1
|
Tando Y, Nonomura A, Ito-Matsuoka Y, Takehara A, Okamura D, Hayashi Y, Matsui Y. LARP7 is required for sex chromosome silencing during meiosis in mice. PLoS One 2024; 19:e0314329. [PMID: 39637191 PMCID: PMC11620648 DOI: 10.1371/journal.pone.0314329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in meiotic progression in mammalian spermatogenesis. We found that La Ribonucleoprotein 7 (LARP7) is involved in MSCI. LARP7 plays a role in fetal germ cells to promote their proliferation, but is once abolished in postnatal gonocytes and re-expressed in spermatocytes at the onset of meiosis. In spermatocytes, LARP7 localizes to the XY body, a compartmentalized chromatin domain on sex chromosomes. In germline-specific Larp7-deficient mice, spermatogenesis is arrested in spermatocytes, and transcription of the genes on sex chromosomes remained active, which suggests failure of meiotic sex chromosome inactivation (MSCI). Furthermore, the XY body in spermatocytes lacking Larp7 shows accumulation of H4K12ac and elimination of H3K9me2, suggesting defective chromatin silencing by abnormal epigenetic controls. These results indicate a new functional role for LARP7 in MSCI.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Chakraborty P, Magnuson T. INO80 regulates chromatin accessibility to facilitate suppression of sex-linked gene expression during mouse spermatogenesis. PLoS Genet 2024; 20:e1011431. [PMID: 39405305 PMCID: PMC11508167 DOI: 10.1371/journal.pgen.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/25/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling complex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes suggested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at the sex chromosomes of Ino80-null pachytene spermatocytes indicates incomplete inactivation of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromosome inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors required for silencing sex-linked genes. This role of INO80 is independent of a common INO80 target, H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibility at DNA repair sites occurs on the sex chromosomes. These data suggest a role for INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes during the onset of pachynema.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Chakraborty P, Magnuson T. INO80 regulates chromatin accessibility to facilitate suppression of sex-linked gene expression during mouse spermatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.04.522761. [PMID: 36711658 PMCID: PMC9881943 DOI: 10.1101/2023.01.04.522761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling complex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes suggested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at the sex chromosomes of Ino80 -null pachytene spermatocytes indicates incomplete inactivation of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromosome inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors required for silencing sex-linked genes. This role of INO80 is independent of a common INO80 target H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibility at DNA repair sites occurs on the sex chromosomes. These data suggest a role for INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes during the onset of pachynema. Summary Statement Chromatin accessibility and DNA repair factor localization at the sex chromosomes are facilitated by INO80, which regulates sex-linked gene silencing during meiotic progression in spermatocytes.
Collapse
|
4
|
Menon DU, Chakraborty P, Murcia N, Magnuson T. ARID1A governs the silencing of sex-linked transcription during male meiosis in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542290. [PMID: 37292940 PMCID: PMC10245947 DOI: 10.1101/2023.05.25.542290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Those germ cells showing a Cre-induced loss of ARID1A were arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Consistent with this defect, mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. By investigating potential mechanisms underlying these anomalies, we identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA Meiotic Recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.
Collapse
|
5
|
Yoshimura S, Shimada R, Kikuchi K, Kawagoe S, Abe H, Iisaka S, Fujimura S, Yasunaga KI, Usuki S, Tani N, Ohba T, Kondoh E, Saio T, Araki K, Ishiguro KI. Atypical heat shock transcription factor HSF5 is critical for male meiotic prophase under non-stress conditions. Nat Commun 2024; 15:3330. [PMID: 38684656 PMCID: PMC11059408 DOI: 10.1038/s41467-024-47601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.
Collapse
Affiliation(s)
- Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Soichiro Kawagoe
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hironori Abe
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sakie Iisaka
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
6
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
7
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
8
|
Ascencao CFR, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka M. A TOPBP1 Allele Causing Male Infertility Uncouples XY Silencing Dynamics From Sex Body Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543071. [PMID: 37398453 PMCID: PMC10312512 DOI: 10.1101/2023.05.31.543071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
|
9
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
10
|
Abe H, Yeh YH, Munakata Y, Ishiguro KI, Andreassen PR, Namekawa SH. Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation. Nat Commun 2022; 13:7212. [PMID: 36443288 PMCID: PMC9705562 DOI: 10.1038/s41467-022-34295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.
Collapse
Affiliation(s)
- Hironori Abe
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA ,grid.274841.c0000 0001 0660 6749Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811 Japan
| | - Yu-Han Yeh
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| | - Yasuhisa Munakata
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| | - Kei-Ichiro Ishiguro
- grid.274841.c0000 0001 0660 6749Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811 Japan
| | - Paul R. Andreassen
- grid.24827.3b0000 0001 2179 9593Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Satoshi H. Namekawa
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| |
Collapse
|
11
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
12
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
13
|
Abstract
Successful in vitro spermatogenesis would generate functional haploid spermatids, and thus, form the basis for novel approaches to treat patients with impaired spermatogenesis or develop alternative strategies for male fertility preservation. Several culture strategies, including cell cultures using various stem cells and ex vivo cultures of testicular tissue, have been investigated to recapitulate spermatogenesis in vitro. Although some studies have described complete meiosis and subsequent generation of functional spermatids, key meiotic events, such as chromosome synapsis and homologous recombination required for successful meiosis and faithful in vitro-derived gametes, are often not reported. To guarantee the generation of in vitro-formed spermatids without persistent DNA double-strand breaks (DSBs) and chromosomal aberrations, criteria to evaluate whether all meiotic events are completely executed in vitro need to be established. In vivo, these meiotic events are strictly monitored by meiotic checkpoints that eliminate aberrant spermatocytes. To establish criteria to evaluate in vitro meiosis, we review the meiotic events and checkpoints that have been investigated by previous in vitro spermatogenesis studies. We found that, although major meiotic events such as initiation of DSBs and recombination, complete chromosome synapsis, and XY-body formation can be achieved in vitro, crossover formation, chiasmata frequency, and checkpoint mechanisms have been mostly ignored. In addition, complete spermiogenesis, during which round spermatids differentiate into elongated spermatids, has not been achieved in vitro by various cell culture strategies. Finally, we discuss the implications of meiotic checkpoints for in vitro spermatogenesis protocols and future clinical use.
