
25
|
Cerebral amyloidoma: A mimicker of granulomatous disease on brain MRI. J Neuroradiol 2019; 46:336-339. [PMID: 30853542 DOI: 10.1016/j.neurad.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/19/2018] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
|
26
|
Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5010741. [PMID: 29675133 PMCID: PMC5838478 DOI: 10.1155/2018/5010741] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease is a proteinopathy characterized by accumulation of hyperphosphorylated Tau and β-amyloid. Autophagy is a physiological process by which aggregated proteins and damaged organelles are eliminated through lysosomal digestion. Autophagy deficiency has been demonstrated in Alzheimer's patients impairing effective elimination of aggregates and damaged mitochondria, leading to their accumulation, increasing their toxicity and oxidative stress. In the present study, we demonstrated by microarray analysis the downregulation of fundamental autophagy and mitophagy pathways in Alzheimer's patients. The benefits of the Mediterranean diet on Alzheimer's disease and cognitive impairment are well known, attributing this effect to several polyphenols, such as oleuropein aglycone (OLE), present in extra virgin olive oil. OLE is able to induce autophagy, achieving a decrease of aggregated proteins and a reduction of cognitive impairment in vivo. This effect is caused by the modulation of several pathways including the AMPK/mTOR axis and the activation of autophagy gene expression mediated by sirtuins and histone acetylation or EB transcription factor. We propose that supplementation of diet with extra virgin olive oil might have potential benefits for Alzheimer's patients by the induction of autophagy by OLE.
Collapse
|
27
|
Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Sci Rep 2017; 7:12433. [PMID: 28970487 PMCID: PMC5624888 DOI: 10.1038/s41598-017-10525-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered protein (IDP) conformers occupy large regions of conformational space and display relatively flat energy surfaces. Amyloid-forming IDPs, unlike natively folded proteins, have folding trajectories that frequently involve movements up shallow energy gradients prior to the “downhill” folding leading to fibril formation. We suggest that structural perturbations caused by chiral inversions of amino acid side-chains may be especially valuable in elucidating these pathways of IDP folding. Chiral inversions are subtle in that they do not change side-chain size, flexibility, hydropathy, charge, or polarizability. They allow focus to be placed solely on the question of how changes in amino acid side-chain orientation, and the resultant alterations in peptide backbone structure, affect a peptide’s conformational landscape (Ramachandran space). If specific inversions affect folding and assembly, then the sites involved likely are important in mediating these processes. We suggest here a “focused chiral mutant library” approach for the unbiased study of amyloid-forming IDPs.
Collapse
|
28
|
Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta Mol Basis Dis 2017; 1864:208-225. [PMID: 28711595 DOI: 10.1016/j.bbadis.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Extensive parenchymal and vascular Aβ deposits are pathological hallmarks of Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. In spite of the numerous studies focusing in Aβ, the relevance of N- and C-terminal truncated species for AD pathogenesis remains largely understudied. In the present work, using novel antibodies specifically recognizing Aβ species N-terminally truncated at position 4 or C-terminally truncated at position 34, we provide a clear assessment of the differential topographic localization of these species in AD brains and transgenic models. Based on their distinct solubility, brain N- and C-terminal truncated species were extracted by differential fractionation and identified via immunoprecipitation coupled to mass spectrometry analysis. Biochemical/biophysical studies with synthetic homologues further confirmed the different solubility properties and contrasting fibrillogenic characteristics of the truncated species composing the brain Aβ peptidome. Aβ C-terminal degradation leads to the production of more soluble fragments likely to be more easily eliminated from the brain. On the contrary, N-terminal truncation at position 4 favors the formation of poorly soluble, aggregation prone peptides with high amyloidogenic propensity and the potential to exacerbate the fibrillar deposits, self-perpetuating the amyloidogenic loop. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to the disease pathogenesis and their potential as novel therapeutic targets.
