1
|
Bao L, Zhu Z, Ismail A, Zhu B, Anandan V, Whiteley M, Kitten T, Xu P. Experimental evolution of gene essentiality in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.600122. [PMID: 39071448 PMCID: PMC11275930 DOI: 10.1101/2024.07.16.600122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Essential gene products carry out fundamental cellular activities in interaction with other components. However, the lack of essential gene mutants and appropriate methodologies to link essential gene functions with their partners poses significant challenges. Here, we have generated deletion mutants in 32 genes previously identified as essential, with 23 mutants showing extremely slow growth in the SK36 strain of Streptococcus sanguinis. The 23 genes corresponding to these mutants encode components of diverse pathways, are widely conserved among bacteria, and are essential in many other bacterial species. Whole-genome sequencing of 243 independently evolved populations of these mutants has identified >1000 spontaneous suppressor mutations in experimental evolution. Many of these mutations define new gene and pathway relationships, such as F1Fo-ATPase/V1Vo-ATPase/TrkA1-H1 that were demonstrated across multiple Streptococcus species. Patterns of spontaneous mutations occurring in essential gene mutants differed from those found in wildtype. While gene duplications occurred rarely and appeared most often at later stages of evolution, substitutions, deletions, and insertions were prevalent in evolved populations. These essential gene deletion mutants and spontaneous mutations fixed in the mutant populations during evolution establish a foundation for understanding gene essentiality and the interaction of essential genes in networks.
Collapse
Affiliation(s)
- Liang Bao
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Zan Zhu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ahmed Ismail
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Bin Zhu
- Massey Cancer Center, Virginia Commonwealth University, Virginia, USA
| | - Vysakh Anandan
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Georgia, USA
| | - Todd Kitten
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ping Xu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| |
Collapse
|
2
|
Boyer JC, Véry AA, Fristot E, Guyot V, Sentenac H, Peltier JB. Cell-free expressed uniporter and symporter systems from the plant HKT transporter family display channel-like gating and unitary conductances. THE NEW PHYTOLOGIST 2024; 243:1651-1657. [PMID: 38992953 DOI: 10.1111/nph.19958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Jean-Christophe Boyer
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| | - Anne-Aliénor Véry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| | - Elsa Fristot
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| | - Valentin Guyot
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| | - Hervé Sentenac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| | - Jean-Benoît Peltier
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, CEDEX 2, Montpellier, 34060, France
| |
Collapse
|
3
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Wu Z, Li M, Qu L, Zhang C, Xie W. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary. MICROBIOME 2024; 12:115. [PMID: 38918820 PMCID: PMC11200988 DOI: 10.1186/s40168-024-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Liping Qu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
5
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
6
|
Chiang WT, Chang YK, Hui WH, Chang SW, Liao CY, Chang YC, Chen CJ, Wang WC, Lai CC, Wang CH, Luo SY, Huang YP, Chou SH, Horng TL, Hou MH, Muench SP, Chen RS, Tsai MD, Hu NJ. Structural basis and synergism of ATP and Na + activation in bacterial K + uptake system KtrAB. Nat Commun 2024; 15:3850. [PMID: 38719864 PMCID: PMC11078986 DOI: 10.1038/s41467-024-48057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.
Collapse
Affiliation(s)
- Wesley Tien Chiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10663, Taiwan
| | - Chen-Yi Liao
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yi-Chuan Chang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30092, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 406040, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Siou-Ying Luo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Ping Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Shan-Ho Chou
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, 407102, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ren-Shiang Chen
- Department of Life Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan.
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan.
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| |
Collapse
|
7
|
Rocha R, Jorge JMP, Teixeira-Duarte CM, Figueiredo-Costa IR, Cereija TB, Ferreira-Teixeira PF, Herzberg C, Stülke J, Morais-Cabral JH. c-di-AMP determines the hierarchical organization of bacterial RCK proteins. Proc Natl Acad Sci U S A 2024; 121:e2318666121. [PMID: 38652747 PMCID: PMC11067040 DOI: 10.1073/pnas.2318666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.
Collapse
Affiliation(s)
- Rita Rocha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - João M. P. Jorge
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - Celso M. Teixeira-Duarte
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | | | - Tatiana B. Cereija
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
| | | | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - João H. Morais-Cabral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| |
Collapse
|
8
|
Wang X, Shen X, Qu Y, Zhang H, Wang C, Yang F, Shen H. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. NATURE PLANTS 2024; 10:633-644. [PMID: 38570642 DOI: 10.1038/s41477-024-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.
Collapse
Affiliation(s)
- Xiaohui Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoshuai Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yannan Qu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Heng Zhang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chu Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
9
|
Gámez-Arjona F, Park HJ, García E, Aman R, Villalta I, Raddatz N, Carranco R, Ali A, Ali Z, Zareen S, De Luca A, Leidi EO, Daniel-Mozo M, Xu ZY, Albert A, Kim WY, Pardo JM, Sánchez-Rodriguez C, Yun DJ, Quintero FJ. Inverse regulation of SOS1 and HKT1 protein localization and stability by SOS3/CBL4 in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2024; 121:e2320657121. [PMID: 38386704 PMCID: PMC10907282 DOI: 10.1073/pnas.2320657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.
Collapse
Affiliation(s)
- Francisco Gámez-Arjona
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
- Department of Biology, ETH Zurich, Zurich8092, Switzerland
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul05029, South Korea
- Department of Biological Sciences, Chonnam National University, Gwangju61186, Korea
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Tours37200, France
| | - Natalia Raddatz
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| | - Raul Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul05029, South Korea
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Shah Zareen
- Department of Biomedical Science and Engineering, Konkuk University, Seoul05029, South Korea
| | - Anna De Luca
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| | - Eduardo O. Leidi
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientificas, Seville41012, Spain
| | - Miguel Daniel-Mozo
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid28006, Spain
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun130024, China
| | - Armando Albert
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid28006, Spain
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Program), Research Institute of Life Sciences, Gyeongsang National University, Jinju660-701, South Korea
| | - Jose M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| | - Clara Sánchez-Rodriguez
- Department of Biology, ETH Zurich, Zurich8092, Switzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC), Pozuelo de Alarcón28223, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul05029, South Korea
| | - Francisco J. Quintero
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville41092, Spain
| |
Collapse
|
10
|
González-García A, Kanli M, Wisowski N, Montoliu-Silvestre E, Locascio A, Sifres A, Gómez M, Ramos J, Porcel R, Andrés-Colás N, Mulet JM, Yenush L. Maternal Embryo Effect Arrest 31 (MEE31) is a moonlighting protein involved in GDP-D-mannose biosynthesis and KAT1 potassium channel regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111897. [PMID: 37852415 DOI: 10.1016/j.plantsci.2023.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.