Collapse
Affiliation(s)
- Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Chukrallah LG, Badrinath A, Vittor GG, Snyder EM. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J Cell Sci 2022; 135:jcs259196. [PMID: 35191498 PMCID: PMC8919335 DOI: 10.1242/jcs.259196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects. Analysis of ribosome association in Adad2 mouse mutants revealed defective translation of Mdc1, a key regulator of XY-body formation, late in meiosis. As a result, Adad2 mutants show normal establishment but failed maintenance of the XY-body. Observed XY-body defects are concurrent with abnormal autosomal heterochromatin and ultimately lead to severely perturbed post-meiotic germ cell heterochromatin and cell death. These findings highlight the requirement of ADAD2 for Mdc1 translation, the role of MDC1 in maintaining meiotic male germ cell heterochromatin and the importance of late meiotic heterochromatin for normal post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gabrielle G. Vittor
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Sims JR, Faça VM, Pereira C, Ascenção C, Comstock W, Badar J, Arroyo-Martinez GA, Freire R, Cohen PE, Weiss RS, Smolka MB. Phosphoproteomics of ATR signaling in mouse testes. eLife 2022; 11:e68648. [PMID: 35133275 PMCID: PMC8824463 DOI: 10.7554/elife.68648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
The phosphatidylinositol 3' kinase (PI3K)-related kinase ATR is crucial for mammalian meiosis. ATR promotes meiotic progression by coordinating key events in DNA repair, meiotic sex chromosome inactivation (MSCI), and checkpoint-dependent quality control during meiotic prophase I. Despite its central roles in meiosis, the ATR-dependent meiotic signaling network remains largely unknown. Here, we used phosphoproteomics to define ATR signaling events in testes from mice following chemical and genetic ablation of ATR signaling. Quantitative analysis of phosphoproteomes obtained after germ cell-specific genetic ablation of the ATR activating 9-1-1 complex or treatment with ATR inhibitor identified over 14,000 phosphorylation sites from testes samples, of which 401 phosphorylation sites were found to be dependent on both the 9-1-1 complex and ATR. Our analyses identified ATR-dependent phosphorylation events in crucial DNA damage signaling and DNA repair proteins including TOPBP1, SMC3, MDC1, RAD50, and SLX4. Importantly, we identified ATR and RAD1-dependent phosphorylation events in proteins involved in mRNA regulatory processes, including SETX and RANBP3, whose localization to the sex body was lost upon ATR inhibition. In addition to identifying the expected ATR-targeted S/T-Q motif, we identified enrichment of an S/T-P-X-K motif in the set of ATR-dependent events, suggesting that ATR promotes signaling via proline-directed kinase(s) during meiosis. Indeed, we found that ATR signaling is important for the proper localization of CDK2 in spermatocytes. Overall, our analysis establishes a map of ATR signaling in mouse testes and highlights potential meiotic-specific actions of ATR during prophase I progression.
Collapse
Affiliation(s)
- Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Catalina Pereira
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de CanariasTenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
17
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
18
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 PMCID: PMC9188433 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Alcalay Y, Fuchs S, Galizi R, Bernardini F, Haghighat-Khah RE, Rusch DB, Adrion JR, Hahn MW, Tortosa P, Rotenberry R, Papathanos PA. The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Front Bioeng Biotechnol 2021; 9:752253. [PMID: 34957064 PMCID: PMC8698249 DOI: 10.3389/fbioe.2021.752253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.
Collapse
Affiliation(s)
- Yehonatan Alcalay
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, United States.,Department of Computer Science, Indiana University, Bloomington, IN, United States
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, France
| | - Rachel Rotenberry
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst 2021; 97:27-39. [PMID: 34955498 DOI: 10.1266/ggs.21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of meiosis coincides with spermatocyte differentiation and is followed by meiotic prophase, a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. In spermatocytes, meiotic prophase is accompanied by robust alterations of gene expression programs and chromatin status for subsequent sperm production. The mechanisms regulating meiotic initiation and subsequent meiotic prophase programs are enigmatic. Recently, we discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is involved in meiotic initiation and the meiotic prophase program during spermatogenesis. Further, we discuss the downstream genes activated by MEIOSIN, which are crucial for meiotic prophase-specific events, from the viewpoint of chromosome dynamics and the gene expression program.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| |
Collapse
|
21
|
Xu Y, Qiao H. A Hypothesis: Linking Phase Separation to Meiotic Sex Chromosome Inactivation and Sex-Body Formation. Front Cell Dev Biol 2021; 9:674203. [PMID: 34485277 PMCID: PMC8415632 DOI: 10.3389/fcell.2021.674203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 01/12/2023] Open
Abstract
During meiotic prophase I, X and Y chromosomes in mammalian spermatocytes only stably pair at a small homologous region called the pseudoautosomal region (PAR). However, the rest of the sex chromosomes remain largely unsynapsed. The extensive asynapsis triggers transcriptional silencing - meiotic sex chromosome inactivation (MSCI). Along with MSCI, a special nuclear territory, sex body or XY body, forms. In the early steps of MSCI, DNA damage response (DDR) factors, such as BRCA1, ATR, and γH2AX, function as sensors and effectors of the silencing signals. Downstream canonical repressive histone modifications, including methylation, acetylation, ubiquitylation, and SUMOylation, are responsible for the transcriptional repression of the sex chromosomes. Nevertheless, mechanisms of the sex-body formation remain unclear. Liquid-liquid phase separation (LLPS) may drive the formation of several chromatin subcompartments, such as pericentric heterochromatin, nucleoli, inactive X chromosomes. Although several proteins involved in phase separation are found in the sex bodies, when and whether these proteins exert functions in the sex-body formation and MSCI is still unknown. Here, we reviewed recent publications on the mechanisms of MSCI and LLPS, pointed out the potential link between LLPS and the formation of sex bodies, and discussed its implications for future research.