Collapse
|
29
|
McIntee FL, Giannoni P, Blais S, Sommer G, Neubert TA, Rostagno A, Ghiso J. In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein. Front Aging Neurosci 2016; 8:223. [PMID: 27729857 PMCID: PMC5037193 DOI: 10.3389/fnagi.2016.00223] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/07/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid β (Aβ) is the major constituent of the brain deposits found in parenchymal plaques and cerebral blood vessels of patients with Alzheimer's disease (AD). Several lines of investigation support the notion that synaptic pathology, one of the strongest correlates to cognitive impairment, is related to the progressive accumulation of neurotoxic Aβ oligomers. Since the process of oligomerization/fibrillization is concentration-dependent, it is highly reliant on the homeostatic mechanisms that regulate the steady state levels of Aβ influencing the delicate balance between rate of synthesis, dynamics of aggregation, and clearance kinetics. Emerging new data suggest that reduced Aβ clearance, particularly in the aging brain, plays a critical role in the process of amyloid formation and AD pathogenesis. Using well-defined monomeric and low molecular mass oligomeric Aβ1-40 species stereotaxically injected into the brain of C57BL/6 wild-type mice in combination with biochemical and mass spectrometric analyses in CSF, our data clearly demonstrate that Aβ physiologic removal is extremely fast and involves local proteolytic degradation leading to the generation of heterogeneous C-terminally cleaved proteolytic products, while providing clear indication of the detrimental role of oligomerization for brain Aβ efflux. Immunofluorescence confocal microscopy studies provide insight into the cellular pathways involved in the brain removal and cellular uptake of Aβ. The findings indicate that clearance from brain interstitial fluid follows local and systemic paths and that in addition to the blood-brain barrier, local enzymatic degradation and the bulk flow transport through the choroid plexus into the CSF play significant roles. Our studies highlight the diverse factors influencing brain clearance and the participation of various routes of elimination opening up new research opportunities for the understanding of altered mechanisms triggering AD pathology and for the potential design of combined therapeutic strategies.
Collapse
Affiliation(s)
- Farron L McIntee
- Department of Pathology, New York University School of Medicine New York, NY, USA
| | - Patrizia Giannoni
- Department of Pathology, New York University School of Medicine New York, NY, USA
| | - Steven Blais
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew York, NY, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of MedicineNew York, NY, USA
| | - George Sommer
- Radiation Safety Office, New York University School of Medicine New York, NY, USA
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew York, NY, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of MedicineNew York, NY, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of MedicineNew York, NY, USA; Department of Psychiatry, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
30
|
Todd K, Ghiso J, Rostagno A. Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid. Neurobiol Dis 2015; 85:130-143. [PMID: 26459115 DOI: 10.1016/j.nbd.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Familial Danish Dementia (FDD), an early-onset non-amyloid-β (Aβ) cerebral amyloidosis, is neuropathologically characterized by widespread cerebral amyloid angiopathy, parenchymal amyloid and preamyloid deposits, as well as neurofibrillary degeneration indistinguishable to that seen in Alzheimer's disease (AD). The main amyloid subunit composing FDD lesions, a 34-amino acid de-novo generated peptide ADan, is the direct result of a genetic defect at the 3'-end of the BRI2 gene and the physiologic action of furin-like proteolytic processing at the C-terminal region of the ADan precursor protein. We aimed to study the impact of the FDD mutation, the additional formation of the pyroglutamate (pE) posttranslational modification as well as the relevance of C-terminal truncations -all major components of the heterogeneous FDD deposits- on the structural and neurotoxic properties of the molecule. Our data indicates that whereas the mutation generated a β-sheet-rich hydrophobic ADan subunit of high oligomerization/fibrillization propensity and the pE modification further enhanced these properties, C-terminal truncations had the opposite effect mostly abolishing these features. The potentiation of pro-amyloidogenic properties correlated with the initiation of neuronal cell death mechanisms involving oxidative stress, perturbation of mitochondrial membrane potential, release of mitochondrial cytochrome c, and downstream activation of caspase-mediated apoptotic pathways. The amyloid-induced toxicity was inhibited by targeting specific components of these detrimental cellular pathways, using reactive oxygen scavengers and monoclonal antibodies recognizing the pathological amyloid subunit. Taken together, the data indicate that the FDD mutation and the pE posttranslational modification are both primary elements driving intact ADan into an amyloidogenic/neurotoxic pathway while truncations at the C-terminus eliminate the pro-amyloidogenic characteristics of the molecule, likely reflecting effect of physiologic clearance mechanisms.
