1
|
Jin Y, Zhang F, Ma R, Xing J, Wang M, Sun Y, Zhang G. Single-cell RNA sequencing unveils dynamic transcriptional profiles during the process of donkey spermatogenesis and maturation. Genomics 2025; 117:110974. [PMID: 39694081 DOI: 10.1016/j.ygeno.2024.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION With the increasing demand for donkey production, there has been a growing focus on the breeding of donkeys. However, our current understanding of the mechanisms underlying spermatogenesis and maturation in donkeys during reproduction remains limited. OBJECTIVES This study is to provide a comprehensive single-cell landscape analysis of spermatogenesis and maturation in donkeys. METHODS In this study, we employed single-cell RNA sequencing to investigate cell composition, gene expression patterns, and regulatory roles during spermatogenesis and maturation in donkeys. RESULTS The expression patterns of CDK1, CETN3, and UBE2J1 were found to be indicative of specific germ cells during donkey spermatogenesis. Additionally, the DEFB121, ELSPBP1, and NPC2 genes were specifically identified in the principal cells of the donkey epididymis. CONCLUSIONS We performed single-cell RNA sequencing to analyze the cellular composition and spatial distribution of donkey testis and epididymis, thereby generating comprehensive transcriptional atlases at the single-cell resolution.
Collapse
Affiliation(s)
- Yadan Jin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fangdi Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ruixue Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jingya Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Min Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guoliang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
2
|
Huang W, Xiao W, Qin G, Lu Z, Peng X, Liu Y, Lin Q, Sun J. The antibacterial defence role of β-defensin in the seahorse testis. FISH & SHELLFISH IMMUNOLOGY 2024:110022. [PMID: 39542066 DOI: 10.1016/j.fsi.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Seahorses represent the only known group of animals with male pregnancy. Seahorses have small testis that produce a limited quantity of sperm. To date, the response of this immune-privileged organ to pathogenic infections has not been reported. β-defensin (BD) is an important innate immune defence factor against pathogens in vertebrate testis. To elucidate its immunoprotection in seahorse testis, we identified the Hippocampus erectus β-defensin (HeBD) sequence in its genome via phylogenetic tree and protein-sequence structure analysis. Gene-expression analysis showed that HeBD was highly expressed in the seahorse testis and was significantly upregulated after bacterial infection, indicating that HeBD expression was related to testicular immune responses. Furthermore, antibacterial activity testing demonstrated that the mature HeBD peptide exhibited broad-spectrum aggregation activity but only moderate antibacterial activity. We found that the mature HeBD mature significantly neutralised bacterial endotoxin activity. In conclusion, our results imply that HeBD serves an immunoprotective role in seahorse testis.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoqian Peng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ying Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinhui Sun
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
3
|
Zhang G, Sun Y, Guan M, Liu M, Sun S. Single-cell and spatial transcriptomic investigation reveals the spatiotemporal specificity of the beta-defensin gene family during mouse sperm maturation. Cell Commun Signal 2024; 22:267. [PMID: 38745232 PMCID: PMC11092205 DOI: 10.1186/s12964-024-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.
Collapse
Affiliation(s)
| | - Yuanchao Sun
- Qingdao Agricultural University, Qingdao, China
- Qingdao University, Qingdao, China
| | - Minkai Guan
- Qingdao Agricultural University, Qingdao, China
| | | | - Shiduo Sun
- Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Liu MM, Fan CQ, Zhang GL. A Single-Cell Landscape of Spermioteleosis in Mice and Pigs. Cells 2024; 13:563. [PMID: 38607002 PMCID: PMC11011153 DOI: 10.3390/cells13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.
Collapse
Affiliation(s)
| | | | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.-M.L.); (C.-Q.F.)
| |
Collapse
|
5
|
Haratian K, Borjian Boroujeni P, Sabbaghian M, Maghareh Abed E, Moazenchi M, Mohseni Meybodi A. DEFB126 2-nt Deletion (rs11467417) as a Potential Risk Factor for Chlamydia Trachomatis Infection and Subsequent Infertility in Iranian Men. J Reprod Infertil 2024; 25:20-27. [PMID: 39157277 PMCID: PMC11330205 DOI: 10.18502/jri.v25i1.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 08/20/2024] Open
Abstract
Background Chlamydia trachomatis (CT) is one of the most prevalent sexually transmitted infections, causing genital tract infections and infertility. Defensins have an immunomodulatory function and play an important role in sperm maturation, motility, and fertilization. DEFB126 is present on ejaculated spermatozoa and is essential for them to pass through the female reproductive tract. The purpose of the study was to determine the frequency of the 2-nt deletion of the DEFB126 (rs11467417) in Iranian infertile males with a recurrent history of CT. Methods Semen samples of 1080 subfertile males were investigated. Among patients who had CT-positive results, sperm DNA from 50 symptomatic and 50 asymptomatic patients were collected for the DEFB126 genotype analysis. Additionally, a control group comprising 100 DNA samples from individuals with normal spermogram and testing negative for CT was included in the study. The PCR-sequencing for detecting the 2-nt deletion of the second exon of the DEFB126 was performed. Results The Chi-squared test comparing all three groups revealed no significant difference across the different genotypes. Moreover, no significant difference between the symptomatic and asymptomatic groups was seen. However, analysis within CT-positive patients and controls demonstrated significant difference between the frequencies of homozygous del/del. Conclusion The higher frequency of the 2-nt deletion of the DEFB126 in CT- positive patients suggests that the occurrence of mutations in the DEFB-126 may cause the impairment of the antimicrobial activity of the DEFB126 protein and consequently makes individuals more susceptible to infections such as CT.
Collapse
Affiliation(s)
- Kaveh Haratian
- Department of Pathology and Laboratory Medicine, Western University, Ontario, Canada
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Maghareh Abed
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Pathology and Laboratory Medicine, Western University, Ontario, Canada
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Gacem S, Castello-Ruiz M, Hidalgo CO, Tamargo C, Santolaria P, Soler C, Yániz JL, Silvestre MA. Bull Sperm SWATH-MS-Based Proteomics Reveals Link between High Fertility and Energy Production, Motility Structures, and Sperm-Oocyte Interaction. J Proteome Res 2023; 22:3607-3624. [PMID: 37782577 PMCID: PMC10629479 DOI: 10.1021/acs.jproteome.3c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/04/2023]
Abstract
The prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high- (HF; n = 5) and low-field (LF; n = 5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by computer-assisted sperm analysis. Sperm viability, mitochondrial membrane potential (MMP) and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by the SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed a higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly the OXPHOS pathway, and the development of structures linked with the motility process (TPPP2, SSMEM1, and SPAG16). Furthermore, we observed that equatorin (EQTN), together with other DAPs related to the interaction with the oocyte, was overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP. Data are available via ProteomeXchange with identifier PXD042286.