Collapse
Affiliation(s)
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
22
|
Abe H, Meduri R, Li Z, Andreassen PR, Namekawa SH. RNF8 is not required for histone-to-protamine exchange in spermiogenesis. Biol Reprod 2021; 105:1154-1159. [PMID: 34225362 DOI: 10.1093/biolre/ioab132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
While an E3 ubiquitin ligase, RNF8, was initially reported to be required for histone-to-protamine exchange in spermiogenesis, we subsequently demonstrated that RNF8 is not involved in this process. Nevertheless, reflecting a lingering misunderstanding in the field, a growing number of studies have continued to postulate a requirement for RNF8 in the histone-to-protamine exchange. For example, a recent study claimed that a mouse PIWI protein, MIWI, controls RNF8-mediated histone-to-protamine exchange. Here, confirming our earlier conclusions, we show that RNF8 is required neither for the establishment of histone H4K16 acetylation, which is an initial step in histone removal during spermiogenesis, nor for the incorporation of two protamine proteins, PRM1 and PRM2. Thus, whereas RNF8 mediates ubiquitination of H2A on the sex chromosomes in meiosis, during the prior stage of spermatogenesis, our genetic evidence underscores that RNF8 is not involved in histone-to-protamine exchange.
Collapse
Affiliation(s)
- Hironori Abe
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Department of Microbiology & Molecular Genetics, University of California, Davis, California, 95616, USA
| | - Rajyalakshmi Meduri
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Ziwei Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Department of Microbiology & Molecular Genetics, University of California, Davis, California, 95616, USA
| |
Collapse
|
23
|
Horisawa-Takada Y, Kodera C, Takemoto K, Sakashita A, Horisawa K, Maeda R, Shimada R, Usuki S, Fujimura S, Tani N, Matsuura K, Akiyama T, Suzuki A, Niwa H, Tachibana M, Ohba T, Katabuchi H, Namekawa SH, Araki K, Ishiguro KI. Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat Commun 2021; 12:3184. [PMID: 34075040 PMCID: PMC8169937 DOI: 10.1038/s41467-021-23378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
During spermatogenesis, meiosis is accompanied by a robust alteration in gene expression and chromatin status. However, it remains elusive how the meiotic transcriptional program is established to ensure completion of meiotic prophase. Here, we identify a protein complex that consists of germ-cell-specific zinc-finger protein ZFP541 and its interactor KCTD19 as the key transcriptional regulators in mouse meiotic prophase progression. Our genetic study shows that ZFP541 and KCTD19 are co-expressed from pachytene onward and play an essential role in the completion of the meiotic prophase program in the testis. Furthermore, our ChIP-seq and transcriptome analyses identify that ZFP541 binds to and suppresses a broad range of genes whose function is associated with biological processes of transcriptional regulation and covalent chromatin modification. The present study demonstrates that a germ-cell specific complex that contains ZFP541 and KCTD19 promotes the progression of meiotic prophase towards completion in male mice, and triggers the reconstruction of the transcriptional network and chromatin organization leading to post-meiotic development.
Collapse
Affiliation(s)
- Yuki Horisawa-Takada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Chisato Kodera
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazumasa Takemoto
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryo Maeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Kumi Matsuura
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto University, Kumamoto, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Kimi Araki
- Institute of Resource Development and Analysis, and Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
24
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
25
|
Lei Q, Zhang E, van Pelt AMM, Hamer G. Meiotic Chromosome Synapsis and XY-Body Formation In Vitro. Front Endocrinol (Lausanne) 2021; 12:761249. [PMID: 34721307 PMCID: PMC8551552 DOI: 10.3389/fendo.2021.761249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
To achieve spermatogenesis in vitro, one of the most challenging processes to mimic is meiosis. Meiotic problems, like incomplete synapsis of the homologous chromosomes, or impaired homologous recombination, can cause failure of crossover formation and subsequent chromosome nondisjunction, eventually leading to aneuploid sperm. These meiotic events are therefore strictly monitored by meiotic checkpoints that initiate apoptosis of aberrant spermatocytes and lead to spermatogenic arrest. However, we recently found that, in vitro derived meiotic cells proceeded to the first meiotic division (MI) stage, despite displaying incomplete chromosome synapsis, no discernible XY-body and lack of crossover formation. We therefore optimized our in vitro culture system of meiosis from male germline stem cells (mGSCs) in order to achieve full chromosome synapsis, XY-body formation and meiotic crossovers. In comparison to previous culture system, the in vitro-generated spermatocytes were transferred after meiotic initiation to a second culture dish. This dish already contained a freshly plated monolayer of proliferatively inactivated immortalized Sertoli cells supporting undifferentiated mGSCs. In this way we aimed to simulate the multiple layers of germ cell types that support spermatogenesis in vivo in the testis. We found that in this optimized culture system, although independent of the undifferentiated mGSCs, meiotic chromosome synapsis was complete and XY body appeared normal. However, meiotic recombination still occurred insufficiently and only few meiotic crossovers were formed, leading to MI-spermatocytes displaying univalent chromosomes (paired sister chromatids). Therefore, considering that meiotic checkpoints are not necessarily fully functional in vitro, meiotic crossover formation should be closely monitored when mimicking gametogenesis in vitro to prevent generation of aneuploid gametes.