Collapse
Affiliation(s)
- Adrián González-García
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Maria Kanli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Natalia Wisowski
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Eva Montoliu-Silvestre
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Sifres
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Marcos Gómez
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
11
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
12
|
Chen Y, Lin Y, Zhang S, Lin Z, Chen S, Wang Z. Genome-Wide Identification and Characterization of the HAK Gene Family in Quinoa ( Chenopodium quinoa Willd.) and Their Expression Profiles under Saline and Alkaline Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3747. [PMID: 37960103 PMCID: PMC10650088 DOI: 10.3390/plants12213747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.
Collapse
Affiliation(s)
- Yanqiong Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yingfeng Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
13
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
14
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
15
|
Peng Y, Cao H, Peng Z, Zhou L, Sohail H, Cui L, Yang L, Huang Y, Bie Z. Transcriptomic and functional characterization reveals CsHAK5;3 as a key player in K + homeostasis in grafted cucumbers under saline conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111509. [PMID: 36283579 DOI: 10.1016/j.plantsci.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Grafting can improve the salt tolerance of many crops. However, critical genes in scions responsive to rootstock under salt stress remain a mystery. We found that pumpkin rootstock decreased the content of Na+ by 70.24 %, increased the content of K+ by 25.9 %, and increased the K+/Na+ ratio by 366.0 % in cucumber scion leaves. RNA-seq analysis showed that ion transport-related genes were the key genes involved in salt stress tolerance in grafted cucumber. The identification and analysis of the expression of K+ transporter proteins in cucumber and pumpkin revealed six and five HAK5 members, respectively. The expression of CsHAK5;3 in cucumber was elevated in different graft combinations under salt stress and most notably in cucumber scion/pumpkin rootstock. CsHAK5;3 was localized to the plasma membrane, and a yeast complementation assay revealed that it can transport K+. CsHAK5;3 knockout in hairy root mutants decreased the K+ content of leaves (45.6 %) and roots (50.3 %), increased the Na+ content of leaves (29.3 %) and roots (34.8 %), and decreased the K+/Na+ ratio of the leaves (57.9 %) and roots (62.9 %) in cucumber. However, CsHAK5;3 overexpression in hairy roots increased the K+ content of the leaves (31.2 %) and roots (38.3 %), decreased the Na+ content of leaves (17.2 %) and roots (14.3 %), and increased the K+/Na+ ratio of leaves (58.9 %) and roots (61.6 %) in cucumber. In conclusion, CsHAK5;3 in cucumber can mediate K+ transport and is one of the key target pumpkin genes that enhance salt tolerance of cucumber grafted.
Collapse
Affiliation(s)
- Yuquan Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China; Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaowen Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lijian Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lvjun Cui
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Identification of potassium transport proteins in algae and determination of their role under salt and saline-alkaline stress. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Tanudjaja E, Hoshi N, Yamamoto K, Ihara K, Furuta T, Tsujii M, Ishimaru Y, Uozumi N. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J Biol Chem 2022; 299:102846. [PMID: 36586436 PMCID: PMC9898762 DOI: 10.1016/j.jbc.2022.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.
Collapse
Affiliation(s)
- Ellen Tanudjaja
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Naomi Hoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Zhao Y, Wang L, Zhao P, Liu Z, Guo S, Li Y, Liu H. Genome-wide identification, characterization and expression analysis of HAK genes and decoding their role in responding to potassium deficiency and abiotic stress in Medicago truncatula. PeerJ 2022; 10:e14034. [PMID: 36168431 PMCID: PMC9509677 DOI: 10.7717/peerj.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023] Open
Abstract
Background The HAK family is the largest potassium (K+) transporter family, vital in K+ uptake, plant growth, and both plant biotic and abiotic stress responses. Although HAK family members have been characterized and functionally investigated in many species, these genes are still not studied in detail in Medicago truncatula, a good model system for studying legume genetics. Methods In this study, we screened the M. truncatula HAK family members (MtHAKs). Furthermore, we also conducted the identification, phylogenetic analysis, and prediction of conserved motifs of MtHAKs. Moreover, we studied the expression levels of MtHAKs under K+ deficiency, drought, and salt stresses using quantitative real-time PCR (qRT-PCR). Results We identified 20 MtHAK family members and classified them into three clusters based on phylogenetic relationships. Conserved motif analyses showed that all MtHAK proteins besides MtHAK10 contained the highly conserved K+ transport domain (GVVYGDLGTSPLY). qRT-PCR analysis showed that several MtHAK genes in roots were induced by abiotic stress. In particular, MtHAK15, MtHAK17, and MtHAK18 were strongly up-regulated in the M. truncatula roots under K+ deficiency, drought, and salt stress conditions, thereby implying that these genes are good candidates for high-affinity K+ uptake and therefore have essential roles in drought and salt tolerance. Discussions Our results not only provided the first genetic description and evolutionary relationships of the K+ transporter family in M. truncatula, but also the potential information responding to K+ deficiency and abiotic stresses, thereby laying the foundation for molecular breeding of stress-resistant legume crops in the future.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|
20
|
Liu Q, Wang F, Shuai Y, Huang L, Zhang X. Integrated Analysis of Single-Molecule Real-Time Sequencing and Next-Generation Sequencing Eveals Insights into Drought Tolerance Mechanism of Lolium multiflorum. Int J Mol Sci 2022; 23:ijms23147921. [PMID: 35887272 PMCID: PMC9320196 DOI: 10.3390/ijms23147921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Lolium multiflorum is widely planted in temperate and subtropical regions globally, and it has high economic value owing to its use as forage grass for a wide variety of livestock and poultry. However, drought seriously restricts its yield and quality. At present, owing to the lack of available genomic resources, many types of basic research cannot be conducted, which severely limits the in-depth functional analysis of genes in L. multiflorum. Therefore, we used single-molecule real-time (SMRT) and next-generation sequencing (NGS) to sequence the complex transcriptome of L. multiflorum under drought. We identified 41,141 DEGs in leaves, 35,559 DEGs in roots, respectively. Moreover, we identified 1243 alternative splicing events under drought. LmPIP5K9 produced two different transcripts with opposite expression patterns, possibly through the phospholipid signaling pathway or the negatively regulated sugar-mediated root growth response to drought stress, respectively. Additionally, 13,079 transcription factors in 90 families were obtained. An in-depth analysis of R2R3-MYB gene family members was performed to preliminarily demonstrate their functions by utilizing subcellular localization and overexpression in yeast. Our data make a significant contribution to the genetics of L. multiflorum, offering a current understanding of plant adaptation to drought stress.