Collapse
Affiliation(s)
- Krysti Todd
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Exploring the ‘aggregation-prone’ core of human Cystatin C: A structural study. J Struct Biol 2015; 191:272-80. [DOI: 10.1016/j.jsb.2015.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/21/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
|
32
|
Hernandez-Guillamon M, Mawhirt S, Blais S, Montaner J, Neubert TA, Rostagno A, Ghiso J. Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. J Biol Chem 2015; 290:15078-91. [PMID: 25897080 DOI: 10.1074/jbc.m114.610931] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 01/11/2023] Open
Abstract
Matrix metalloproteases (MMPs) MMP-2 and MMP-9 have been implicated in the physiological catabolism of Alzheimer's amyloid-β (Aβ). Conversely, their association with vascular amyloid deposits, blood-brain barrier disruption, and hemorrhagic transformations after ischemic stroke also highlights their involvement in pathological processes. To better understand this dichotomy, recombinant human (rh) MMP-2 and MMP-9 were incubated with Aβ40 and Aβ42, and the resulting proteolytic fragments were assessed via immunoprecipitation and quantitative mass spectrometry. Both MMPs generated Aβ fragments truncated only at the C terminus, ending at positions 34, 30, and 16. Using deuterated homologues as internal standards, we observed limited and relatively slow degradation of Aβ42 by rhMMP-2, although the enzyme cleaved >80% of Aβ40 during the 1st h of incubation. rhMMP-9 was significantly less effective, particularly in degrading Aβ(1-42), although the targeted peptide bonds were identical. Using Aβ(1-34) and Aβ(1-30), we demonstrated that these peptides are also substrates for both MMPs, cleaving Aβ(1-34) to produce Aβ(1-30) first and Aβ(1-16) subsequently. Consistent with the kinetics observed with full-length Aβ, rhMMP-9 degraded only a minute fraction of Aβ(1-34) and was even less effective in producing Aβ(1-16). Further degradation of Aβ(1-16) by either MMP-2 or MMP-9 was not observed even after prolonged incubation times. Notably, all MMP-generated C-terminally truncated Aβ fragments were highly soluble and did not exhibit fibrillogenic properties or induce cytotoxicity in human cerebral microvascular endothelial or neuronal cells supporting the notion that these truncated Aβ species are associated with clearance mechanisms rather than being key elements in the fibrillogenesis process.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- From the Departments of Pathology, the Neurovascular Research Laboratory, Institut de Recerca, 08035 Barcelona, Spain
| | | | - Steven Blais
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, the Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, and
| | - Joan Montaner
- the Neurovascular Research Laboratory, Institut de Recerca, 08035 Barcelona, Spain, the Neurovascular Unit, Neurology and Medicine Departments, Universitat Autònoma de Barcelona, Vall d'Hebron Hospital, 08035 Barcelona, Spain
| | - Thomas A Neubert
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, the Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, and
| | | | - Jorge Ghiso
- From the Departments of Pathology, Psychiatry, and
| |
Collapse
|
33
|
Wang N, He J, Chang AK, Wang Y, Xu L, Chong X, Lu X, Sun Y, Xia X, Li H, Zhang B, Song Y, Kato A, Jones GW. (-)-epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1347-1351. [PMID: 25620201 DOI: 10.1021/jf505277e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous studies have reported that (-)-epigallocatechin-3-gallate (EGCG), the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. To elucidate whether this antifibril activity is specific to disease-related target proteins or is more generic, we investigated the ability of EGCG to inhibit amyloid fibril formation of amyloidogenic mutant chicken cystatin I66Q, a generic amyloid-forming model protein that undergoes fibril formation through a domain swapping mechanism. We demonstrated that EGCG was a potent inhibitor of amyloidogenic cystatin I66Q amyloid fibril formation in vitro. Computational analysis suggested that EGCG prevented amyloidogenic cystatin fibril formation by stabilizing the molecule in its native-like state as opposed to redirecting aggregation toward disordered and amorphous aggregates. Therefore, although EGCG appears to be a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves such inhibition may be specific to the target fibril-forming polypeptide.