Collapse
|
26
|
Severe asynapsis in spermatocytes of interspecific hybrids of the silver fox (Vulpes vulpes) and the blue fox (Alopex lagopus) leads to pachytene I arrest as a result of sustained H2AXγ phosphorylation. Theriogenology 2020; 162:1-5. [PMID: 33388724 DOI: 10.1016/j.theriogenology.2020.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022]
Abstract
Infertility is frequently associated with meiotic anomalies which can result in the production of chromosomally abnormal gametes or be concomitant with meiotic arrest. We investigated whether spermatocytes of male interspecific hybrids of the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus) presented alterations in chromosomal synapses and meiotic checkpoint signalling. Using the immunofluorescence technique with SP1 and SP3 proteins, bivalent structures and their deviations (multivalents, univalents and not fully conjugated bivalents) were analyzed on meiotic preparations. This technique allowed the localization of frequent foci of phosphorylated histones H2AHγ (Ser 139) to the meiotic block in late pachytene. These results indicate a disruption of meiotic division in male fox hybrids, which leads to a high percentage of apoptotic cells in the gonads of these animals and, consequently, sterility.
Collapse
|
27
|
Martínez-Marchal A, Huang Y, Guillot-Ferriols MT, Ferrer-Roda M, Guixé A, Garcia-Caldés M, Roig I. The DNA damage response is required for oocyte cyst breakdown and follicle formation in mice. PLoS Genet 2020; 16:e1009067. [PMID: 33206637 PMCID: PMC7710113 DOI: 10.1371/journal.pgen.1009067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/02/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
Mammalian oogonia proliferate without completing cytokinesis, forming cysts. Within these, oocytes differentiate and initiate meiosis, promoting double-strand break (DSBs) formation, which are repaired by homologous recombination (HR) causing the pairing and synapsis of the homologs. Errors in these processes activate checkpoint mechanisms, leading to apoptosis. At the end of prophase I, in contrast with what is observed in spermatocytes, oocytes accumulate unrepaired DSBs. Simultaneously to the cyst breakdown, there is a massive oocyte death, which has been proposed to be necessary to enable the individualization of the oocytes to form follicles. Based upon all the above-mentioned information, we hypothesize that the apparently inefficient HR occurring in the oocytes may be a requirement to first eliminate most of the oocytes and enable cyst breakdown and follicle formation. To test this idea, we compared perinatal ovaries from control and mutant mice for the effector kinase of the DNA Damage Response (DDR), CHK2. We found that CHK2 is required to eliminate ~50% of the fetal oocyte population. Nevertheless, the number of oocytes and follicles found in Chk2-mutant ovaries three days after birth was equivalent to that of the controls. These data revealed the existence of another mechanism capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2-/- mice, implying that CHK1 regulates postnatal oocyte death. Moreover, we found that CHK1 and CHK2 functions are required for the timely breakdown of the cyst and to form follicles. Thus, we uncovered a novel CHK1 function in regulating the oocyte population in mice. Based upon these data, we propose that the CHK1- and CHK2-dependent DDR controls the number of oocytes and is required to properly break down oocyte cysts and form follicles in mammals.
Collapse
Affiliation(s)
- Ana Martínez-Marchal
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yan Huang
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Teresa Guillot-Ferriols
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mònica Ferrer-Roda
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Guixé
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Montserrat Garcia-Caldés
- Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Unitat de Citologia i Histologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Grup d'Inestabilitat i Integritat del genoma, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
28
|
Maezawa S, Sakashita A, Yukawa M, Chen X, Takahashi K, Alavattam KG, Nakata I, Weirauch MT, Barski A, Namekawa SH. Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition. Nat Struct Mol Biol 2020; 27:978-988. [PMID: 32895557 PMCID: PMC8690596 DOI: 10.1038/s41594-020-0488-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2020] [Indexed: 01/12/2023]
Abstract
Due to bursts in the expression of thousands of germline-specific genes, the testis has the most diverse and complex transcriptome of all organs. By analyzing the male germline of mice, we demonstrate that the genome-wide reorganization of super-enhancers (SEs) drives bursts in germline gene expression after the mitosis-to-meiosis transition. SE reorganization is regulated by two molecular events: the establishment of meiosis-specific SEs via A-MYB (MYBL1), a key transcription factor for germline genes, and the resolution of SEs in mitotically proliferating cells via SCML2, a germline-specific Polycomb protein required for spermatogenesis-specific gene expression. Prior to entry into meiosis, meiotic SEs are preprogrammed in mitotic spermatogonia to ensure the unidirectional differentiation of spermatogenesis. We identify key regulatory factors for both mitotic and meiotic enhancers, revealing a molecular logic for the concurrent activation of mitotic enhancers and suppression of meiotic enhancers in the somatic and/or mitotic proliferation phases.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan. .,Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan.