Collapse
|
21
|
Imran S, Oyama M, Horie R, Kobayashi NI, Costa A, Kumano R, Hirata C, Tran STH, Katsuhara M, Tanoi K, Kohchi T, Ishizaki K, Horie T. Distinct Functions of the Atypical Terminal Hydrophilic Domain of the HKT Transporter in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:802-816. [PMID: 35380735 DOI: 10.1093/pcp/pcac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
K+/Na+ homeostasis is important for land plants, particularly under salt stress. In this study, the structure and ion transport properties of the high-affinity K+ transporter (HKT) of the liverwort Marchantia polymorpha were investigated. Only one HKT gene, MpHKT1, was identified in the genome of M. polymorpha. Phylogenetic analysis of HKT proteins revealed that non-seed plants possess HKTs grouped into a clade independent of the other two clades including HKTs of angiosperms. A distinct long hydrophilic domain was found in the C-terminus of MpHKT1. Complementary DNA (cDNA) of truncated MpHKT1 (t-MpHKT1) encoding the MpHKT_Δ596-812 protein was used to examine the functions of the C-terminal domain. Both MpHKT1 transporters fused with enhanced green fluorescent protein at the N-terminus were localized to the plasma membrane when expressed in rice protoplasts. Two-electrode voltage clamp experiments using Xenopus laevis oocytes indicated that MpHKT1 mediated the transport of monovalent alkali cations with higher selectivity for Na+ and K+, but truncation of the C-terminal domain significantly reduced the transport activity with a decrease in the Na+ permeability. Overexpression of MpHKT1 or t-MpHKT1 in M. polymorpha conferred accumulation of higher Na+ levels and showed higher Na+ uptake rates, compared to those of wild-type plants; however, phenotypes with t-MpHKT1 were consistently weaker than those with MpHKT1. Together, these findings suggest that the hydrophilic C-terminal domain plays a unique role in the regulation of transport activity and ion selectivity of MpHKT1.
Collapse
Affiliation(s)
- Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Masumi Oyama
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Rie Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Celoria 26, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| | - Ryosuke Kumano
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Chiho Hirata
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan
| | - Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue, Thua Thien Hue 530000, Vietnam
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| |
Collapse
|
22
|
The PTS
Ntr
-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii. mBio 2022; 13:e0372121. [PMID: 35491828 PMCID: PMC9239096 DOI: 10.1128/mbio.03721-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In all ecological niches, potassium is actively consumed by diverse prokaryotes and their interacting eukaryote hosts. It is only just emerging that potassium is a key player in host-pathogen interactions, and the role of potassium in mutualistic interactions remains largely unknown.
Collapse
|
23
|
Shan N, Zhang Y, Xu Y, Yuan X, Wan C, Chen C, Chen J, Gan Z. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC PLANT BIOLOGY 2022; 22:108. [PMID: 35264115 PMCID: PMC8905847 DOI: 10.1186/s12870-022-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.
Collapse
Affiliation(s)
- Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yupei Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
24
|
Wei J, Tiika RJ, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ 2022; 10:e12989. [PMID: 35261820 PMCID: PMC8898550 DOI: 10.7717/peerj.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Background The KT/HAK/KUP (KUP) transporters play important roles in potassium (K+) uptake and translocation, regulation of osmotic potential, salt tolerance, root morphogenesis and plant development. However, the KUP family has not been systematically studied in the typical halophyte Salicornia europaea L., and the specific expression patterns of SeKUPs under NaCl condition and K+ deficiency are unknown. Methods In this study, SeKUPs were screened from PacBio transcriptome data of Salicornia europaea L. using bioinformatics. The identification, phylogenetic analysis and prediction of conserved motifs of SeKUPs were extensively explored. Moreover, the expression levels of 24 selected SeKUPs were assayed by real-time quantitative polymerase chain reaction (RT-qPCR). Results In this study, a total of 24 putative SeKUPs were identified in S. europaea. Nineteen SeKUPs with the fixed domain EA[ML]FADL were used to construct the phylogenetic tree, and they were divided into four clusters (clusters I-IV). MEME analysis identified 10 motifs in S. europaea, and the motif analysis suggested that 19 of the identified SeKUPs had at least four K+ transporter motifs existed in all SeKUPs (with the exception of SeKUP-2). The RT-qPCR analysis showed that the expression levels of most SeKUPs were significantly up-regulated in S. europaea when they were exposed to K+ deficiency and high salinity, implying that these SeKUPs may play a key role in the absorption and transport of K+ and Na+ in S. europaea. Discussions Our results laid the foundation for revealing the salt tolerance mechanism of SeKUPs, and provided key candidate genes for further studies on the function of KUP family in S. europaea.