Collapse
Affiliation(s)
- Sabrina Gacem
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Departamento
de Medicina y Cirugía Animal, Universitat
Autònoma de Barcelona, 08193 Barcelona, Spain
| | - María Castello-Ruiz
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Unidad
Mixta de Investigación Cerebrovascular, Instituto de Investigación
Sanitaria La Fe, Hospital Universitario
y Politécnico La Fe, 46026 Valencia, Spain
| | - Carlos O. Hidalgo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Carolina Tamargo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Pilar Santolaria
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Carles Soler
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| | - Jesús L. Yániz
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Miguel A. Silvestre
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| |
Collapse
|
7
|
Yunaini L, Pujianto DA. Conditioned medium and secretome from epididymal epithelial cell cultures improve sperm kinetics and capacitation. Vet World 2023; 16:1325-1332. [PMID: 37577187 PMCID: PMC10421547 DOI: 10.14202/vetworld.2023.1325-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Sperm maturation occurs in the epididymis through interactions with existing molecules inside the lumen. However, the mechanism of epididymis molecular transfer is currently unclear. This study was aimed to determine the necessity of the epididymal epithelial cells (EECs) in the process of sperm maturation in terms of sperm kinetics and tyrosine phosphorylation. Materials and Methods A true experimental research design was used in this study. The medium tested was a primary culture of mice caput epididymal cells (cells and culture medium), conditioned medium (CM) (supernatant of EECs), and secretome (CM filtered at 0.22 μm). Sperm was cocultured in EEC culture, CM, and secretome for 1, 2, 3, or 4 h. The original culture medium was used as the control. Sperm kinetic analysis was performed after the indicated times using computer-assisted sperm analysis, and tyrosine phosphorylation was detected using the Western blot technique. Results A primary culture of caput EECs was successfully generated. The results showed increased sperm motility and progressive movement after 3 h of incubation (p < 0.05). There was a significant decrease in the average path velocity (VAP) values after 4 h of incubation (p < 0.05), but there was no significant change in the 1, 2, and 3 h incubation groups. The EEC culture-CM and secretome groups showed a significant increased progressivity and VAP percentage values compared with the control medium (p < 0.05). In terms of percentage motility, the culture and CM groups were significantly different from the control medium, but the secretome group was not. Conclusion The sperm kinetics of sperm cultured in CM, secretome, and EEC were significantly increased after 3 h of incubation, suggesting that CM and secretome can be used to replace EECs, especially when analyzing molecules secreted by the epididymal epithelium during sperm maturation. The results of this study highlight the potential of CM and secretome as therapy mediums for sperm kinetic abnormalities.
Collapse
Affiliation(s)
- Luluk Yunaini
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dwi Ari Pujianto
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
8
|
A New Gene SCY3 Homologous to Scygonadin Showing Antibacterial Activity and a Potential Role in the Sperm Acrosome Reaction of Scylla paramamosain. Int J Mol Sci 2023; 24:ijms24065689. [PMID: 36982761 PMCID: PMC10053787 DOI: 10.3390/ijms24065689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.
Collapse
|
9
|
Zhao H, Yu Y, Mei C, Zhang T, Kang Y, Li N, Huang D. Effect of C-Type Natriuretic Peptide (CNP) on Spermatozoa Maturation in Adult Rat Epididymis. Curr Issues Mol Biol 2023; 45:1681-1692. [PMID: 36826053 PMCID: PMC9955803 DOI: 10.3390/cimb45020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
C-type natriuretic peptide (CNP) is highly expressed in male reproductive tissues, such as the epididymis. The aim of this study is to explore the role of CNP in the maturation of rat epididymal spermatozoa. First, the expression levels of CNP and its specific natriuretic peptide receptor-B (NPR-B) were detected in various tissues of rats and epididymis at different stages after birth. Then a castrated rat model was established to analyze the relationship between testosterone and CNP/NPR-B expression in the epididymis. Finally, CNP and different inhibitors (NPR-B inhibitors, cGMP inhibitors) were used to incubate epididymal sperm in vitro to examine sperm mobility and expression of sperm maturation-related factors. The results showed CNP/NPR-B mRNAs were expressed in all tissues of rats, but were extremely highly expressed in male genital ducts (seminal vesicle, prostate and epididymis). The expression of CNP/NPR-B in epididymis was the highest at birth and the fifth week after birth. In the epididymis, CNP/NPR-B were highly expressed in the caput and located in the epididymal epithelial cells. After castration, the expression of CNP/NPR-B decreased sharply and was restored quickly after testosterone supplementation. In vitro, CNP could significantly promote the acquisition of epididymal sperm motility through the NPR-B/cGMP pathway and induce the expression of sperm maturation-related factors (such as Bin1b, Catsper 1, Dnah17, Fertilin). This study shows that CNP plays a role in epididymal sperm maturation. The mechanism of CNP is to promote the acquisition of epididymal sperm fluidity through the NPR-B/cGMP signaling pathway and also to regulate sperm maturation-related genes. Moreover, the expression of CNP/NPR-B was regulated by testosterone.
Collapse
Affiliation(s)
- Hu Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Tianyu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Na Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
- Correspondence: ; Tel.: +86-188-7226-2607
| |
Collapse
|
10
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
11
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
12
|
Zeng F, Wang M, Li J, Li C, Pan X, Meng L, Li L, Wei H, Zhang S. Involvement of Porcine β-Defensin 129 in Sperm Capacitation and Rescue of Poor Sperm in Genital Tract Infection. Int J Mol Sci 2022; 23:ijms23169441. [PMID: 36012708 PMCID: PMC9409293 DOI: 10.3390/ijms23169441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
In mammals, β-defensins have been reported to play pivotal roles in sperm protection and fertilization. However, the function and mechanism of porcine β-defensin 129 (pBD129) in the sperm remain unclear. Here, we demonstrate that pBD129 is a glycosylated protein and broadly exists in accessory sex glands and coats the sperm surface. We inhibited the pBD129 protein on the sperm surface with an anti-pBD129 antibody and found that sperm motility was not significantly affected; however, sperm acrosome integrity and tyrosine phosphorylation levels increased significantly with time (p < 0.05) during capacitation. These changes were accompanied by an increase in sperm Ca2+ influx, resulting in a significantly reduced in vitro fertilization cleavage rate (p < 0.05). Further investigation revealed that treatment with recombinant pBD129 markedly restored the sperm motility in semen contaminated with Escherichia coli. The results suggest that pBD129 is not only associated with poor sperm motility after genital tract infection but can also protect the spermatozoa from premature capacitation, which may be beneficial for semen preservation.
Collapse
|
13
|
X chromosome-linked genes in the mature sperm influence semen quality and fertility of breeding bulls. Gene 2022; 839:146727. [PMID: 35835407 DOI: 10.1016/j.gene.2022.146727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.
Collapse
|
14
|
Yang Y, Chen F, Qiao K, Zhang H, Chen HY, Wang KJ. Two Male-Specific Antimicrobial Peptides SCY2 and Scyreprocin as Crucial Molecules Participated in the Sperm Acrosome Reaction of Mud Crab Scylla paramamosain. Int J Mol Sci 2022; 23:3373. [PMID: 35328805 PMCID: PMC8952799 DOI: 10.3390/ijms23063373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) identified in the reproductive system of animals have been widely studied for their antimicrobial activity, but only a few studies have focused on their physiological roles. Our previous studies have revealed the in vitro antimicrobial activity of two male gonadal AMPs, SCY2 and scyreprocin, from mud crab Scylla paramamosain. Their physiological functions, however, remain a mystery. In this study, the two AMPs were found co-localized on the sperm apical cap. Meanwhile, progesterone was confirmed to induce acrosome reaction (AR) of mud crab sperm in vitro, which intrigued us to explore the roles of the AMPs and progesterone in AR. Results showed that the specific antibody blockade of scyreprocin inhibited the progesterone-induced AR without affecting intracellular Ca2+ homeostasis, while the blockade of SCY2 hindered the influx of Ca2+. We further showed that SCY2 could directly bind to Ca2+. Moreover, progesterone failed to induce AR when either scyreprocin or SCY2 function was deprived. Taken together, scyreprocin and SCY2 played a dual role in reproductive immunity and sperm AR. To our knowledge, this is the first report on the direct involvement of AMPs in sperm AR, which would expand the current understanding of the roles of AMPs in reproduction.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hua Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Batra V, Bhushan V, Ali SA, Sarwalia P, Pal A, Karanwal S, Solanki S, Kumaresan A, Kumar R, Datta TK. Buffalo sperm surface proteome profiling reveals an intricate relationship between innate immunity and reproduction. BMC Genomics 2021; 22:480. [PMID: 34174811 PMCID: PMC8235841 DOI: 10.1186/s12864-021-07640-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Low conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint that limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. Results The raw mass spectra data searched against an in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a glycosylphosphatidylinositol (GPI) anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst other buffalo sperm surface proteins. The presence of these proteins was subsequently confirmed by RT-qPCR, immunofluorescence and in vitro fertilization (IVF) experiments. Conclusions The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted (glyco) proteins like BDs and the GPI-anchored proteins (GPI-APs). The glycosylation pattern of buffalo sperm-surface, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BDs on the sperm surface strengthens our hypothesis that the buffalo BDs (BuBDs) assist the spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD that could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its role in the regulation of male fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07640-z.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vanya Bhushan
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Parul Sarwalia
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenology Lab, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
16
|
Aram R, Chan PTK, Cyr DG. Beta-defensin126 is correlated with sperm motility in fertile and infertile men†. Biol Reprod 2021; 102:92-101. [PMID: 31504198 DOI: 10.1093/biolre/ioz171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
A crucial function of the epididymis is providing a surface glycocalyx that is important for sperm maturation and capacitation. Defensins are antimicrobial peptides expressed in the epididymis. In the macaque epididymis, defensin beta 126 (DEFB126) is important for sperm motility, however, it is not known whether this is the case in humans. The objectives were to determine: (1) if DEFB126 on human ejaculated sperm was correlated with sperm motility in fertile and infertile men, (2) that recombinant DEFB126 could induce immature sperm motility in vitro. Immunofluorescence staining indicated that the proportion of DEFB126-positive sperm was significantly higher in motile sperm. Furthermore, the proportion of DEFB126-labeled sperm was positively correlated with sperm motility and normal morphology. Additional studies indicated that the proportion of DEFB126-positive spermatozoa in fertile volunteers was significantly higher than in volunteers with varicocele, and in infertile volunteers with semen deficiencies. To determine the role of DEFB126 on sperm motility, the DEFB126 gene was cloned and used to generate recombinant DEFB126 in H9C2 cells (rat embryonic heart myoblast cells). Deletion mutations were created into two regions of the protein, which have been linked to male infertility. Immotile testicular spermatozoa were incubated with cells expressing the different forms of DEFB126. Full-length DEFB126 significantly increased motility of co-cultured spermatozoa. However, no increase in sperm motility was observed with the mutated forms of DEFB126. In conclusion, these results support the notion that DEFB126 is important in human sperm maturation and the potential use of DEFB126 for in vitro sperm maturation.