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kazuki Takahashi
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ippo Nakata
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
29
|
Handel MA. The XY body: an attractive chromatin domain. Biol Reprod 2020; 102:985-987. [PMID: 32055839 DOI: 10.1093/biolre/ioaa021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
|
30
|
Che L, Alavattam KG, Stambrook PJ, Namekawa SH, Du C. BRUCE preserves genomic stability in the male germline of mice. Cell Death Differ 2020; 27:2402-2416. [PMID: 32139899 DOI: 10.1038/s41418-020-0513-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
BRUCE is a DNA damage response protein that promotes the activation of ATM and ATR for homologous recombination (HR) repair in somatic cells, making BRUCE a key protector of genomic stability. Preservation of genomic stability in the germline is essential for the maintenance of species. Here, we show that BRUCE is required for the preservation of genomic stability in the male germline of mice, specifically in spermatogonia and spermatocytes. Conditional knockout of Bruce in the male germline leads to profound defects in spermatogenesis, including impaired maintenance of spermatogonia and increased chromosomal anomalies during meiosis. Bruce-deficient pachytene spermatocytes frequently displayed persistent DNA breaks. Homologous synapsis was impaired, and nonhomologous associations and rearrangements were apparent in up to 10% of Bruce-deficient spermatocytes. Genomic instability was apparent in the form of chromosomal fragmentation, translocations, and synapsed quadrivalents and hexavalents. In addition, unsynapsed regions of rearranged autosomes were devoid of ATM and ATR signaling, suggesting an impairment in the ATM- and ATR-dependent DNA damage response of meiotic HR. Taken together, our study unveils crucial functions for BRUCE in the maintenance of spermatogonia and in the regulation of meiotic HR-functions that preserve the genomic stability of the male germline.
Collapse
Affiliation(s)
- Lixiao Che
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chunying Du
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
31
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
32
|
The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Curr Biol 2020; 30:408-420.e5. [PMID: 31902729 PMCID: PMC7076562 DOI: 10.1016/j.cub.2019.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms underlying this arrest and elimination remain unknown. To address this question, we established a new separation-of-function mouse model for H2ax that shows specific and complete defects in MSCI. The genetic change is a point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables crossover formation, suggesting that the establishment of MSCI permits the timely progression of male meiosis. Our results suggest that normal meiotic progression requires the removal of ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: the initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear compartment-the XY body-sequesters DDR factors to permit meiotic progression from the mid-pachytene stage onward. VIDEO ABSTRACT.
Collapse
|
33
|
Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res 2019; 46:593-608. [PMID: 29126117 PMCID: PMC5778473 DOI: 10.1093/nar/gkx1052] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
During spermatogenesis, germ cells undergo massive cellular reconstruction and dynamic chromatin remodeling to facilitate highly diverse transcriptomes, which are required for the production of functional sperm. However, it remains unknown how germline chromatin is organized to promote the dynamic, complex transcriptomes of spermatogenesis. Here, using ATAC-seq, we establish the varied landscape of open chromatin during spermatogenesis. We identify the reorganization of accessible chromatin in intergenic and intronic regions during the mitosis-to-meiosis transition. During the transition, mitotic-type open chromatin is closed while the de novo formation of meiotic-type open chromatin takes place. Contrastingly, differentiation processes such as spermatogonial differentiation and the meiosis-to-postmeiosis transition involve chromatin closure without the de novo formation of accessible chromatin. In spermiogenesis, the germline-specific Polycomb protein SCML2 promotes the closure of open chromatin at autosomes for gene suppression. Paradoxically, we identify the massive de novo formation of accessible chromatin when the sex chromosomes undergo meiotic sex chromosome inactivation, and this is also mediated by SCML2. These results reveal meiotic sex chromosome inactivation as an active process for chromatin organization. Together, our results unravel the genome-wide, dynamic reorganization of open chromatin and reveal mechanisms that underlie diverse transcriptomes during spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
34
|
Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, Marjani SL, Chen J, Tian XC. Methylome Dynamics of Bovine Gametes and in vivo Early Embryos. Front Genet 2019; 10:512. [PMID: 31191619 PMCID: PMC6546829 DOI: 10.3389/fgene.2019.00512] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023] Open
Abstract
DNA methylation undergoes drastic fluctuation during early mammalian embryogenesis. The dynamics of global DNA methylation in bovine embryos, however, have mostly been studied by immunostaining. We adopted the whole genome bisulfite sequencing (WGBS) method to characterize stage-specific genome-wide DNA methylation in bovine sperm, immature oocytes, oocytes matured in vivo and in vitro, as well as in vivo developed single embryos at the 2-, 4-, 8-, and 16-cell stages. We found that the major wave of genome-wide DNA demethylation was complete by the 8-cell stage when de novo methylation became prominent. Sperm and oocytes were differentially methylated in numerous regions (DMRs), which were primarily intergenic, suggesting that these non-coding regions may play important roles in gamete specification. DMRs were also identified between in vivo and in vitro matured oocytes, suggesting environmental effects on epigenetic modifications. In addition, virtually no (less than 1.5%) DNA methylation was found in mitochondrial DNA. Finally, by using RNA-seq data generated from embryos at the same developmental stages, we revealed a weak inverse correlation between gene expression and promoter methylation. This comprehensive analysis provides insight into the critical features of the bovine embryo methylome, and serves as an important reference for embryos produced in vitro, such as by in vitro fertilization and cloning. Lastly, these data can also provide a model for the epigenetic dynamics in human early embryos.