Collapse
Affiliation(s)
- Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
25
|
Venkataraman G, Shabala S, Véry AA, Hariharan GN, Somasundaram S, Pulipati S, Sellamuthu G, Harikrishnan M, Kumari K, Shabala L, Zhou M, Chen ZH. To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:333-342. [PMID: 34837866 DOI: 10.1016/j.plaphy.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Arid/semi-arid and coastal agricultural areas of the world are especially vulnerable to climate change-driven soil salinity. Salinity tolerance in plants is a complex trait, with salinity negatively affecting crop yield. Plants adopt a range of mechanisms to combat salinity, with many transporter genes being implicated in Na+-partitioning processes. Within these, the high-affinity K+ (HKT) family of transporters play a critical role in K+ and Na+ homeostasis in plants. Among HKT transporters, Type I transporters are Na+-specific. While Arabidopsis has only one Na + -specific HKT (AtHKT1;1), cereal crops have a multiplicity of Type I and II HKT transporters. AtHKT1; 1 (Arabidopsis thaliana) and HKT1; 5 (cereal crops) 'exclude' Na+ from the xylem into xylem parenchyma in the root, reducing shoot Na+ and hence, confer sodium tolerance. However, more recent data from Arabidopsis and crop species show that AtHKT1;1/HKT1;5 alleles have a strong genetic association with 'shoot sodium accumulation' and concomitant salt tolerance. The review tries to resolve these two seemingly contradictory effects of AtHKT1;1/HKT1;5 operation (shoot exclusion vs shoot accumulation), both conferring salinity tolerance and suggests that contrasting phenotypes are attributable to either hyper-functional or weak AtHKT1;1/HKT1;5 alleles/haplotypes and are under strong selection by soil salinity levels. It also suggests that opposite balancing mechanisms involving xylem ion loading in these contrasting phenotypes exist that require transporters such as SOS1 and CCC. While HKT1; 5 is a crucial but not sole determinant of salinity tolerance, investigation of the adaptive benefit(s) conferred by naturally occurring intermediate HKT1;5 alleles will be important under a climate change scenario.
Collapse
Affiliation(s)
- Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India.
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier Cedex 2, France.
| | - Gopalasamudram Neelakantan Hariharan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Suji Somasundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600124, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India; Forest Molecular Entomology Laboratory, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CZU), Kamycka 129, Praha, 16500, Czech Republic
| | - Mohan Harikrishnan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
26
|
Imran S, Tsuchiya Y, Tran STH, Katsuhara M. Identification and Characterization of Rice OsHKT1;3 Variants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102006. [PMID: 34685816 PMCID: PMC8537747 DOI: 10.3390/plants10102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 05/23/2023]
Abstract
In rice, the high-affinity K+ transporter, OsHKT1;3, functions as a Na+-selective transporter. mRNA variants of OsHKT1;3 have been reported previously, but their functions remain unknown. In this study, five OsHKT1;3 variants (V1-V5) were identified from japonica rice (Nipponbare) in addition to OsHKT1;3_FL. Absolute quantification qPCR analyses revealed that the transcript level of OsHKT1;3_FL was significantly higher than other variants in both the roots and shoots. Expression levels of OsHKT1;3_FL, and some variants, increased after 24 h of salt stress. Two electrode voltage clamp experiments in a heterologous expression system using Xenopus laevis oocytes revealed that oocytes expressing OsHKT1;3_FL and all of its variants exhibited smaller Na+ currents. The presented data, together with previous data, provide insights to understanding how OsHKT family members are involved in the mechanisms of ion homeostasis and salt tolerance in rice.
Collapse
Affiliation(s)
- Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
| | - Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
| |
Collapse
|
27
|
Functional Characterization of Multiple Ehrlichia chaffeensis Sodium (Cation)/Proton Antiporter Genes Involved in the Bacterial pH Homeostasis. Int J Mol Sci 2021; 22:ijms22168420. [PMID: 34445146 PMCID: PMC8395091 DOI: 10.3390/ijms22168420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis. Little is known about how this and other related tick-borne rickettsia pathogens maintain pH homeostasis in acidified phagosomes and the extracellular milieu. The membrane-bound sodium (cation)/proton antiporters are found in a wide range of organisms aiding pH homeostasis. We recently reported a mutation in an antiporter gene of E. chaffeensis (ECH_0379) which causes bacterial in vivo attenuation. The E. chaffeensis genome contains 10 protein coding sequences encoding for predicted antiporters. We report here that nine of these genes are transcribed during the bacterial growth in macrophages and tick cells. All E. chaffeensis antiporter genes functionally complemented antiporter deficient Escherichia coli. Antiporter activity for all predicted E. chaffeensis genes was observed at pH 5.5, while gene products of ECH_0179 and ECH_0379 were also active at pH 8.0, and ECH_0179 protein was complemented at pH 7.0. The antiporter activity was independently verified for the ECH_0379 protein by proteoliposome diffusion analysis. This is the first description of antiporters in E. chaffeensis and demonstrates that the pathogen contains multiple antiporters with varying biological functions, which are likely important for the pH homeostasis of the pathogen’s replicating and infectious forms.