Collapse
Affiliation(s)
- Raheleh Aram
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Peter T K Chan
- Department of Urology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
17
|
Foot NJ, Gonzalez MB, Gembus K, Fonseka P, Sandow JJ, Nguyen TT, Tran D, Webb AI, Mathivanan S, Robker RL, Kumar S. Arrdc4-dependent extracellular vesicle biogenesis is required for sperm maturation. J Extracell Vesicles 2021; 10:e12113. [PMID: 34188787 PMCID: PMC8217992 DOI: 10.1002/jev2.12113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are important players in cell to cell communication in reproductive systems. Notably, EVs have been found and characterized in the male reproductive tract, however, direct functional evidence for their importance in mediating sperm function is lacking. We have previously demonstrated that Arrdc4, a member of the α-arrestin protein family, is involved in extracellular vesicle biogenesis and release. Here we show that Arrdc4-mediated extracellular vesicle biogenesis is required for proper sperm function. Sperm from Arrdc4-/- mice develop normally through the testis but fail to acquire adequate motility and fertilization capabilities through the epididymis, as observed by reduced motility, premature acrosome reaction, reduction in zona pellucida binding and two-cell embryo production. We found a significant reduction in extracellular vesicle production by Arrdc4-/- epididymal epithelial cells, and further, supplementation of Arrdc4-/- sperm with additional vesicles dampened the acrosome reaction defect and restored zona pellucida binding. These results indicate that Arrdc4 is important for proper sperm maturation through the control of extracellular vesicle biogenesis.
Collapse
Affiliation(s)
- Natalie J. Foot
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Macarena B. Gonzalez
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Kelly Gembus
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
| | - Pamali Fonseka
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jarrod J. Sandow
- Advanced Technology and Biology DivisionWalter and Eliza Hall InstituteParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
| | - Thuy Tien Nguyen
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Diana Tran
- School of Chemical Engineering & Advanced MaterialsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Andrew I. Webb
- Advanced Technology and Biology DivisionWalter and Eliza Hall InstituteParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
| | - Suresh Mathivanan
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Rebecca L. Robker
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Anatomy and Developmental BiologyBiomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
18
|
Ahmed S, Tao J, Wang M, Zhai Y, Liu W, Jayachandran M, Chu C, Qu S, Zhang J, Zhang Y, Fei Z. An improved lentiviral system for efficient expression and purification of β-defensins in mammalian cells. Biotechnol J 2021; 16:e2100023. [PMID: 34053189 DOI: 10.1002/biot.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
β-Defensins are a family of conserved small cationic antimicrobial peptides with different significant biological functions. The majority of mammalian β-defensins are expressed in epididymis, and many of them are predicted to have post-translational modifications. However, only a few of its members have been well studied due to the limitations of expressing and purifying bioactive proteins with correct post-translational modifications efficiently. Here we developed a novel Fc tagged lentiviral system and Fc tagged prokaryotic expression systems provided new options for β-defensins expression and purification. The novel lentiviral system contains a secretive signal peptide, an N-terminal IgG Fc tag, a green fluorescent protein (GFP), and a puromycin selection marker to facilitate efficient expression and fast purification of β-defensins by protein A magnetic or agarose beads. It also enables stable and large-scale expression of β-defensins with regular biological activities and post-translational modification. Purified β-defensins such as Bin1b and a novel human β-defensin hBD129 showed antimicrobial activity, immuno-regulatory activity, and expected post-translational phosphorylation, which were not found in Escherichia coli (E. coli) in expressed form. Furthermore, we successfully applied the novel system to identify mBin1b interacting proteins, explaining Bin1b in a better way. These results suggest that the novel lentiviral system is a powerful approach to produce correct post-translational processed β-defensins with bioactivities and is useful to identify their interacting proteins. This study has laid the foundation for future studies to characterize function and mechanism of novel β-defensins.
Collapse
Affiliation(s)
- Shiraz Ahmed
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Jiang Tao
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Miaochen Wang
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zhai
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhai Liu
- Immunomic Therapeutics, No.15010 Broschart Road, Rockville, Maryland, 20850, USA
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Chen Chu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jin Zhang
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Zhaoliang Fei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| |
Collapse
|
19
|
Wu P, Liu TL, Li LL, Liu ZP, Tian LH, Hou ZJ. Declined expressing mRNA of beta-defensin 108 from epididymis is associated with decreased sperm motility in blue fox (Vulpes lagopus). BMC Vet Res 2021; 17:12. [PMID: 33413374 PMCID: PMC7789387 DOI: 10.1186/s12917-020-02697-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fecundity is important for farm blue fox (Vulpes lagopus), who with asthenospermia have be a problem in some of farms in China. A key symptom of asthenospermia is decreased sperm motility. The decreased secreting beta-defensin108 (vBD108) of blue fox is speculated be related to asthenospermia. To clarify this idea, the mRNA expression of vBD108 in testis and epididymis of blue foxes with asthenospermia were detected and compared to the healthy one. The antibody was prepared and analyzed by immunohistochemistry. RESULTS The vBD108 in testis and epididymis was found both in blue fox with asthenospermia and healthy group by the method of immunohistochemistry. The expression of vBD108 mRNA in testes (P < 0.05) and epididymal corpus (P < 0.0001) in asthenospermia group was lower than that in healthy group. CONCLUSIONS These results suggested that vBD108 deficiency may related to blue fox asthenospermia. Meanwhile, the study on the blue fox vBD108 provides a hopeful direction to explore the pathogenesis of blue fox asthenospermia in the future.
Collapse
Affiliation(s)
- Ping Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Tao-lin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ling-ling Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhi-ping Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Li-hong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhi-jun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Zhang D, Wang Y, Lin H, Sun Y, Wang M, Jia Y, Yu X, Jiang H, Xu W, Sun JP, Xu Z. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020; 177:5489-5508. [PMID: 32901914 DOI: 10.1111/bph.15252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Infertility rates for both females and males have increased continuously in recent years. Currently, effective treatments for male infertility with defined mechanisms or targets are still lacking. G protein-coupled receptors (GPCRs) are the largest class of drug targets, but their functions and the implications for the therapeutic development for male infertility largely remain elusive. Nevertheless, recent studies have shown that several members of the GPCR superfamily play crucial roles in the maintenance of ion-water homeostasis of the epididymis, development of the efferent ductules, formation of the blood-epididymal barrier and maturation of sperm. Knowledge of the functions, genetic variations and working mechanisms of such GPCRs, along with the drugs and ligands relevant to their specific functions, provide future directions and a great arsenal for new developments in the treatment of male infertility.