Collapse
Affiliation(s)
- Jingyue Ellie Duan
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Zongliang Carl Jiang
- School of Animal Science, AgCenter, Louisiana State University, Baton Rouge, LA, United States
| | - Fahad Alqahtani
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Ion Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Xiuchun Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
35
|
Alavattam KG, Maezawa S, Sakashita A, Khoury H, Barski A, Kaplan N, Namekawa SH. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat Struct Mol Biol 2019; 26:175-184. [PMID: 30778237 PMCID: PMC6402993 DOI: 10.1038/s41594-019-0189-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Germ cells manifest a unique gene expression program and regain totipotency in the zygote. Here, we perform Hi-C analysis to examine 3D chromatin organization in male germ cells during spermatogenesis. We show that the highly compartmentalized 3D chromatin organization characteristic of interphase nuclei is attenuated in meiotic prophase. Meiotic prophase is predominated by short-range intrachromosomal interactions that represent a condensed form akin to that of mitotic chromosomes. However, unlike mitotic chromosomes, meiotic chromosomes display weak genomic compartmentalization, weak topologically associating domains, and localized point interactions in prophase. In postmeiotic round spermatids, genomic compartmentalization increases and gives rise to the strong compartmentalization seen in mature sperm. The X chromosome lacks domain organization during meiotic sex-chromosome inactivation. We propose that male meiosis occurs amid global reprogramming of 3D chromatin organization and that strengthening of chromatin compartmentalization takes place in spermiogenesis to prepare the next generation of life.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Haia Khoury
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
36
|
Abe H, Alavattam KG, Kato Y, Castrillon DH, Pang Q, Andreassen PR, Namekawa SH. CHEK1 coordinates DNA damage signaling and meiotic progression in the male germline of mice. Hum Mol Genet 2019; 27:1136-1149. [PMID: 29360988 DOI: 10.1093/hmg/ddy022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
The continuity of life depends on mechanisms in the germline that ensure the integrity of the genome. The DNA damage response/checkpoint kinases ATM and ATR are essential signaling factors in the germline. However, it remains unknown how a downstream transducer, Checkpoint Kinase 1 (CHEK1 or CHK1), mediates signaling in the male germline. Here, we show that CHEK1 has distinct functions in both the mitotic and meiotic phases of the male germline in mice. In the mitotic phase, CHEK1 is required for the resumption of prospermatogonia proliferation after birth and the maintenance of spermatogonia. In the meiotic phase, we uncovered two functions for CHEK1: one is the stage-specific attenuation of DNA damage signaling on autosomes, and the other is coordination of meiotic stage progression. On autosomes, the loss of CHEK1 delays the removal of DNA damage signaling that manifests as phosphorylation of histone variant H2AX at serine 139 (γH2AX). Importantly, CHEK1 does not have a direct function in meiotic sex chromosome inactivation (MSCI), an essential event in male meiosis, in which ATR is a key regulator. Thus, the functions of ATR and CHEK1 are uncoupled in MSCI, in contrast to their roles in DNA damage signaling in somatic cells. Our study reveals stage-specific functions for CHEK1 that ensure the integrity of the male germline.
Collapse
Affiliation(s)
- Hironori Abe
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yasuko Kato
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Diego H Castrillon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qishen Pang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
38
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
39
|
Testa E, Nardozi D, Antinozzi C, Faieta M, Di Cecca S, Caggiano C, Fukuda T, Bonanno E, Zhenkun L, Maldonado A, Roig I, Di Giacomo M, Barchi M. H2AFX and MDC1 promote maintenance of genomic integrity in male germ cells. J Cell Sci 2018; 131:jcs.214411. [PMID: 29437857 DOI: 10.1242/jcs.214411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
In somatic cells, H2afx and Mdc1 are close functional partners in DNA repair and damage response. However, it is not known whether they are also involved in the maintenance of genome integrity in meiosis. By analyzing chromosome dynamics in H2afx-/- spermatocytes, we found that the synapsis of autosomes and X-Y chromosomes was impaired in a fraction of cells. Such defects correlated with an abnormal recombination profile. Conversely, Mdc1 was dispensable for the synapsis of the autosomes and played only a minor role in X-Y synapsis, compared with the action of H2afx This suggested that those genes have non-overlapping functions in chromosome synapsis. However, we observed that both genes play a similar role in the assembly of MLH3 onto chromosomes, a key step in crossover formation. Moreover, we show that H2afx and Mdc1 cooperate in promoting the activation of the recombination-dependent checkpoint, a mechanism that restrains the differentiation of cells with unrepaired DSBs. This occurs by a mechanism that involves P53. Overall, our data show that, in male germ cells, H2afx and Mdc1 promote the maintenance of genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Erika Testa
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniela Nardozi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Antinozzi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Caggiano
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, 951-8510 Niigata, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Nara, Japan
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, Section of Pathological Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lou Zhenkun
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Andros Maldonado
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
40
|
Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 2018; 14:e1007233. [PMID: 29462142 PMCID: PMC5834201 DOI: 10.1371/journal.pgen.1007233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/02/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The sex chromosomes are enriched with germline genes that are activated during the late stages of spermatogenesis. Due to meiotic sex chromosome inactivation (MSCI), these sex chromosome-linked genes must escape silencing for activation in spermatids, thereby ensuring their functions for male reproduction. RNF8, a DNA damage response protein, and SCML2, a germline-specific Polycomb protein, are two major, known regulators of this process. Here, we show that RNF8 and SCML2 cooperate to regulate ubiquitination during meiosis, an early step to establish active histone modifications for subsequent gene activation. Double mutants of Rnf8 and Scml2 revealed that RNF8-dependent monoubiquitination of histone H2A at Lysine 119 (H2AK119ub) is deubiquitinated by SCML2, demonstrating interplay between RNF8 and SCML2 in ubiquitin regulation. Additionally, we identify distinct functions of RNF8 and SCML2 in the regulation of ubiquitination: SCML2 deubiquitinates RNF8-independent H2AK119ub but does not deubiquitinate RNF8-dependent polyubiquitination. RNF8-dependent polyubiquitination is required for the establishment of H3K27 acetylation, a marker of active enhancers, while persistent H2AK119ub inhibits establishment of H3K27 acetylation. Following the deposition of H3K27 acetylation, H3K4 dimethylation is established as an active mark on poised promoters. Together, we propose a model whereby regulation of ubiquitin leads to the organization of poised enhancers and promoters during meiosis, which induce subsequent gene activation from the otherwise silent sex chromosomes in postmeiotic spermatids.