Collapse
Affiliation(s)
- Na Wang
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University , Shenyang 110036, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid β and the Asn23 Iowa mutation. Biochem J 2015; 456:347-60. [PMID: 24028142 DOI: 10.1042/bj20130652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations within the Aβ (amyloid β) peptide, especially those clustered at residues 21-23, are linked to early-onset AD (Alzheimer's disease) and primarily associated with cerebral amyloid angiopathy. The Iowa variant, a substitution of an aspartic acid residue for asparagine at position 23 (D23N), associates with widespread vascular amyloid and abundant diffuse pre-amyloid lesions significantly exceeding the incidence of mature plaques. Brain Iowa deposits consist primarily of a mixture of mutated and non-mutated Aβ species exhibiting partial aspartate isomerization at positions 1, 7 and 23. The present study analysed the contribution of the post-translational modification and the D23N mutation to the aggregation/fibrillization and cell toxicity properties of Aβ providing insight into the elicited cell death mechanisms. The induction of apoptosis by the different Aβ species correlated with their oligomerization/fibrillization propensity and β-sheet content. Although cell toxicity was primarily driven by the D23N mutation, all Aβ isoforms tested were capable, albeit at different time frames, of eliciting comparable apoptotic pathways with mitochondrial engagement and cytochrome c release to the cytoplasm in both neuronal and microvascular endothelial cells. Methazolamide, a cytochrome c release inhibitor, exerted a protective effect in both cell types, suggesting that pharmacological targeting of mitochondria may constitute a viable therapeutic avenue.
Collapse
|
35
|
Tsiolaki PL, Hamodrakas SJ, Iconomidou VA. The pentapeptide LQVVR plays a pivotal role in human cystatin C fibrillization. FEBS Lett 2014; 589:159-64. [DOI: 10.1016/j.febslet.2014.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 02/03/2023]
|
36
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Intraneuronal neurofibrillary tangles, extracellular Aβ amyloid deposits in the form of amyloid plaques and cerebral amyloid angiopathy, and synaptic and neuronal loss co-exist in the brain parenchyma, with the limbic areas being the most severely affected. The classic clinical findings are personality changes, progressive cognitive dysfunction, and loss of ability to perform activities of daily living. Visual impairment is common and appears related to disease severity, suggesting that visual testing may provide a method of screening and tracking AD changes. Although still not fully understood, research and clinical findings point to a possible common causal relationship between AD and glaucoma. These two chronic neurodegenerative disorders share biological and mechanistic features, among them (1) a strong age-related incidence, (2) retinal ganglion cell degeneration, and (3) extracellular fibrillar deposits in exfoliation syndrome, the most common recognizable cause of glaucoma, suggesting that both diseases may originate from similar misfolding mechanisms. A presentation of common pathogenetic pathways associated with these disorders, including cell death mechanisms, reactive oxygen species (ROS) production, mitochondrial dysfunction and vascular abnormalities, will serve as an initiation point for further exploration.