Collapse
Affiliation(s)
- Daolai Zhang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yujing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mingwei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingli Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin-Peng Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
21
|
Immunolocalization of androgen and vitamin D receptors in the epididymis of mature ram ( Ovis aries). Saudi J Biol Sci 2020; 28:217-223. [PMID: 33424300 PMCID: PMC7783664 DOI: 10.1016/j.sjbs.2020.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/23/2022] Open
Abstract
This study illustrated the immunohistochemical distribution of androgen and vitamin D receptors of epididymis in 20 sexually mature ram (Rahmani breed) with average age ranged from (2_4) years and average weight ranged from (50_65kg). Androgen receptor was localized in the cytoplasm of both ciliated and non ciliated cells of efferent ductules, besides the principal cells via the entire epididymal duct. The principal cells of both corpus and proximal cauda epididymis showed the highest immunoreactivity to androgen receptors. Furthermore, vitamin D receptor was localized in the cytoplasm of all epithelium of the efferent ductules besides principal cells of all epididymal regions, however the immunoreaction was significantly higher in the efferent ductules, distal caput and distal cauda epididymis. In conclusion, these results suggest that the function of ram epididymis is regulated by both androgen and Vitamin D.
Collapse
|
22
|
Lv C, Han Y, Yang D, Zhao J, Wang C, Mu C. Antibacterial activities and mechanisms of action of a defensin from manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 103:266-276. [PMID: 32439511 DOI: 10.1016/j.fsi.2020.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides, which played an undeniably important role in host defense. In the present study, a defensin isoform was identified and characterized from manila clam Ruditapes philippinarum (designed as Rpdef1α). Multiple alignments and phylogenetic analysis suggested that Rpdef1α belonged to the defensin family. Quantitative RT-PCR and immunohistochemical analysis revealed that Rpdef1α transcripts and the encoding peptide were dominantly expressed in the tissues of gills and mantle. After Vibrio anguillarum challenge, the Rpdef1α transcripts were significantly up-regulated in gills of clams. In addition, rRpdef1α not only showed broad-spectrum antimicrobial activities towards Vibrio species, but also inhibited the formation of bacterial biofilms. Knockdown of Rpdef1α transcripts caused significant increase in the cumulative mortality of manila clams post V. anguillarum challenge. Membrane integrity, scanning electron microscopy analysis and electrochemical assay indicated that rRpdef1α was capable of causing bacterial membrane permeabilization and then resulted in cell death. Moreover, phagocytosis and chemotactic ability of hemocytes could be significantly enhanced after incubation with rRpdef1α. Overall, these results suggested that Rpdef1α could act as both antibacterial agent and opsonin to defend against the invading microorganisms in manila clam R. philippinarum.
Collapse
Affiliation(s)
- Chengjie Lv
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Yijing Han
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China.
| |
Collapse
|
23
|
Zhu W, Cheng X, Ren C, Chen J, Zhang Y, Chen Y, Jia X, Wang S, Sun Z, Zhang R, Zhang Z. Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS One 2020; 15:e0228656. [PMID: 32053710 PMCID: PMC7018057 DOI: 10.1371/journal.pone.0228656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fresh semen is most commonly used in an artificial insemination of small ruminants, because of low fertility rates of frozen sperm. Generally, when developing and applying assisted reproductive technologies, sheep and goats are classified as one species. In order to optimize sperm cryopreservation protocols in sheep and goat, differences in sperm proteomes between ram and buck are necessary to investigate, which may contribute to differences in function and fertility of spermatozoa. In the current work, a data-independent acquisition-mass spectrometry proteomic approach was used to characterize and make a comparison of ram (Ovis aries) and buck (Capra hircus) sperm proteomes. A total of 2,109 proteins were identified in ram and buck spermatozoa, with 238 differentially abundant proteins. Proteins identified in ram and buck spermatozoa are mainly involved in metabolic pathways for generation of energy and diminishing oxidative stress. Specifically, there are greater abundance of spermatozoa proteins related to the immune protective and capacity activities in ram, while protein that inhibit sperm capacitation shows greater abundance in buck. Our results not only provide novel insights into the characteristics and potential activities of spermatozoa proteins, but also expand the potential direction for sperm cryopreservation in ram and buck.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei, P. R. China
| | - Yan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiaojiao Jia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Renzheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
24
|
Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, Kumar R, Datta TK. Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evol Biol 2019; 19:214. [PMID: 31771505 PMCID: PMC6878701 DOI: 10.1186/s12862-019-1535-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The buffalo, despite its superior milk-producing ability, suffers from reproductive limitations that constrain its lifetime productivity. Male sub-fertility, manifested as low conception rates (CRs), is a major concern in buffaloes. The epididymal sperm surface-binding proteins which participate in the sperm surface remodelling (SSR) events affect the survival and performance of the spermatozoa in the female reproductive tract (FRT). A mutation in an epididymal secreted protein, beta-defensin 126 (DEFB-126/BD-126), a class-A beta-defensin (CA-BD), resulted in decreased CRs in human cohorts across the globe. To better understand the role of CA-BDs in buffalo reproduction, this study aimed to identify the BD genes for characterization of the selection pressure(s) acting on them, and to identify the most abundant CA-BD transcript in the buffalo male reproductive tract (MRT) for predicting its reproductive functional significance. RESULTS Despite the low protein sequence homology with their orthologs, the CA-BDs have maintained the molecular framework and the structural core vital to their biological functions. Their coding-sequences in ruminants revealed evidence of pervasive purifying and episodic diversifying selection pressures. The buffalo CA-BD genes were expressed in the major reproductive and non-reproductive tissues exhibiting spatial variations. The Buffalo BD-129 (BuBD-129) was the most abundant and the longest CA-BD in the distal-MRT segments and was predicted to be heavily O-glycosylated. CONCLUSIONS The maintenance of the structural core, despite the sequence divergence, indicated the conservation of the molecular functions of the CA-BDs. The expression of the buffalo CA-BDs in both the distal-MRT segments and non-reproductive tissues indicate the retention the primordial microbicidal activity, which was also predicted by in silico sequence analyses. However, the observed spatial variations in their expression across the MRT hint at their region-specific roles. Their comparison across mammalian species revealed a pattern in which the various CA-BDs appeared to follow dissimilar evolutionary paths. This pattern appears to maintain only the highly efficacious CA-BD alleles and diversify their functional repertoire in the ruminants. Our preliminary results and analyses indicated that BuBD-129 could be the functional ortholog of the primate DEFB-126. Further studies are warranted to assess its molecular functions to elucidate its role in immunity, reproduction and fertility.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | | | - Komal Dagar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Sandeep Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Apoorva Soni
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - A Kumaresan
- Theriogenology Lab, SRS of NDRI, Bengaluru, 560030, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - T K Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
25
|
Khayamabed R, Tavalaee M, Taherian SS, Nasr-Esfahani MH. Effect of recombinant β-defensin 1 protein on human sperm motility and viability. Andrologia 2019; 52:e13455. [PMID: 31656060 DOI: 10.1111/and.13455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
The reduction of sperm motility and subsequently reduced ability to undergo capacitation and acrosome reaction are considered as common causes of male infertility. The β-defensin family is a group of well-known secretory proteins with antimicrobial activity that contribute to the process of "sperm maturation" during the passage of spermatozoa in the epididymis when spermatozoa attain its motility. One member of this family is "β-defensin 1" which is present in seminal plasma and spermatozoa. The aim of this study was the incubation of human processed spermatozoa with recombinant β-defensin 1 (500 ng/ml) for 1, 2 and 3 hr at 37°C under 5% CO2 atmosphere and assessment of sperm viability and motility in 59 semen samples. The analysis of semen samples such as sperm concentration, motility, viability, morphology and semen volume was performed according to the World Health Organization (2010; World health organization laboratory manual for the examination and processing of human semen (p. 287). Geneva, Switzerland: World Health Organization) criteria. The result of the current study shows that the incubation of spermatozoa with recombinant β-defensin significantly maintained percentage of sperm viability and motility compared to processed spermatozoa incubate in the absence of β-defensin in the studied time intervals (p < .05). Therefore, we concluded that recombinant β-defensin 1 protein as an agent with antimicrobial activity can maintain sperm viability and motility in in vitro condition.