Collapse
Affiliation(s)
- Shannel R. Adams
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kris G. Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hironori Abe
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Megan Shroder
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Tyler J. Broering
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Julie Sroga Rios
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Michael A. Thomas
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Carolyn M. Price
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul R. Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Alavattam KG, Abe H, Sakashita A, Namekawa SH. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods Mol Biol 2018; 1861:113-129. [PMID: 30218364 PMCID: PMC8243718 DOI: 10.1007/978-1-4939-8766-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A distinct form of X chromosome inactivation takes place during male meiosis, when the male sex chromosomes undergo a phenomenon known as meiotic sex chromosome inactivation (MSCI). MSCI is directed by DNA damage response signaling independent of Xist RNA to silence the transcriptional activity of the sex chromosomes, an essential event in male germ cell development. Here, we present protocols for the preparation and analyses of chromosome spread slides of mouse meiotic spermatocytes, thereby enabling a quick, inexpensive, and powerful cytological method to complement gene expression studies.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hironori Abe
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Alavattam KG, Kato Y, Sin HS, Maezawa S, Kowalski IJ, Zhang F, Pang Q, Andreassen PR, Namekawa SH. Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Rep 2017; 17:1141-1157. [PMID: 27760317 PMCID: PMC5095620 DOI: 10.1016/j.celrep.2016.09.073] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
Precise epigenetic regulation of the sex chromosomes is vital for the male germline. Here, we analyze meiosis in eight mouse models deficient for various DNA damage response (DDR) factors, including Fanconi anemia (FA) proteins. We reveal a network of FA and DDR proteins in which FA core factors FANCA, FANCB, and FANCC are essential for FANCD2 foci formation, whereas BRCA1 (FANCS), MDC1, and RNF8 are required for BRCA2 (FANCD1) and SLX4 (FANCP) accumulation on the sex chromosomes during meiosis. In addition, FA proteins modulate distinct histone marks on the sex chromosomes: FA core proteins and FANCD2 regulate H3K9 methylation, while FANCD2 and RNF8 function together to regulate H3K4 methylation independently of FA core proteins. Our data suggest that RNF8 integrates the FA-BRCA pathway. Taken together, our study reveals distinct functions for FA proteins and illuminates the male sex chromosomes as a model to dissect the function of the FA-BRCA pathway.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Yasuko Kato
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - So Maezawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ian J Kowalski
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA.
| |
Collapse
|
43
|
DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A 2017; 114:12536-12541. [PMID: 29114052 DOI: 10.1073/pnas.1712530114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meiotic synapsis and recombination between homologs permits the formation of cross-overs that are essential for generating chromosomally balanced sperm and eggs. In mammals, surveillance mechanisms eliminate meiotic cells with defective synapsis, thereby minimizing transmission of aneuploidy. One such surveillance mechanism is meiotic silencing, the inactivation of genes located on asynapsed chromosomes, via ATR-dependent serine-139 phosphorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity requires direct interaction with an ATR activation domain (AAD)-containing partner. However, which partner facilitates the meiotic silencing properties of ATR is unknown. Focusing on the best-characterized example of meiotic silencing, meiotic sex chromosome inactivation, we reveal this AAD-containing partner to be the DNA damage and checkpoint protein TOPBP1. Conditional TOPBP1 deletion during pachynema causes germ cell elimination associated with defective X chromosome gene silencing and sex chromosome condensation. TOPBP1 is essential for localization to the X chromosome of silencing "sensors," including BRCA1, and effectors, including ATR, γH2AFX, and canonical repressive histone marks. We present evidence that persistent DNA double-strand breaks act as silencing initiation sites. Our study identifies TOPBP1 as a critical factor in meiotic sex chromosome silencing.
Collapse
|
44
|
Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember†. Biol Reprod 2017; 97:784-797. [DOI: 10.1093/biolre/iox137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
|
45
|
Pan H, Zhang X, Jiang H, Jiang X, Wang L, Qi Q, Bi Y, Wang J, Shi Q, Li R. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells. Sci Rep 2017; 7:44440. [PMID: 28290521 PMCID: PMC5349515 DOI: 10.1038/srep44440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/- germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.
Collapse
Affiliation(s)
- Hongjie Pan
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Xuan Zhang
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Hanwei Jiang
- Laboratory of Molecular and Cell Genetics, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science &Technology of China, Hefei, 230027, China
| | - Xiaohua Jiang
- Laboratory of Molecular and Cell Genetics, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science &Technology of China, Hefei, 230027, China
| | - Liu Wang
- Laboratory of Molecular and Cell Genetics, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science &Technology of China, Hefei, 230027, China
| | - Qi Qi
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Yuan Bi
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Jian Wang
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Qinghua Shi
- Laboratory of Molecular and Cell Genetics, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science &Technology of China, Hefei, 230027, China
| | - Runsheng Li
- WHO Collaborating Center for Research in Human Reproduction, Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| |
Collapse
|
46
|
Sangrithi MN, Royo H, Mahadevaiah SK, Ojarikre O, Bhaw L, Sesay A, Peters AHFM, Stadler M, Turner JMA. Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Dev Cell 2017; 40:289-301.e3. [PMID: 28132849 PMCID: PMC5300051 DOI: 10.1016/j.devcel.2016.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/01/2016] [Accepted: 12/27/2016] [Indexed: 12/02/2022]
Abstract