Collapse
|
37
|
Ghiso J, Fossati S, Rostagno A. Amyloidosis associated with cerebral amyloid angiopathy: cell signaling pathways elicited in cerebral endothelial cells. J Alzheimers Dis 2014; 42 Suppl 3:S167-76. [PMID: 24670400 PMCID: PMC4467213 DOI: 10.3233/jad-140027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substantial genetic, biochemical, and in vivo data indicate that progressive accumulation of amyloid-β (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). Historically centered in the importance of parenchymal plaques, the role of cerebral amyloid angiopathy (CAA)--a frequently neglected amyloid deposit present in >80% of AD cases--for the mechanism of disease pathogenesis is now starting to emerge. CAA consistently associates with microvascular modifications, ischemic lesions, micro- and macro-hemorrhages, and dementia, progressively affecting cerebral blood flow, altering blood-brain barrier permeability, interfering with brain clearance mechanisms and triggering a cascade of deleterious pro-inflammatory and metabolic events that compromise the integrity of the neurovascular unit. New evidence highlights the contribution of pre-fibrillar Aβ in the induction of cerebral endothelial cell dysfunction. The recently discovered interaction of oligomeric Aβ species with TRAIL DR4 and DR5 cell surface death receptors mediates the engagement of mitochondrial pathways and sequential activation of multiple caspases, eliciting a cascade of cell death mechanisms while unveiling an opportunity for exploring mechanistic-based therapeutic interventions to preserve the integrity of the neurovascular unit.
Collapse
Affiliation(s)
- Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Silvia Fossati
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Hall D, Edskes H. Computational modeling of the relationship between amyloid and disease. Biophys Rev 2012; 4:205-222. [PMID: 23495357 PMCID: PMC3595053 DOI: 10.1007/s12551-012-0091-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
Amyloid is a title conferred upon a special type of linear protein aggregate that exhibits a common set of structural features and dye binding capabilities. The formation of amyloid is associated with over twenty-seven distinct human diseases which are collectively referred to as the amyloidoses. Although there is great diversity amongst the amyloidoses with regard to the polypeptide monomeric precursor, targeted tissues and the nature and time course of disease development, the common underlying link of a structurally similar amyloid aggregate has prompted the search for a unified theory of disease progression in which amyloid production is the central element. Computational modeling has allowed the formulation and testing of scientific hypotheses for exploring this relationship. However, the majority of computational studies on amyloid aggregation are pitched at the atomistic level of description, in simple ideal solution environments, with simulation time scales of the order of microseconds and system sizes limited to a hundred monomers (or less). The experimental reality is that disease related amyloid aggregation processes occur in extremely complex reaction environments (i.e. the human body), over time-scales of months to years with monitoring of the reaction achieved using extremely coarse or indirect experimental markers that yield little or no atomistic insight. Clearly a substantial gap exists between computational and experimental communities with a deficit of 'useful' computational methodology that can be directly related to available markers of disease progression. This Review will place its focus on the development of these latter types of computational models and discuss them in relation to disease onset and progression.
Collapse
Affiliation(s)
- Damien Hall
- Institute of Basic Medical Science, University of Tsukuba, Lab 225-B, Building D. 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken 305-8577 Japan
| | - Herman Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830 USA
| |
Collapse
|
39
|
Viana RJS, Nunes AF, Rodrigues CMP. Endoplasmic reticulum enrollment in Alzheimer's disease. Mol Neurobiol 2012; 46:522-34. [PMID: 22815194 DOI: 10.1007/s12035-012-8301-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/05/2012] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid β (Aβ) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.
Collapse
Affiliation(s)
- Ricardo J S Viana
- Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, Lisbon 1649-003, Portugal
| | | | | |
Collapse
|
40
|
TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer's Aβ. Cell Death Dis 2012; 3:e321. [PMID: 22695614 PMCID: PMC3388229 DOI: 10.1038/cddis.2012.55] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular deposition of amyloid-β (Aβ) in sporadic and familial Alzheimer's disease, through poorly understood molecular mechanisms, leads to focal ischemia, alterations in cerebral blood flow, and cerebral micro-/macro-hemorrhages, significantly contributing to cognitive impairment. Here, we show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors DR4 and DR5 specifically mediate oligomeric Aβ induction of extrinsic apoptotic pathways in human microvascular cerebral endothelial cells with activation of both caspase-8 and caspase-9. The caspase-8 inhibitor cellular FLICE-like inhibitory protein (cFLIP) is downregulated, and mitochondrial paths are engaged through BH3-interacting domain death agonist (Bid) cleavage. Upregulation of DR4 and DR5 and colocalization with Aβ at the cell membrane suggests their involvement as initiators of the apoptotic machinery. Direct binding assays using receptor chimeras confirm the specific interaction of oligomeric Aβ with DR4 and DR5 whereas apoptosis protection achieved through RNA silencing of both receptors highlights their active role in downstream apoptotic pathways unveiling new targets for therapeutic intervention.