Collapse
Affiliation(s)
- Reyhaneh Khayamabed
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samira-Sadat Taherian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
26
|
Avellar MCW, Ribeiro CM, Dias-da-Silva MR, Silva EJR. In search of new paradigms for epididymal health and disease: innate immunity, inflammatory mediators, and steroid hormones. Andrology 2019; 7:690-702. [PMID: 31207127 DOI: 10.1111/andr.12654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
The primary job of the epididymis is to mature and protect the luminally transiting spermatozoa. Mounting evidence is showing that innate immune components [including Toll-like receptors (TLRs) and antimicrobial proteins, among which are β-defensins] and inflammatory mediators, under the primary influence of androgens, participate in the cellular and molecular processes that define this tissue. Here, we present an overview of the contributions of these signaling pathway components during epididymal homeostasis and discuss the hypotheses as to their involvement in epididymitis, the most common urological inflammatory condition in men, frequently impairing their fertility. Drawing primarily from rodent models, we also focus on how the distribution and functional expression of innate immune components are differentially regulated in the prenatal developing epididymis, providing new insights into the disruption of these signaling pathways throughout the lifespan. Male infertility is caused by a variety of conditions, such as congenital malformations, genetic and endocrine disorders, exposure to environmental toxicants, and inflammatory/infectious conditions. More than one-third of infertile men with an idiopathic condition cannot currently be adequately diagnosed. Thinking about the innate immunity and inflammation context of the epididymis may provide new insights and directions as to how these systems contribute to male fertility, as well as also uncover urological and andrological outcomes that may aid clinicians in diagnosing and preventing epididymal pathologies.
Collapse
Affiliation(s)
- M C W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - C M Ribeiro
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - M R Dias-da-Silva
- Department of Medicine, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - E J R Silva
- Department of Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Botucatu, SP, Brazil
| |
Collapse
|
27
|
Genetic resistance to DEHP-induced transgenerational endocrine disruption. PLoS One 2019; 14:e0208371. [PMID: 31181066 PMCID: PMC6557477 DOI: 10.1371/journal.pone.0208371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Di(2-ethylhexyl)phthalate (DEHP) interferes with sex hormones signaling pathways (SHP). C57BL/6J mice prenatally exposed to 300 mg/kg/day DEHP develop a testicular dysgenesis syndrome (TDS) at adulthood, but similarly-exposed FVB/N mice are not affected. Here we aim to understand the reasons behind this drastic difference that should depend on the genome of the strain. In both backgrounds, pregnant female mice received per os either DEHP or corn oil vehicle and the male filiations were examined. Computer-assisted sperm analysis showed a DEHP-induced decreased sperm count and velocities in C57BL/6J. Sperm RNA sequencing experiments resulted in the identification of the 62 most differentially expressed RNAs. These RNAs, mainly regulated by hormones, produced strain-specific transcriptional responses to prenatal exposure to DEHP; a pool of RNAs was increased in FVB, another pool of RNAs was decreased in C57BL/6J. In FVB/N, analysis of non-synonymous single nucleotide polymorphisms (SNP) impacting SHP identified rs387782768 and rs29315913 respectively associated with absence of the Forkhead Box A3 (Foxa3) RNA and increased expression of estrogen receptor 1 variant 4 (NM_001302533) RNA. Analysis of the role of SNPs modifying SHP binding sites in function of strain-specific responses to DEHP revealed a DEHP-resistance allele in FVB/N containing an additional FOXA1-3 binding site at rs30973633 and four DEHP-induced beta-defensins (Defb42, Defb30, Defb47 and Defb48). A DEHP-susceptibility allele in C57BL/6J contained five SNPs (rs28279710, rs32977910, rs46648903, rs46677594 and rs48287999) affecting SHP and six genes (Svs2, Svs3b, Svs4, Svs3a, Svs6 and Svs5) epigenetically silenced by DEHP. Finally, targeted experiments confirmed increased methylation in the Svs3ab promoter with decreased SEMG2 persisting across generations, providing a molecular explanation for the transgenerational sperm velocity decrease found in C57BL/6J after DEHP exposure. We conclude that the existence of SNP-dependent mechanisms in FVB/N inbred mice may confer resistance to transgenerational endocrine disruption.
Collapse
|
28
|
Sadeghzadeh M, Shirpoor A, Naderi R, Kheradmand F, Gharalari FH, Samadi M, Khalaji N, Gharaaghaji R. Long‐term ethanol consumption promotes changes in β‐defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats. Mol Reprod Dev 2019; 86:624-631. [DOI: 10.1002/mrd.23138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Maryam Sadeghzadeh
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Fatemeh Kheradmand
- Department of BiochemistryFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Farzaneh H. Gharalari
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Naser Khalaji
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Rasool Gharaaghaji
- Department of Community MedicineFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| |
Collapse
|
29
|
Meade KG, O'Farrelly C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front Immunol 2019; 9:3072. [PMID: 30761155 PMCID: PMC6362941 DOI: 10.3389/fimmu.2018.03072] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse commensal populations are now regarded as key to physiological homeostasis and protection against disease. Although bacteria are the most abundant component of microbiomes, and the most intensively studied, the microbiome also consists of viral, fungal, archael, and protozoan communities, about which comparatively little is known. Host-defense peptides (HDPs), originally described as antimicrobial, now have renewed significance as curators of the pervasive microbial loads required to maintain homeostasis and manage microbiome diversity. Harnessing HDP biology to transition away from non-selective, antibiotic-mediated treatments for clearance of microbes is a new paradigm, particularly in veterinary medicine. One family of evolutionarily conserved HDPs, β-defensins which are produced in diverse combinations by epithelial and immune cell populations, are multifunctional cationic peptides which manage the cross-talk between host and microbes and maintain a healthy yet dynamic equilibrium across mucosal systems. They are therefore key gatekeepers to the oral, respiratory, reproductive and enteric tissues, preventing pathogen-associated inflammation and disease and maintaining physiological normality. Expansions in the number of genes encoding these natural antibiotics have been described in the genomes of some species, the functional significance of which has only recently being appreciated. β-defensin expression has been documented pre-birth and disruptions in their regulation may play a role in maladaptive neonatal immune programming, thereby contributing to subsequent disease susceptibility. Here we review recent evidence supporting a critical role for β-defensins as farmers of the pervasive and complex prokaryotic ecosystems that occupy all body surfaces and cavities. We also share some new perspectives on the role of β-defensins as sensors of homeostasis and the immune vanguard particularly at sites of immunological privilege where inflammation is attenuated.