Collapse
|
28
|
Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J. Differential regulation of drought stress by biological membrane transporters and channels. PLANT CELL REPORTS 2021; 40:1565-1583. [PMID: 34132878 DOI: 10.1007/s00299-021-02730-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Stress arising due to abiotic factors affects the plant's growth and productivity. Among several existing abiotic stressors like cold, drought, heat, salinity, heavy metal, etc., drought condition tends to affect the plant's growth by inducing two-point effect, i.e., it disturbs the water balance as well as induces toxicity by disturbing the ion homeostasis, thus hindering the growth and productivity of plants, and to survive under this condition, plants have evolved several transportation systems that are involved in regulating the drought stress. The role of membrane transporters has gained interest since genetic engineering came into existence, and they were found to be the important modulators for tolerance, avoidance, ion movements, stomatal movements, etc. Here in this comprehensive review, we have discussed the role of transporters (ABA, protein, carbohydrates, etc.) and channels that aids in withstanding the drought stress as well as the regulatory role of transporters involved in osmotic adjustments arising due to drought stress. This review also provides a gist of hydraulic conductivity by roots that are involved in regulating the drought stress.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Rachana Singh
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| |
Collapse
|
29
|
Thomas GH. Microbial Musings – June 2021. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
31
|
Heydari S, Pirzad A. Improvement of the yield-related response of mycorrhized Lallemantia iberica to salinity through sulfur-oxidizing bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3758-3766. [PMID: 33301188 DOI: 10.1002/jsfa.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND To investigate the effects of salinity as a serious environmental limiter of productivity on the yield-related traits of Lallemantia iberica, a split-plot experiment was performed for 2 years (2017-2018) based on a randomized complete block design with three replications at Urmia University (37°33'09″N, 45°05'53″E). The main plots included salinity stress at two levels (6.72 dS m-1 , and 0.91 dS m-1 as control), and subplots were inoculants at four levels (Funneliformis mosseae, Thiobacillus sp., F. mosseae + Thiobacillus sp., and no inoculation). RESULTS In the saline condition, serious reductions in yield and yield components (numbers of capsules per plant, seeds per capsule, and seeds per plant, 1000-seed weight, seed and biological yields), concentrations of leaf phosphorus and potassium, and relative mycorrhizal dependency were observed, but against the harvest index the leaf sulfur and sodium contents were increased. Moreover, all morphological traits (plant height, number of branches and leaves, leaf weight, stem weight, and ratio of leaf weight to stem weight) were decreased under salinity conditions. Mycorrhizal inoculation enhanced the salinity-induced reduction of yield and morphological traits to some extent. Inoculation with Thiobacillus had superiority in some of the yield and morphological characteristics compared with those in the non-inoculated plants. CONCLUSION Salinity stress can significantly affect the yield, morphological characteristics, nutrients content, and mycorrhizal dependency of L. iberica plants. This study exhibited the significant effects of single and simultaneous applications of F. mosseae and Thiobacillus on plant growth and yield in saline soils. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shabnam Heydari
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Alireza Pirzad
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| |
Collapse
|
32
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
33
|
Abstract
Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Therefore, maintaining intracellular potassium homeostasis during bacterial infection is a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport to fulfill nutritional and chemiosmotic requirements, and potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes, such as renal function, muscle contraction, and neuronal transmission; however, potassium flux also contributes to critical immunological and antimicrobial processes, such as cytokine production and inflammasome activation. Here, we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.
Collapse
|
34
|
A single residue deletion in the barley HKT1;5 P189 variant restores plasma membrane localisation but not Na + conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183669. [PMID: 34139196 DOI: 10.1016/j.bbamem.2021.183669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Leaf Na+ exclusion, mediated by plasma membrane-localised Class 1 High-affinity potassium (K+) Transporters (HKTs), is a key mechanism contributing to salinity tolerance of several major crop plants. We determined previously that the leucine to proline residue substitution at position 189 (L189P) in barley HvHKT1;5 disrupts its characteristic plasma membrane localisation and Na+ conductance. Here, we focus on a surprising observation that a single residue deletion of methionine at position 372 (M372del) within the conserved VMMYL motif in plant HKTs, restores plasma membrane localisation but not Na+ conductance in HvHKT1;5 P189. To clarify why the singular M372 deletion regains plasma membrane localisation, we built 3D models and defined α-helical assembly pathways of the P189 M372del mutant, and compared these findings to the wild-type protein, and the HvHKT1;5 L189 variant and its M372del mutant. We find that α-helical association and assembly pathways in HvHKT1;5 proteins fall in two contrasting categories. Inspections of structural flexibility through molecular dynamics simulations revealed that the conformational states of HvHKT1;5 P189 diverge from those of the L189 variant and M372del mutants. We propose that M372del in HvHKT1;5 P189 instigates structural rearrangements allowing routing to the plasma membrane, while the restoration of conductance would require further interventions. We integrate the microscopy, electrophysiology, and biocomputational data and discuss how a profound structural change in HvHKT1;5 P189 M372del impacts its α-helical protein association pathway and flexibility, and how these features underlie a delicate balance leading to restoring plasma membrane localisation but not Na+ conductance.
Collapse
|
35
|
Jin J, Li K, Qin J, Yan L, Wang S, Zhang G, Wang X, Bi Y. The response mechanism to salt stress in Arabidopsis transgenic lines over-expressing of GmG6PD. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:74-85. [PMID: 33667969 DOI: 10.1016/j.plaphy.2021.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD or G6PDH) plays an important role in response to salt stress in plants. However, much less is known about G6PD proteins in soybean (Glycine max L.). Here, we found that a soybean cytosolic G6PD gene, GmG6PD7, was induced by NaCl. We generated Arabidopsis transgenic lines overexpressing GmG6PD7. The seed germination rate and primary root length of Arabidopsis thaliana over-expressing GmG6PD7 under NaCl treatment were enhanced. Salt stress induced an obvious increase of the total and cytosolic G6PD activity and the marked decrease of ROS levels in the transgenic plants. At the same time, over-expressing GmG6PD7 in Arabidopsis affected the glutathione and NADPH level and activated ROS scavengers, suggesting that GmG6PD7 contributes to increase salinity tolerance by decreasing ROS accumulation. What's more, we found GmG6PD7 overexpression led to the up-regulation of abscisic acid (ABA) degradation gene and the down-regulation of ABA synthesis and ABA-responsive genes, which finally reduced ABA content to improve seed germination rate under salinity stress. It was noteworthy that GmG6PD7 can rescue the seed and root phenotype of Arabidopsis cytosolic G6PD mutant (Atg6pd5 and Atg6pd6) under salt stress, suggesting cytosolic G6PD may have a conserved function in soybean and Arabidopsis.
Collapse
Affiliation(s)
- Jie Jin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Keke Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Juan Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Lili Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Shengwang Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Guohong Zhang
- Academy of Agricultural Sciences, Lanzhou, Gansu, 7300700, PR China.