Collapse
|
41
|
Dolai S, Shi W, Corbo C, Sun C, Averick S, Obeysekera D, Farid M, Alonso A, Banerjee P, Raja K. "Clicked" sugar-curcumin conjugate: modulator of amyloid-β and tau peptide aggregation at ultralow concentrations. ACS Chem Neurosci 2011; 2:694-9. [PMID: 22860163 DOI: 10.1021/cn200088r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/13/2011] [Indexed: 01/24/2023] Open
Abstract
The synthesis of a water/plasma soluble, noncytotoxic, "clicked" sugar-derivative of curcumin with amplified bioefficacy in modulating amyloid-β and tau peptide aggregation is presented. Curcumin inhibits amyloid-β and tau peptide aggregation at micromolar concentrations; the sugar-curcumin conjugate inhibits Aβ and tau peptide aggregation at concentrations as low as 8 nM and 0.1 nM, respectively. In comparison to curcumin, this conveniently synthesized Alzheimer's drug candidate is a more powerful antioxidant.
Collapse
Affiliation(s)
| | - Wei Shi
- Department of Chemistry and Physical
Sciences, Felician College, Lodi, New Jersey
07644, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Geissen M, Leidel F, Eiden M, Hirschberger T, Fast C, Bertsch U, Tavan P, Giese A, Kretzschmar H, Schatzl HM, Groschup MH. From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem 2011; 6:1928-37. [PMID: 21755599 DOI: 10.1002/cmdc.201100119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/21/2011] [Indexed: 11/10/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) or prion diseases belong to a category of fatal and so far untreatable neurodegenerative conditions. All prion diseases are characterized by both degeneration in the central nervous system (CNS) in humans and animals and the deposition and accumulation of Proteinase K-resistant prion protein (PrP(res)). Until now, no pharmaceutical product has been available to cure these diseases or to alleviate their associated symptoms. Here, a cell-culture screening system is described that allows for the large-scale analysis of the PrP(res) inhibitory potential of a library of compounds and the identification of structural motifs leading potent compounds able to cause PrP(res) clearance at the cellular level. Based on different scrapie-infected cell lines, 10,000 substances were tested, out of which 530 potential inhibitors were identified. After re-screening and validation using a series of dilutions, 14 compounds were identified as the most effective. These 14 compounds were then used for therapeutic studies in a mouse bioassay to test and verify their in vivo potency. Two compounds exhibited therapeutic potential in the mouse model by significantly extending the survival time of intracerebrally infected mice, when treated 90 days after infection with scrapie.