Collapse
Affiliation(s)
- Kieran G. Meade
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Cliona O'Farrelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Weber A, Alves J, Abujamra AL, Bustamante‐Filho IC. Structural modeling and mRNA expression of epididymal β‐defensins in GnRH immunized boars: A model for secondary hypogonadism in man. Mol Reprod Dev 2018; 85:921-933. [DOI: 10.1002/mrd.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Augusto Weber
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Jayse Alves
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Ana L. Abujamra
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | | |
Collapse
|
31
|
RANJAN R, SINGH SP, GURURAJ K, JINDAL SK, CHAUHAN MS. Effect of beta defensin-1 on post-thaw quality of cryopreserved Barbari buck semen. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i10.84085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids 2018; 50:1025-1043. [DOI: 10.1007/s00726-018-2580-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
|
33
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Gao B, Zhu S. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs. Front Microbiol 2018; 9:320. [PMID: 29599756 PMCID: PMC5863496 DOI: 10.3389/fmicb.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Zhang C, Zhou Y, Xie S, Yin Q, Tang C, Ni Z, Fei J, Zhang Y. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of β-defensin family members on sperm maturation in rat epididymis. FASEB J 2018; 32:1354-1363. [PMID: 29141997 DOI: 10.1096/fj.201700936r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epididymis is a male reproductive organ involved in posttesticular sperm maturation and storage, but the mechanism underlying sperm maturation remains unclear. β-Defensins (Defbs) belong to a family of small, cysteine-rich, cationic peptides that are antimicrobial and modulate the immune response. A large number of Defb genes are expressed abundantly in the male reproductive tract, especially in the epididymis. We and other groups have shown the involvement of several Defb genes in regulation of sperm function. In this study, we found that Defb23, Defb26, and Defb42 were highly expressed in specific regions of the epididymis. Rats with CRISPR/Cas9-mediated single-gene disruption of Defb23, Defb26, or Defb42 had no obvious fertility phenotypes. Those with the deletion of Defb23/ 26 or Defb23/ 26/ 42 became subfertile, and sperm isolated from the epididymal cauda of multiple-mutant rats were demonstrated decreased motility. Meanwhile, the sperm showed precocious capacitation and increased spontaneous acrosome reaction. Consistent with premature capacitation and acrosome reaction, sperm from multiple-gene-knockout rats had significantly increased intracellular calcium. These results suggest that Defb family members affect sperm maturation by a synergistic pattern in the epididymis.-Zhang, C., Zhou, Y., Xie, S., Yin, Q., Tang, C., Ni, Z., Fei, J., Zhang, Y. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of β-defensin family members on sperm maturation in rat epididymis.
Collapse
Affiliation(s)
- Chaobao Zhang
- School of Life Science and Technology, Tong Ji University, Shanghai, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Yin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunhua Tang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zimei Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tong Ji University, Shanghai, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Hall TJ, McQuillan C, Finlay EK, O'Farrelly C, Fair S, Meade KG. Comparative genomic identification and validation of β-defensin genes in the Ovis aries genome. BMC Genomics 2017; 18:278. [PMID: 28376793 PMCID: PMC5379710 DOI: 10.1186/s12864-017-3666-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/28/2017] [Indexed: 01/13/2023] Open
Abstract
Background β-defensins are small, cationic, antimicrobial peptides found in species across the plant and animal kingdoms. In addition to microbiocidal activity, roles in immunity as well as reproduction have more recently been documented. β-defensin genes in Ovis aries (domestic sheep) have been poorly annotated, having been identified only by automatic gene prediction algorithms. The objective of this study was to use a comparative genomics approach to identify and characterise the β-defensin gene repertoire in sheep using the bovine genome as the primary reference. Results All 57 currently predicted bovine β-defensin genes were used to find orthologous sequences in the most recent version of the sheep genome (OAR v4.0). Forty three genes were found to have close genomic matches (>70% similarity) between sheep and cattle. The orthologous genes were located in four clusters across the genome, with 4 genes on chromosome 2, 19 genes on chromosome 13, 5 genes on chromosome 20 and 15 genes on chromosome 26. Conserved gene order for the β-defensin genes was apparent in the two smaller clusters, although gene order was reversed on chromosome 2, suggesting an inversion between sheep and cattle. Complete conservation of gene order was also observed for chromosome 13 β-defensin orthologs. More structural differences were apparent between chromosome 26 genes and the orthologous region in the bovine reference genome, which is known to be copy-number variable. In this cluster, the Defensin-beta 1 (DEFB1) gene matched to eleven Bovine Neutrophil beta-Defensin (BNBD) genes on chromosome 27 with almost uniform similarity, as well as to tracheal, enteric and lingual anti-microbial peptides (TAP, EAP and LAP), suggesting that annotation of the bovine reference sequence is still incomplete. qPCR was used to profile the expression of 34 β-defensin genes, representing each of the four clusters, in the ram reproductive tract. Distinct site-specific and differential expression profiles were detected across the reproductive tract of mature rams with preferential β-defensin gene expression in the epididymis, recapitulating observations for orthologous genes in other species. Conclusions This is the first comprehensive analysis of β-defensin genes encoded by the ovine reference sequence, and the first report of an expanded repertoire of β-defensin genes in this species. The preferential expression of these genes in the epididymis suggests a role in fertility, possibly providing immunoprotection for sperm within the female reproductive tract. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3666-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T J Hall
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - C McQuillan
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - E K Finlay
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland
| | - C O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - S Fair
- Laboratory of Animal Reproduction, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - K G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co Meath, Ireland.
| |
Collapse
|
37
|
Xu J, Yao G, Ru Y, Xie S. Expression of tamoxifen-inducible CRE recombinase in Lcn5-CreER T2 transgenic mouse caput epididymis. Mol Reprod Dev 2017; 84:257-264. [PMID: 28029195 DOI: 10.1002/mrd.22772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
The epididymis, which connects the testis to vas deferens, plays a crucial role regulating sperm maturation and fertilization. Here, a tamoxifen-inducible CreERT2 recombinase transgenic mouse was generated to study the function of genes in the caput epididymis using the Cre/LoxP system, which is driven by the 1.8-kb Lcn5 promoter (Lcn5-CreERT2 ). Both CRE recombinase and ERT2 mRNA were specifically expressed in the caput epididymis, beginning at postnatal Day 30 and increasing thereafter. Crossing these Lcn5-CreERT2 transgenic mice with Rosa26; mT/mG reporter mice, which express membrane-bound GFP (mGFP) only after CRE is active at its genetic locus, resulted in the presence of GFP only in the middle/distal caput epididymis after tamoxifen induction. Efficiency of the CRE recombinase production in the caput epididymis was dose- and time-dependent. These tamoxifen-inducible caput epididymis-specific CRE recombinase transgenic mice thus provides a simple approach to modulate epididymal principal cells in vivo, allowing for the genetic investigation of caput epididymis-specific gene functions during sperm maturation. 84: 257-264, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan Xu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P. R. China
| | - Guangxin Yao
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yanfei Ru
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.,Shanghai Institute of Planned Parenthood Research, Shanghai, P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
38
|
Ribeiro CM, Ferreira LGA, Thimoteo DS, Smith LB, Hinton BT, Avellar MCW. Novel androgen-induced activity of an antimicrobial β-defensin: Regulation of Wolffian duct morphogenesis. Mol Cell Endocrinol 2017; 442:142-152. [PMID: 27989506 DOI: 10.1016/j.mce.2016.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 01/23/2023]
Abstract
The Wolffian duct (WD) undergoes morphological changes induced by androgens to form the epididymis, which is an organ essential for sperm maturation. Androgen action in WD epithelium involves paracrine factors of mesenchymal origin that function by still poorly understood mechanisms. Here we studied the antimicrobial β-defensin SPAG11C as a new player in duct morphogenesis, localized prenatally in the WD mesenchyme. Organotypic culture of rat WDs and tissues from Androgen Receptor (AR) knockout mice (ARKO) were used. Our results show that androgen/AR signaling differentially regulated SPAG11C expression at mRNA and protein levels in the developing WD. WDs incubated with recombinant human SPAG11C were shorter and less coiled as a result of reduced epithelial cell proliferation, but not increased apoptosis. Our results suggested β-defensin SPAG11C as an androgen-target required for WD morphogenesis. This highlights the multifunctional repertoire of the β-defensin protein family and their potential contribution to the in utero environment that determines male reproductive success.