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
36
|
Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. PHYSIOLOGIA PLANTARUM 2021; 171:771-784. [PMID: 33341944 DOI: 10.1111/ppl.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
The regulation of plant physiology by plant mineral nutrient transporter (MNT) is well understood. Recently, the extensive characterization of beneficial and pathogenic plant-microbe interactions has defined the roles for MNTs in such relationships. In this review, we summarize the roles of diverse nutrient transporters in the symbiotic or pathogenic relationships between plants and microorganisms. In doing so, we highlight how MNTs of plants and microbes can act in a coordinated manner. In symbiotic relationships, MNTs play key roles in the establishment of the interaction between the host plant and rhizobium or mycorrhizae as well in the subsequent coordinated transport of nutrients. Additionally, MNTs may also regulate the colonization or degeneration of symbiotic microorganisms by reflecting the nutrient status of the plant and soil. This allows the host plant obtain nutrients from the soil in the most optimal manner. With pathogenic-interactions, MNTs influence pathogen proliferation, the efficacy of the host's biochemical defense and related signal transduction mechanisms. We classify the MNT effects in plant-pathogen interactions as either indirect by influencing the nutrient status and fitness of the pathogen, or direct by initiating host defense mechanisms. While such observations indicate the fundamental importance of MNTs in governing the interactions with a range of microorganisms, further work is needed to develop an integrative understanding of their functions.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Fernandes AS, Pombinho A, Teixeira-Duarte CM, Morais-Cabral JH, Harley CA. Fluorometric Liposome Screen for Inhibitors of a Physiologically Important Bacterial Ion Channel. Front Microbiol 2021; 12:603700. [PMID: 33732218 PMCID: PMC7956971 DOI: 10.3389/fmicb.2021.603700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial K+ homeostasis machinery is widely conserved across bacterial species, and different from that in animals. Dysfunction in components of the machinery has an impact on intracellular turgor, membrane potential, adaptation to changes in both extracellular pH and osmolarity, and in virulence. Using a fluorescence-based liposome flux assay, we have performed a high-throughput screen to identify novel inhibitors of the KtrAB ion channel complex from Bacillus subtilis, a component of the K+ homeostasis machinery that is also present in many bacterial pathogens. The screen identified 41 compounds that inhibited K+ flux and that clustered into eight chemical groups. Many of the identified inhibitors were found to target KtrAB with an in vitro potency in the low μM range. We investigated the mechanisms of inhibition and found that most molecules affected either the membrane component of the channel, KtrB alone or the full KtrAB complex without a preference for the functional conformation of the channel, thus broadening their inhibitory action. A urea derivative molecule that inhibited the membrane component of KtrAB affected cell viability in conditions in which KtrAB activity is essential. With this proof-of-concept study, we demonstrate that targeting components of the K+ homeostasis machinery has the potential as a new antibacterial strategy and that the fluorescence-based flux assay is a robust tool for screening chemical libraries.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António Pombinho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Celso M Teixeira-Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João H Morais-Cabral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Carol A Harley
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Wang X, Zhao J, Fang Q, Chang X, Sun M, Li W, Li Y. GmAKT1 is involved in K + uptake and Na +/K + homeostasis in Arabidopsis and soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110736. [PMID: 33568288 DOI: 10.1016/j.plantsci.2020.110736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 05/27/2023]
Abstract
Plant roots absorb K+ from soil via K+ channels and transporters, which are important for stress responses. In this research, GmAKT1, an AKT1-type K+ channel, was isolated and characterized. The expression of GmAKT1 was induced by K+-starvation and salinity stresses, and it was preferentially expressed in the soybean roots. And GmAKT1 was located in the plasma membrane. As an inward K+ channel, GmAKT1 participated in K+ uptake, as well as rescued the low-K+-sensitive phenotype of the yeast mutant and Arabidopsis akt1 mutant. Overexpression of GmAKT1 significantly improved the growth of plants and increased K+ concentration, leading to lower Na+/K+ ratios in transgenic Arabidopsis and chimeric soybean plants with transgenic hairy roots. In addition, GmAKT1 overexpression resulted in significant upregulation of these ion uptake-related genes, including GmSKOR, GmsSOS1, GmHKT1, and GmNHX1. Our findings suggested that GmAKT1 plays an important part in K+ uptake under low-K+ condition, and could maintain Na+/K+ homeostasis under salt stress in Arabidopsis and soybean plants.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Jialiang Zhao
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Qingwei Fang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Xingchao Chang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Mingyang Sun
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Yongguang Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| |
Collapse
|
40
|
Plant HKT Channels: An Updated View on Structure, Function and Gene Regulation. Int J Mol Sci 2021; 22:ijms22041892. [PMID: 33672907 PMCID: PMC7918770 DOI: 10.3390/ijms22041892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.