Collapse
Affiliation(s)
- Markus Geissen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wisniewski T, Goñi F. Immunomodulation for prion and prion-related diseases. Expert Rev Vaccines 2011; 9:1441-52. [PMID: 21105779 DOI: 10.1586/erv.10.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prion diseases are a unique category of illness, affecting both animals and humans, where the underlying pathogenesis is related to a conformational change of a normal self protein called cellular prion protein to a pathological and infectious conformer known as scrapie prion protein (PrP(Sc)). Currently, all prion diseases lack effective treatment and are universally fatal. Past experiences with bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease mainly in Europe, as well as the current epidemic of chronic wasting disease in North America, have highlighted the need to develop prophylactic and/or therapeutic approaches. In Alzheimer's disease that, like prion disease, is a conformational neurodegenerative disorder, both passive and active immunization has been shown to be highly effective in model animals at preventing disease and cognitive deficits, with emerging data from human trials suggesting that this approach is able to reduce amyloid-related pathology. However, any immunomodulatory approach aimed at a self-antigen has to finely balance an effective humoral immune response with potential autoimmune toxicity. The prion diseases most commonly acquired by infection typically have the alimentary tract as a portal of infectious agent entry. This makes mucosal immunization a potentially attractive method to produce a local immune response that partially or completely prevents prion entry across the gut barrier, while at the same time producing modulated systemic immunity that is unlikely to be associated with toxicity. Our results using an attenuated Salmonella vaccine strain expressing the prion protein showed that mucosal vaccination can protect against prion infection from a peripheral source, suggesting the feasibility of this approach. It is also possible to develop active and/or passive immunomodulatory approaches that more specifically target PrP(Sc) or target the shared pathological conformer found in numerous conformational disorders. Such approaches could have a significant impact on many of the common age-associated dementias.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Psychiatry, Millhauser Laboratories, Room HN419, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
44
|
Abstract
Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
45
|
Johansson J, Nerelius C, Willander H, Presto J. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation. Biochem Biophys Res Commun 2010; 402:515-8. [PMID: 20971069 DOI: 10.1016/j.bbrc.2010.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
Amyloid consists of β-sheet polymers and is associated with disease and with functional assemblies. Amyloid-forming proteins differ widely in native structures and sequences. We describe here how conformational preferences of non-polar amino acid residues can affect amyloid formation. The most non-polar residues promote either β-strands (Val, Ile, Phe, and Cys, VIFC) or α-helices (Leu, Ala, and Met, LAM), while the most polar residues promote only α-helices. For 12 proteins associated with disease, the localizations of the amyloid core regions are known. Eleven of these contain segments that are biased for VIFC, but essentially lack segments that are biased for LAM. For the amyloid β-peptide associated with Alzheimer's disease and an amyloidogenic fragment of the prion protein, observed effects of mutations support that VIFC bias favors formation of β-sheet aggregates and amyloid, while LAM bias prevents it. VIFC and LAM profiles combine information on secondary structure propensities and polarity, and add a simple criterion to the prediction of amyloidogenic regions.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
46
|
Goñi F, Prelli F, Ji Y, Scholtzova H, Yang J, Sun Y, Liang FX, Kascsak R, Kascsak R, Mehta P, Wisniewski T. Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer's disease. PLoS One 2010; 5:e13391. [PMID: 20967130 PMCID: PMC2954195 DOI: 10.1371/journal.pone.0013391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/13/2010] [Indexed: 11/19/2022] Open
Abstract
Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD) where the normal soluble amyloid β (sAβ) peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAβ and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri) related peptide which has no sequence homology to Aβ or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Aβ in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001), associated with a reduction in the amyloid burden (p = 0.0001) and Aβ40/42 levels, as well as reduced Aβ oligomer levels. This type of immunomodulation has the potential to be a universal β-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando Goñi
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
- Department of Immunology, School of Chemistry, University of Uruguay, Montevideo, Uruguay
| | - Frances Prelli
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Yong Ji
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Henrieta Scholtzova
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Jing Yang
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Yanjie Sun
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Feng-Xia Liang
- Image Core Facility, New York University School of Medicine, New York, New York, United States of America
| | - Regina Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Richard Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Pankaj Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
47
|
Hernandez-Guillamon M, Mawhirt S, Fossati S, Blais S, Pares M, Penalba A, Boada M, Couraud PO, Neubert TA, Montaner J, Ghiso J, Rostagno A. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells. J Biol Chem 2010; 285:27144-27158. [PMID: 20576603 PMCID: PMC2930713 DOI: 10.1074/jbc.m110.135228] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/21/2010] [Indexed: 11/06/2022] Open
Abstract
Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Stephanie Mawhirt
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Silvia Fossati
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Steven Blais
- Department of Pharmacology, , New York University School of Medicine, New York, New York 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016
| | - Mireia Pares
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Merce Boada
- Neurovascular Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | | | - Thomas A Neubert
- Department of Pharmacology, , New York University School of Medicine, New York, New York 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; Neurovascular Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, New York 10016; Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, New York 10016.
| |
Collapse
|