Collapse
Affiliation(s)
- Camilla M Ribeiro
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Lucas G A Ferreira
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Daniel S Thimoteo
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Maria Christina W Avellar
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Ribeiro CM, Silva EJR, Hinton BT, Avellar MCW. β-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian J Androl 2016; 18:323-8. [PMID: 26763543 PMCID: PMC4770510 DOI: 10.4103/1008-682x.168791] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
β-defensins are components of host defense, with antimicrobial and pleiotropic immuno-modulatory properties. Research over the last 15 years has demonstrated abundant expression of a variety of β-defensins in the postnatal epididymis of different species. A gradient of region- and cell-specific expression of these proteins is observed in the epithelium of the postnatal epididymis. Their secretion into the luminal fluid and binding to spermatozoa as they travel along the epididymis has suggested their involvement in reproduction-specific tasks. Therefore, continuous attention has been given to various β-defensins for their role in sperm function and fertility. Although β-defensins are largely dependent on androgens, the underlying mechanisms regulating their expression and function in the epididymis are not well understood. Recent investigation has pointed out to a new and interesting scenario where β-defensins emerge with a different expression pattern in the Wolffian duct, the embryonic precursor of the epididymis, as opposed to the adult epididymis, thereby redefining the concept concerning the multifunctional roles of β-defensins in the developing epididymis. In this review, we summarize some current views of β-defensins in the epididymis highlighting our most recent data and speculations on their role in the developing epididymis during the prenatal-to-postnatal transition, bringing attention to the many unanswered questions in this research area that may contribute to a better understanding of epididymal biology and male fertility.
Collapse
Affiliation(s)
| | | | | | - Maria Christina W Avellar
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
40
|
Fernandez-Fuertes B, Narciandi F, O'Farrelly C, Kelly AK, Fair S, Meade KG, Lonergan P. Cauda Epididymis-Specific Beta-Defensin 126 Promotes Sperm Motility but Not Fertilizing Ability in Cattle. Biol Reprod 2016; 95:122. [PMID: 27707713 PMCID: PMC5333942 DOI: 10.1095/biolreprod.116.138792] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/15/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
Bovine beta-defensin 126 (BBD126) exhibits preferential expression for the cauda epididymis of males, where it is absorbed onto the tail and postacrosomal region of the sperm. The aim of this study was to examine the role of BBD126 in bull sperm function. Fresh and frozen-thawed semen were incubated in the presence of different capacitating agents as well as with phosphatidylinositol-specific phospholipase C. These treatments, which have been successful in releasing beta-defensin 126 from macaque sperm, proved to be ineffective in bull sperm. This finding suggests that the protein behaves in a different manner in the bovine. The lack of success in removing BBD126 led us to use corpus epididymis sperm, a model in which the protein is not present, to study its functional role. Corpus sperm were incubated with cauda epididymal fluid (CEF) in the absence or presence of BBD126 antibody or with recombinant BBD126 (rBBD126). Confocal microscopy revealed that rBBD126 binds to corpus sperm with the same pattern observed for BBD126 in cauda sperm, whereas an aberrant binding pattern is observed when sperm are subject to CEF incubation. Addition of CEF increased motility as well as the number of corpus sperm migrating through cervical mucus from estrus cows. However, it decreased the ability of sperm to fertilize in vitro matured oocytes. The presence of the antibody failed to abrogate these effects. Furthermore, when rBBD126 was added in the absence of other factors and proteins from the CEF, an increase in motility was also observed and no negative effects in fertility were seen. These results suggest that BBD126 plays a key role in the acquisition of sperm motility in the epididymis.
Collapse
Affiliation(s)
| | | | - Cliona O'Farrelly
- Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sean Fair
- Department of Life Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G Meade
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
41
|
Abstract
β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.
Collapse
Affiliation(s)
- Julia R Dorin
- Formerly at MRC Human Genetics Unit, IGMM, University of Edinburgh, now at MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| |
Collapse
|
42
|
Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipilä P. Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 2016; 427:143-54. [PMID: 26987518 DOI: 10.1016/j.mce.2016.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
During epididymal maturation, sperm acquire the ability to swim progressively by interacting with proteins secreted by the epididymal epithelium. Beta-defensin proteins, expressed in the epididymis, continue to regulate sperm motility during capacitation and hyperactivation in the female reproductive tract. We characterized the mouse beta-defensin 41 (DEFB41), by generating a mouse model with iCre recombinase inserted into the first exon of the gene. The homozygous Defb41(iCre/iCre) knock-in mice lacked Defb41 expression and displayed iCre recombinase activity in the principal cells of the proximal epididymis. Heterozygous Defb41(iCre/+) mice can be used to generate epididymis specific conditional knock-out mouse models. Homozygous Defb41(iCre/iCre) sperm displayed a defect in sperm motility with the flagella primarily bending in the pro-hook conformation while capacitated wild-type sperm more often displayed the anti-hook conformation. This led to a reduced straight line motility of Defb41(iCre/iCre) sperm and weaker binding to the oocyte. Thus, DEFB41 is required for proper sperm maturation.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | - Luis Alvarez
- Center of Advanced European Studies and Research (Caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Nelli Blank
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Melanie Balbach
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Heikki Turunen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | - Teemu Daniel Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jussi Toivanen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anton Krutskikh
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | | | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Matti Poutanen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Petra Sipilä
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
43
|
Qiao K, Xu WF, Chen HY, Peng H, Zhang YQ, Huang WS, Wang SP, An Z, Shan ZG, Chen FY, Wang KJ. A new antimicrobial peptide SCY2 identified in Scylla Paramamosain exerting a potential role of reproductive immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:251-262. [PMID: 26911409 DOI: 10.1016/j.fsi.2016.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
A new antimicrobial peptide named SCY2 with 65.08% identity in amino acid sequence to the known scygonadin (SCY1) was first characterized in Scylla paramamosain based on its cloned full-length cDNA and genomic DNA sequences. The SCY2 gene was dominantly expressed in the ejaculatory duct of male crabs and its mRNA transcripts were discerned mainly in the glandular epithelium of the inner wall and the secretion inside the ejaculatory duct. Although the SCY2 gene could not be induced with the challenge of the bacteria and fungi tested, its induction reached the highest level at the peak period of mating in mature male crabs either in June or November, suggesting its induction was likely related to seasonal reproduction changes. Moreover, it was interesting to note that, from analysis of its transcripts and protein, SCY2 was significantly expressed only in the ejaculatory duct of pre-copulatory males before mating, however it was clearly detected in the spermatheca of post-copulatory females after mating accompanied by the decreased level of SCY2 expression in the ejaculatory duct. These results suggested that the SCY2 was probably transferred from the male during mating action with the female for the purpose of protecting fertilization. The recombinant SCY2 was more active against the Gram-positive than the Gram-negative bacteria tested. It was further observed that the SCY2 transcripts were significantly increased with addition of exogenous progesterone in tissue cultures whereas the several other hormones tested had no any effect on SCY2 expression, indicating that there might be a relationship between the SCY2 expression and the induction of hormones in vivo. In summary, this study demonstrated that one role of SCY2 was likely to be involved in crab reproduction and it exerted its reproductive immune function through the mating action and the maintenance of inner sterility in the spermatheca of the female, thus leading to successful fertilization of S. paramamosain.
Collapse
Affiliation(s)
- Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wan-Fang Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ya-Qun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-Shu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhe An
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
44
|
Ru YF, Xue HM, Ni ZM, Xia D, Zhou YC, Zhang YL. An epididymis-specific carboxyl esterase CES5A is required for sperm capacitation and male fertility in the rat. Asian J Androl 2015; 17:292-7. [PMID: 25475668 PMCID: PMC4650488 DOI: 10.4103/1008-682x.143314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the fact that the phenomenon of capacitation was discovered over half century ago and much progress has been made in identifying sperm events involved in capacitation, few specific molecules of epididymal origin have been identified as being directly involved in this process in vivo. Previously, our group cloned and characterized a carboxyl esterase gene Ces5a in the rat epididymis. The CES5A protein is mainly expressed in the corpus and cauda epididymidis and secreted into the corresponding lumens. Here, we report the function of CES5A in sperm maturation. By local injection of Lentivirus-mediated siRNA in the CES5A-expressing region of the rat epididymis, Ces5a-knockdown animal models were created. These animals exhibited an inhibited sperm capacitation and a reduction in male fertility. These results suggest that CES5A plays an important role in sperm maturation and male fertility.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Chuan Zhou
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Lian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences; Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
45
|
Xin A, Zhao Y, Yu H, Shi H, Diao H, Zhang Y. Characterization of β-defensin 42 expressed in principal cells at the initial segment of the rat epididymis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:861-9. [PMID: 26363282 DOI: 10.1093/abbs/gmv089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022] Open
Abstract
β-defensins, preferentially expressed in male reproductive tracts, particularly in the testes and epididymis with region-specific patterns, play an important role in both innate immunity and sperm fertility. Expressed in the caput region of epididymis, β-defensins have been known to contribute to innate immunity, sperm motility initiation, and maintenance. However, β-defensins of the initial region remain to be uncharacterized. In this study, rat β-defensin 42 (Defb42) was revealed to be exclusively located in the principal cells at the initial segment of the rat epididymis and its sperm's acrosome. Furthermore, the expression of Defb42 was dependent on luminal testicular factors and developmental phases. The recombinant Defb42 was predominantly antimicrobial not against Candida albicans, but against Escherichia coli and Staphylococcus aureus. Based on these findings, Defb42 was suggested to play a dual role in sperm fertility and host defense in rat epididymis.