Collapse
|
41
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
42
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
43
|
Garcia K, Guerrero-Galán C, Frank HER, Haider MZ, Delteil A, Conéjéro G, Lambilliotte R, Fizames C, Sentenac H, Zimmermann SD. Fungal Shaker-like channels beyond cellular K+ homeostasis: A role in ectomycorrhizal symbiosis between Hebeloma cylindrosporum and Pinus pinaster. PLoS One 2020; 15:e0242739. [PMID: 33216794 PMCID: PMC7678990 DOI: 10.1371/journal.pone.0242739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/07/2020] [Indexed: 01/04/2023] Open
Abstract
Potassium (K+) acquisition, translocation and cellular homeostasis are mediated by various membrane transport systems in all organisms. We identified and described an ion channel in the ectomycorrhizal fungus Hebeloma cylindrosporum (HcSKC) that harbors features of animal voltage-dependent Shaker-like K+ channels, and investigated its role in both free-living hyphae and symbiotic conditions. RNAi lines affected in the expression of HcSKC were produced and used for in vitro mycorrhizal assays with the maritime pine as host plant, under standard or low K+ conditions. The adaptation of H. cylindrosporum to the downregulation of HcSKC was analyzed by qRT-PCR analyses for other K+-related transport proteins: the transporters HcTrk1, HcTrk2, and HcHAK, and the ion channels HcTOK1, HcTOK2.1, and HcTOK2.2. Downregulated HcSKC transformants displayed greater K+ contents at standard K+ only. In such conditions, plants inoculated with these transgenic lines were impaired in K+ nutrition. Taken together, these results support the hypothesis that the reduced expression of HcSKC modifies the pool of fungal K+ available for the plant and/or affects its symbiotic transfer to the roots. Our study reveals that the maintenance of K+ transport in H. cylindrosporum, through the regulation of HcSKC expression, is required for the K+ nutrition of the host plant.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, California, United States of America
| | | | - Hannah E. R. Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, California, United States of America
| | | | - Amandine Delteil
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conéjéro
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Plateforme Histocytologie et Imagerie Cellulaire Végétale, INRA-CIRAD Montpellier, France
| | - Raphaël Lambilliotte
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Cécile Fizames
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sabine D. Zimmermann
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
44
|
Xu B, Hrmova M, Gilliham M. High affinity Na + transport by wheat HKT1;5 is blocked by K . PLANT DIRECT 2020; 4:e00275. [PMID: 33103046 PMCID: PMC7576878 DOI: 10.1002/pld3.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 05/11/2023]
Abstract
The wheat sodium transporters TmHKT1;5-A and TaHKT1;5-D are encoded by genes underlying the major shoot Na+ exclusion loci Nax2 and Kna1 from Triticum monococcum (Tm) and Triticum aestivum (Ta), respectively. In contrast to HKT2 transporters that have been shown to exhibit high affinity K+-dependent Na+ transport, HKT1 proteins have, with one exception, only been shown to catalyze low affinity Na+ transport and no K+ transport. Here, using heterologous expression in Xenopus laevis oocytes we uncover a novel property of HKT1 proteins, that both TmHKT1;5-A and TaHKT1;5-D encode dual (high and low) affinity Na+-transporters with the high-affinity component being abolished when external K+ is in excess of external Na+. Three-dimensional structural modeling suggested that, compared to Na+, K+ is bound more tightly in the selectivity filter region by means of additional van der Waals forces, which is likely to explain the K+ block at the molecular level. The low-affinity component for Na+ transport of TmHKT1;5-A had a lower K m than that of TaHKT1;5-D and was less sensitive to external K+. We propose that these properties contribute towards the improvements in shoot Na+-exclusion and crop plant salt tolerance following the introgression of TmHKT1;5-A into diverse wheat backgrounds.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Life ScienceHuaiyin Normal UniversityHuai’anChina
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| |
Collapse
|
45
|
Ding B, Zhang X, Xu Y, An L, Liu X, Su Q. The bacterial potassium transporter gene MbtrkH improves K+ uptake in yeast and tobacco. PLoS One 2020; 15:e0236246. [PMID: 32804956 PMCID: PMC7430745 DOI: 10.1371/journal.pone.0236246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
K+ is an essential nutrient for plant growth and is responsible for many important physiological processes. K+ deficiency leads to crop yield losses, and overexpression of K+ transporter genes has been proven to be an effective way to resolve this problem. However, current research on the overexpression of K+ transporter genes is limited to plant sources. TrkH is a bacterial K+ transporter whose function generally depends on the regulation of TrkA. To date, whether TrkH can improve K+ uptake in eukaryotic organisms is still unknown. In this study, a novel MbtrkH gene was cloned from marine microbial metagenomic DNA. Functional complementation and K+-depletion analyses revealed that MbTrkH functions in K+ uptake in the K+-deficient yeast strain CY162. Moreover, K+-depletion assays revealed that MbtrkH overexpression improves plant K+ uptake. K+ hydroponic culture experiments showed that, compared with WT tobacco lines, MbtrkH transgenic tobacco lines had significantly greater fresh weights, dry weights and K+ contents. These results indicate that MbTrkH promotes K+ uptake independently of TrkA in eukaryotes and provide a new strategy for improving K+-use efficiency in plants.
Collapse
Affiliation(s)
- Baojuan Ding
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Xiaoyan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Yongsheng Xu
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Lijia An
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P. R. China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
46
|
Zhang H, Xiao W, Yu W, Jiang Y, Li R. Halophytic Hordeum brevisubulatum HbHAK1 Facilitates Potassium Retention and Contributes to Salt Tolerance. Int J Mol Sci 2020; 21:ijms21155292. [PMID: 32722526 PMCID: PMC7432250 DOI: 10.3390/ijms21155292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023] Open
Abstract
Potassium retention under saline conditions has emerged as an important determinant for salt tolerance in plants. Halophytic Hordeum brevisubulatum evolves better strategies to retain K+ to improve high-salt tolerance. Hence, uncovering K+-efficient uptake under salt stress is vital for understanding K+ homeostasis. HAK/KUP/KT transporters play important roles in promoting K+ uptake during multiple stresses. Here, we obtained nine salt-induced HAK/KUP/KT members in H. brevisubulatum with different expression patterns compared with H. vulgare through transcriptomic analysis. One member HbHAK1 showed high-affinity K+ transporter activity in athak5 to cope with low-K+ or salt stresses. The expression of HbHAK1 in yeast Cy162 strains exhibited strong activities in K+ uptake under extremely low external K+ conditions and reducing Na+ toxicity to maintain the survival of yeast cells under high-salt-stress. Comparing with the sequence of barley HvHAK1, we found that C170 and R342 in a conserved domain played pivotal roles in K+ selectivity under extremely low-K+ conditions (10 μM) and that A13 was responsible for the salt tolerance. Our findings revealed the mechanism of HbHAK1 for K+ accumulation and the significant natural adaptive sites for HAK1 activity, highlighting the potential value for crops to promote K+-uptake under stresses.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Wen Xiao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenwen Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ying Jiang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Correspondence: ; Tel.: +86-10-51503257
| |
Collapse
|
47
|
Alnayef M, Solis C, Shabala L, Ogura T, Chen Z, Bose J, Maathuis FJM, Venkataraman G, Tanoi K, Yu M, Zhou M, Horie T, Shabala S. Changes in Expression Level of OsHKT1;5 Alters Activity of Membrane Transporters Involved in K + and Ca 2+ Acquisition and Homeostasis in Salinized Rice Roots. Int J Mol Sci 2020; 21:E4882. [PMID: 32664377 PMCID: PMC7402344 DOI: 10.3390/ijms21144882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
In rice, the OsHKT1;5 gene has been reported to be a critical determinant of salt tolerance. This gene is harbored by the SKC1 locus, and its role was attributed to Na+ unloading from the xylem. No direct evidence, however, was provided in previous studies. Also, the reported function of SKC1 on the loading and delivery of K+ to the shoot remains to be explained. In this work, we used an electrophysiological approach to compare the kinetics of Na+ uptake by root xylem parenchyma cells using wild type (WT) and NIL(SKC1) plants. Our data showed that Na+ reabsorption was observed in WT, but not NIL(SKC1) plants, thus questioning the functional role of HKT1;5 as a transporter operating in the direct Na+ removal from the xylem. Instead, changes in the expression level of HKT1;5 altered the activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in the rice epidermis and stele, explaining the observed phenotype. We conclude that the role of HKT1;5 in plant salinity tolerance cannot be attributed to merely reducing Na+ concentration in the xylem sap but triggers a complex feedback regulation of activities of other transporters involved in the maintenance of plant ionic homeostasis and signaling under stress conditions.