Somatic X dosage compensation requires two mechanisms: X inactivation balances X gene output between males (XY) and females (XX), while X upregulation, hypothesized by Ohno and documented in vivo, balances X gene with autosomal gene output. Whether X dosage compensation occurs in germ cells is unclear. We show that mouse and human germ cells exhibit non-canonical X dosage states that differ from the soma and between the sexes. Prior to genome-wide reprogramming, X upregulation is present, consistent with Ohno's hypothesis. Subsequently, however, it is erased. In females, erasure follows loss of X inactivation, causing X dosage excess. Conversely, in males, erasure leads to permanent X dosage decompensation. Sex chromosomally abnormal models exhibit a “sex-reversed” X dosage state: XX males, like XX females, develop X dosage excess, while XO females, like XY males, develop X dosage decompensation. Thus, germline X dosage compensation states are determined by X chromosome number, not phenotypic sex. These unexpected differences in X dosage compensation states between germline and soma offer unique perspectives on sex chromosome infertility. X dosage compensation in germ cells is reset during GWR PGCs exhibit X upregulation before GWR, in keeping with Ohno's hypothesis X upregulation is lost during GWR Mouse and human germ cells exhibit X dosage states that are sexually dimorphic
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK; UCL EGA Institute for Women's Health UCL, Medical School Building, 74 Huntley Street, London WC1E 6AU, UK
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Shantha K Mahadevaiah
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Obah Ojarikre
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Leena Bhaw
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Abdul Sesay
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - James M A Turner
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
47
|
Ayarza E, González M, López F, Fernández-Donoso R, Page J, Berrios S. Alterations in chromosomal synapses and DNA repair in apoptotic spermatocytes of Mus m. domesticus. Eur J Histochem 2016; 60:2677. [PMID: 27349323 PMCID: PMC4933834 DOI: 10.4081/ejh.2016.2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022] Open
Abstract
We investigated whether apoptotic spermatocytes from the mouse Mus m. domesticus presented alterations in chromosomal synapses and DNA repair. To enrich for apoptotic spermatocytes, the scrotum's temperature was raised by partially exposing animals for 15 min to a 42ºC water bath. Spermatocytes in initial apoptosis were identified in situ by detecting activated Caspase-9. SYCP1 and SYCP3 were markers for evaluating synapses or the structure of synaptonemal complexes and Rad51 and γH2AX for detecting DNA repair and chromatin remodeling. Apoptotic spermatocytes were concentrated in spermatogenic cycle stages III-IV (50.3%), XI-XII (44.1%) and IX-X (4.2%). Among apoptotic spermatocytes, 48% were in middle pachytene, 44% in metaphase and 6% in diplotene. Moreover, apoptotic spermatocytes showed several structural anomalies in autosomal bivalents, including splitting of chromosomal axes and partial asynapses between homologous chromosomes. gH2AX and Rad51 were atypically distributed during pachytene and as late as diplotene and associated with asynaptic chromatin, single chromosome axes or discontinuous chromosome axes. Among apoptotic spermatocytes at pachytene, 70% showed changes in the structure of synapses, 67% showed changes in gH2AX and Rad51 distribution and 50% shared alterations in both synapses and DNA repair. Our results showed that apoptotic spermatocytes from Mus m. domesticus contain a high frequency of alterations in chromosomal synapses and in the recruitment and distribution of DNA repair proteins. Together, these observations suggest that these alterations may have been detected by meiotic checkpoints triggering apoptosis.
Collapse
|
48
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
49
|
Protein markers of synaptic behavior and chromatin remodeling of the neo-XY body in phyllostomid bats. Chromosoma 2015; 125:701-8. [PMID: 26661581 DOI: 10.1007/s00412-015-0566-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
The XX/XY system is the rule among mammals. However, many exceptions from this general pattern have been discovered since the last decades. One of these non-conventional sex chromosome mechanisms is the multiple sex chromosome system, which is evolutionary fixed among many bat species of the family Phyllostomidae, and has arisen by a translocation between one original gonosome (X or Y chromosome), and an autosome, giving rise to a "neo-XY body." The aim of this work is to study the synaptic behavior and the chromatin remodeling of multiple sex chromosomes in different species of phyllostomid bats using electron microscopy and molecular markers. Testicular tissues from adult males of the species Artibeus lituratus, Artibeus planirostris, Uroderma bilobatum, and Vampyrodes caraccioli from the eastern Amazonia were analyzed by optical/electron microscopy and immunofluorescence of meiotic proteins involved in synapsis (SYCP3 and SYCE3), sister-chromatid cohesion (SMC3), and chromatin silencing (BRCA1, γ-H2AX, and RNApol 2). The presence of asynaptic axes-labeled by BRCA1 and γ-H2AX-at meiotic prophase in testes that have a normal development of spermatogenesis, suggests that the basic mechanism that arrests spreading of transcriptional silencing (meiotic sex chromosome inactivation (MSCI)) to the autosomal segments may be per se the formation of a functional synaptonemal complex between homologous or non-homologous regions, and thus, this SC barrier might be probably related to the preservation of fertility in these systems.
Collapse
|
50
|
Royo H, Seitz H, ElInati E, Peters AHFM, Stadler MB, Turner JMA. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation. PLoS Genet 2015; 11:e1005461. [PMID: 26509798 PMCID: PMC4624941 DOI: 10.1371/journal.pgen.1005461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. During male germ cell formation, the X and the Y chromosomes are inactivated. This process is conserved and it is essential for germ cell generation. It is believed that X/Y silencing affects all protein-coding genes, but the status of miRNAs and other non-coding genes needs further investigation. MicroRNAs from the X-chromosome (X-miRNAs) have been reported as potential silencing escapers, and they have been proposed to play a role in the inactivation mechanism itself. By looking at the individual cell level, we show unambiguously that X-miRNAs are subject to X/Y silencing, a finding that contradicts the current literature. Moreover, we generated mouse mutants in which we forced expression of X-miRNAs during X/Y silencing, and this lead to germ cell death. We propose that X/Y silencing can influence transcription of essential germ cell genes by regulating X-repressors.
Collapse
Affiliation(s)
- Hélène Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Hervé Seitz
- Institute of Human Genetics, UPR 1142, CNRS, Montpellier, France
| | - Elias ElInati
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | | | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - James M. A. Turner
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- * E-mail:
| |
Collapse
|