Collapse
Affiliation(s)
- Aijie Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Zhao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Heguo Yu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Huijuan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Yonglian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
46
|
Johnson GP, Lloyd AT, O'Farrelly C, Meade KG, Fair S. Comparative genomic identification and expression profiling of a novel ?-defensin gene cluster in the equine reproductive tract. Reprod Fertil Dev 2015; 28:RD14345. [PMID: 25924226 DOI: 10.1071/rd14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/07/2015] [Indexed: 12/21/2022] Open
Abstract
?-defensins are small cationic proteins with potent immunoregulatory and antimicrobial activity. The number of genes encoding these peptides varies significantly between and within species but they have not been extensively characterised in the horse. Here, we describe a systematic search of the Equus caballus genome that identified a cluster of novel ?-defensin genes on Chromosome 22, which is homologous to a cluster on bovine Chromosome 13. Close genomic matches were found for orthologs of 13 of the bovine genes, which were named equine ?-defensins (eBD) 115, eBD116, eBD117, eBD119, eBD120, eBD122a, eBD123, eBD124, eBD125, eBD126, eBD127, eBD129 and eBD132. As expression of the homologous cluster in cattle was limited to the reproductive tract, tissue sections were obtained from the testis, caput, corpus and cauda epididymis and the vas deferens of three stallions and from the ovary, oviduct, uterine horn, uterus, cervix and vagina of three mares. Using a quantitative real-time polymerase chain reaction approach, each of the novel ?-defensin genes showed distinct region-specific patterns of expression. Preferential expression in the caput epididymis of these novel defensins in the stallion and in the oviduct in the mare suggests a possible role in immunoprotection of the equine reproductive tract or in fertility.
Collapse
|
47
|
Epididymal Region-Specific miRNA Expression and DNA Methylation and Their Roles in Controlling Gene Expression in Rats. PLoS One 2015; 10:e0124450. [PMID: 25901964 PMCID: PMC4406618 DOI: 10.1371/journal.pone.0124450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 03/13/2015] [Indexed: 02/02/2023] Open
Abstract
Region-specific gene expression is an intriguing feature of the mammalian epididymis. This unique property is essential for sperm maturation and storage, and it also implicates stringent and multi-level regulations of gene expression. Over the past decade, the androgen-driven activation of epididymal gene transcription has been extensively studied. However, it still remains largely unexplored whether and how other regulatory mechanisms, such as miRNAs and DNA methylation, are involved in controlling regional gene expression in the epididymis. Using microarray-based approaches, we studied the regional miRNA expression and DNA methylation profiles in 4 distinct epididymal regions (initial segment, caput, corpus and cauda) of rats. We found that the miR-200 family members were more expressed in caput, compared with cauda. By GSEA analysis, the differential expression of miR-200 family between caput and cauda was shown to be negatively correlated with their predicted target genes, among which 4 bona fide targets were verified by luciferase reporter assay. Predicted target genes of miR-200 family have enriched functions in anti-apoptosis, cell transportation and development, implying the regional diversity in epididymal functions. On the other hand, we revealed epididymal DNA methylation of 2002 CpG islands and 2771 gene promoters (-3.88-0.97 kb), among which 1350 (67.43%) CpG islands and 2095 (75.60%) promoters contained region-specific DNA methylation. We observed significant and distinct functional enrichment in genes with specifically methylated promoters in each epididymal regions, but these DNA methylations did not show significant correlation with repressed gene transcription in the mature epididymis. Conclusively, we investigated the regional miRNA expression and DNA methylation in the rat epididymis and revealed a potential role of miR-200 family in gene expression regulation between caput and cauda. This may contribute to the distinct physiological function in sperm maturation / storage of caput / cauda epididymis.
Collapse
|
48
|
Ribeiro CM, Queiróz DBC, Patrão MTCC, Denadai-Souza A, Romano RM, Silva EJR, Avellar MCW. Dynamic changes in the spatio-temporal expression of the β-defensin SPAG11C in the developing rat epididymis and its regulation by androgens. Mol Cell Endocrinol 2015; 404:141-50. [PMID: 25657045 DOI: 10.1016/j.mce.2015.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 11/24/2022]
Abstract
Herein, we characterized the spatio-temporal expression, cellular distribution and regulation by androgens of the β-defensin SPAG11C, the rat ortholog of the human SPAG11B isoform C, in the developing epididymis by using RT-PCR, in situ hybridization and immunohistochemistry. We observed that Spag11c mRNA was ubiquitously expressed in rat fetuses, but preferentially detected in male reproductive tissues at adulthood. SPAG11C (mRNA and protein) was prenatally mainly detected in the mesenchyme of the Wolffian duct, switching gradually after birth to a predominant localization in the epididymis epithelium during postnatal development. In the adult epididymis, smooth muscle and interstitial cells were also identified as sources of SPAG11C. Furthermore, SPAG11C was differentially immunolocalized on spermatozoa surface during their transit from testis throughout caput and cauda epididymis. Developmental and surgical castration studies suggested that androgens contribute to the epididymal cell type- and region-specific modulation of SPAG11C mRNA levels and immunolocalization. Together our findings provide novel insights into the potential role of β-defensins in the epididymis.
Collapse
Affiliation(s)
- Camilla M Ribeiro
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Daniel B C Queiróz
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Marília T C C Patrão
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alexandre Denadai-Souza
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Renata M Romano
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Erick J R Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Maria Christina W Avellar
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
49
|
|
50
|
Madhubabu G, Yenugu S. Allethrin induced toxicity in the male reproductive tract of rats contributes to disruption in the transcription of genes involved in germ cell production. ENVIRONMENTAL TOXICOLOGY 2014; 29:1330-1345. [PMID: 23595975 DOI: 10.1002/tox.21864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Pyrethroids are known to be neurotoxic. However, their toxic effects including that of allethrin on the male reproductive tract are not elucidated. Adult male rats were treated orally with 25, 50, 100, and 150 mg/kg body weight allethrin every day for 60 days. Lipid peroxidation was increased (p < 0.001) in the caput, cauda, and testes. Nitric oxide production was increased (p < 0.001) in the caput, but unaltered in the cauda and testes. The activities of catalase, glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase were decreased in the caput and cauda where as a decrease was observed in the testis obtained from allethrin treated rats. In the epididymides and testes, damage to tubular architecture, congestion, degeneration of epithelial cell lining, intestinal edema, and presence of dead or degenerating spermatids were observed in a dose dependent manner. The expression profile of genes involved in spermatogenesis (Tgf-beta1), sperm maturation (Spag11e), and sperm function (Defb22) were reduced (p < 0.001) in allethrin rats. The expression of p53 gene was decreased and increased phosphorylation of MAPK (p42/p44) expression was observed the male reproductive tract tissues of allethrin treated rats. Although earlier studies have reported the effects of allethrin inhalation because of the use of mosquito coils and vaporizers, our results for the first time prove that oral exposure to allethrin could affect fertility and may contribute to deregulation of cell cycle in the male reproductive tract.
Collapse
Affiliation(s)
- Golla Madhubabu
- Department of Animal Sciences, University of Hyderabad, Hyderabad, 500046, Andhra Pradesh, India
| | | |
Collapse
|