Collapse
Affiliation(s)
- Mohammad Alnayef
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
| | - Celymar Solis
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| | - Takaaki Ogura
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| | - Zhonghua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia;
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jayakumar Bose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai 600113, India;
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan;
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| |
Collapse
|
48
|
Gao LW, Yang SL, Wei SW, Huang DF, Zhang YD. Supportive role of the Na + transporter CmHKT1;1 from Cucumis melo in transgenic Arabidopsis salt tolerance through improved K +/Na + balance. PLANT MOLECULAR BIOLOGY 2020; 103:561-580. [PMID: 32405802 DOI: 10.1007/s11103-020-01011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/01/2020] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE CmHKT1;1 selectively exports Na+ from plant cells. Upon NaCl stress, its expression increased in a salt-tolerant melon cultivar. Overexpression of CmHKT1;1 increased transgenic Arabidopsis salt tolerance through improved K+/Na+ balance. High-affinity K+ transporters (HKTs) are thought to be involved in reducing Na+ in plant shoots under salt stress and modulating salt tolerance, but their function in a moderately salt-tolerant species of melon (Cucumis melo L.) remains unclear. In this study, a Na+ transporter gene, CmHKT1;1 (GenBank accession number: MK986658), was isolated from melons based on genome data. The transcript of CmHKT1;1 was relatively more abundant in roots than in stems or leaves from melon seedlings. The tobacco transient expression system showed that CmHKT1;1 was plasma-membrane localized. Upon salt stress, CmHKT1;1 expression was more strongly upregulated in a salt-tolerant melon cultivar, 'Bingxuecui' (BXC) compared with a salt-sensitive cultivar, 'Yulu' (YL). Electrophysiological evidence demonstrated that CmHKT1;1 only transported Na+, rather than K+, when expressed in Xenopus laevis oocytes. Overexpression of CmHKT1;1 increased salt sensitivity in Saccharomyces cerevisiae and salt tolerance in Arabidopsis thaliana. Under NaCl treatments, transgenic Arabidopsis plants accumulated significantly lower concentrations of Na+ in shoots than wild type plants and showed a better K+/Na+ balance, leading to better Fv/Fm, root length, biomass, and enhanced plant growth. The CmHKT1;1 gene may serve as a useful candidate for improving crop salt tolerance.
Collapse
Affiliation(s)
- Li-Wei Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sen-Lin Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shi-Wei Wei
- Shanghai Agrobiological Gene Center, Shanghai, 201106, People's Republic of China
| | - Dan-Feng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China.
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
49
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
50
|
Yousefirad S, Soltanloo H, Ramezanpour SS, Zaynali Nezhad K, Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS One 2020; 15:e0229513. [PMID: 32187229 PMCID: PMC7080263 DOI: 10.1371/journal.pone.0229513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/09/2020] [Indexed: 12/23/2022] Open
Abstract
Considering the complex nature of salinity tolerance mechanisms, the use of isogenic lines or mutants possessing the same genetic background albeit different tolerance to salinity is a suitable method for reduction of analytical complexity to study these mechanisms. In the present study, whole transcriptome analysis was evaluated using RNA-seq method between a salt-tolerant mutant line "M4-73-30" and its wild-type "Zarjou" cultivar at seedling stage after six hours of exposure to salt stress (300 mM NaCl). Transcriptome sequencing yielded 20 million reads for each genotype. A total number of 7116 transcripts with differential expression were identified, 1586 and 1479 of which were obtained with significantly increased expression in the mutant and the wild-type, respectively. In addition, the families of WRKY, ERF, AP2/EREBP, NAC, CTR/DRE, AP2/ERF, MAD, MIKC, HSF, and bZIP were identified as the important transcription factors with specific expression in the mutant genotype. The RNA-seq results were confirmed at several time points using qRT-PCR for some important salt-responsive genes. In general, the results revealed that the mutant accumulated higher levels of sodium ion in the root and decreased its transfer to the shoot. Also, the mutant increased the amount of potassium ion leading to the maintenance a high ratio [K+]/[Na+] in the shoot compared to its wild-type via fast stomata closure and consequently transpiration reduction under the salt stress. Moreover, a reduction in photosynthesis and respiration was observed in the mutant, resulting in utilization of the stored energy and the carbon for maintaining the plant tissues, which is considered as a mechanism of salt tolerance in plants. Up-regulation of catalase, peroxidase, and ascorbate peroxidase genes has resulted in higher accumulation of H2O2 in the wild-type compared to the mutant. Therefore, the wild-type initiated rapid ROS signals which led to less oxidative scavenging in comparison with the mutant. The mutant increased expression in the ion transporters and the channels related to the salinity to maintain the ion homeostasis. In overall, the results demonstrated that the mutant responded better to the salt stress under both osmotic and ionic stress phases and lower damage was observed in the mutant compared to its wild-type under the salt stress.
Collapse
Affiliation(s)
- Sareh Yousefirad
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Hassan Soltanloo
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Seyedeh Sanaz Ramezanpour
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Khalil Zaynali Nezhad
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Vahid Shariati
- Department of Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|