1
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Helmi YY, Papenkordt N, Rennar G, Gbahou F, El-Hady AK, Labani N, Schmidtkunz K, Boettcher S, Jockers R, Abdel-Halim M, Jung M, Zlotos DP. Melatonin-vorinostat hybrid ligands show higher histone deacetylase and cancer cell growth inhibition than vorinostat. Arch Pharm (Weinheim) 2023; 356:e2300149. [PMID: 37339785 DOI: 10.1002/ardp.202300149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.
Collapse
Affiliation(s)
- Youssef Y Helmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Niklas Papenkordt
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Georg Rennar
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ahmed K El-Hady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, Cairo, Egypt
| | - Nedjma Labani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Boettcher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
4
|
Mafi A, Rezaee M, Hedayati N, Hogan SD, Reiter RJ, Aarabi MH, Asemi Z. Melatonin and 5-fluorouracil combination chemotherapy: opportunities and efficacy in cancer therapy. Cell Commun Signal 2023; 21:33. [PMID: 36759799 PMCID: PMC9912526 DOI: 10.1186/s12964-023-01047-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.
Collapse
Affiliation(s)
- Alireza Mafi
- grid.411036.10000 0001 1498 685XDepartment of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Malihe Rezaee
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran ,grid.411705.60000 0001 0166 0922Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Hedayati
- grid.411746.10000 0004 4911 7066School of Medicine, Iran University of Medical Science, Tehran, Islamic Republic of Iran
| | - Sara Diana Hogan
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Russel J. Reiter
- grid.43582.380000 0000 9852 649XDepartment of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX USA
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
5
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
8
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
9
|
Wei F, Chen W, Lin X. Night-shift work, breast cancer incidence, and all-cause mortality: an updated meta-analysis of prospective cohort studies. Sleep Breath 2021; 26:1509-1526. [PMID: 34775538 DOI: 10.1007/s11325-021-02523-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Night-shift work exposure is proposed to link to a wide range of health issues, especially cancer incidence, cancer-specific death, and all-cause death. However, the epidemiological associations among night-shift work exposure, breast cancer, breast cancer-specific death, and all-cause mortality remain inconclusive. METHODS We performed an updated systematic review and meta-analysis to confirm potential associations among night-shift work exposure, breast cancer, and all-cause mortality. RESULTS A total of 31 prospective cohort studies, involving 9.3 million participants, 31,244 incident breast cancer cases, 12,728 cancer-related deaths, 7882 cardiovascular deaths, and 30,807 all-cause mortalities were included. Overall, the summary RR of incident breast cancer in females for an increase of night-shift work was 1.029 (95% CI 1.003-1.055). Compared with standard day workers, night-shift workers had a statistically significantly increased RR (1.086, 95% CI 1.032-1.142) for breast cancer incidence in the subgroup of > 10 years exposure. Furthermore, a positive association was revealed in subgroup studies of rotating night-shift work (RR = 1.053, 95% CI 1.018-1.090). A significant increased risk of cardiovascular mortality was demonstrated in the night-shift work group (RR = 1.031; 95% CI 1.006-1.057). CONCLUSION Our systematic review and meta-analysis provided convincing evidence supporting positive associations among night-shift work exposure, breast cancer incidence, and cardiovascular mortality. Taken together, night-shift work exposure significantly increased the risk of breast cancer morbidity by 2.9% for total, 8.6% for the subgroup of more than 10 years night-shift work, and 5.3% for rotating night-shift work. In addition, night-shift work increased the risk of cardiovascular mortality by 3.1%.
Collapse
Affiliation(s)
- Fengqin Wei
- Department of Geriatrics, Fujian Provincial 2Nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weiyu Chen
- Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoti Lin
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Costanzi E, Simioni C, Conti I, Laface I, Varano G, Brenna C, Neri LM. Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives. J Cell Physiol 2020; 236:2505-2518. [PMID: 32989768 DOI: 10.1002/jcp.30062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that G protein-coupled receptors (GPCRs), the largest signal-conveying receptor family, are targets for mutations occurring frequently in different cancer types. GPCR alterations associated with cancer development represent significant challenges for the discovery and the advancement of targeted therapeutics. Among the different molecules that can activate GPCRs, we focused on two molecules that exert their biological actions regulating many typical features of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin and melatonin. The modulation of signaling pathways, that involves these two molecules, opens an interesting scenario for cancer therapy, with the opportunity to act at different molecular levels. Therefore, the aim of this review is the analysis of the biological activity and the therapeutic potential of somatostatin and melatonin, displaying a high affinity for GPCRs, that interfere with cancer development and maintenance.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Exp Mol Med 2020; 52:1341-1350. [PMID: 32855437 PMCID: PMC8080626 DOI: 10.1038/s12276-020-00491-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is one of the most life-threatening and potentially fatal complications associated with controlled ovarian hyperstimulation (COH) during in vitro fertilization (IVF) treatment. Although the pathogenesis of OHSS remains unclear, elevated serum estradiol (E2) levels before human chorionic gonadotropin (hCG) administration are associated with the risk of OHSS. The pineal hormone melatonin and its receptors are expressed in human granulosa cells and have been shown to stimulate E2 production. However, the effect of melatonin on the expression of aromatase, an enzyme responsible for a key step in the biosynthesis of E2, in human granulosa cells remains to be determined. Here, we demonstrate that melatonin upregulates aromatase expression in primary cultured human granulosa-lutein (hGL) cells through the melatonin receptor-mediated PKA-CREB pathway. Using a mouse model of OHSS, we demonstrate that administration of the melatonin receptor inhibitor luzindole inhibits the development of OHSS. In addition, the expression of ovarian aromatase and serum E2 levels are upregulated in OHSS mice compared to control mice, but this upregulation is attenuated by inhibition of the function of melatonin. Moreover, clinical results reveal that aromatase expression levels are upregulated in hGL cells from OHSS patients. Melatonin and E2 levels in the follicular fluid are significantly higher in OHSS patients than in non-OHSS patients. Furthermore, melatonin levels are positively correlated with E2 levels in follicular fluid. This study helps to elucidate the mechanisms mediating the expression of aromatase in hGL cells and provides a potential mechanism explaining the high E2 levels in patients with OHSS. Blocking the activity of melatonin helps prevent female mice from developing swollen ovaries, a potentially life-threatening complication of assisted fertilization techniques. A research team from China’s First Affiliated Hospital of Zhengzhou University, led by Jung-Chien Cheng and Ying-Pu Sun, demonstrated that melatonin, a hormone found in the fluid that surrounds developing eggs, can induce ovarian cells to boost expression of aromatase. This enzyme is responsible for synthesizing estradiol, a hormone involved in female reproduction. Women whose ovaries became over-stimulated in response to fertility medications showed elevated levels of melatonin, aromatase and estradiol. Inhibiting the function of melatonin reduced symptoms in mouse models of ovarian hyperstimulation syndrome. The findings reveal an important role of melatonin in ovarian enlargement and point to new therapeutic strategies for women undergoing in vitro fertilization.
Collapse
|
13
|
Mosher AA, Tsoulis MW, Lim J, Tan C, Agarwal SK, Leyland NA, Foster WG. Melatonin activity and receptor expression in endometrial tissue and endometriosis. Hum Reprod 2020; 34:1215-1224. [PMID: 31211323 DOI: 10.1093/humrep/dez082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION Are melatonin receptors (melatonin receptor 1A (MR1A) and melatonin receptor 1B (MR1B)) expressed in human endometrium and endometriotic tissue, and does melatonin affect endometrial cell proliferation? SUMMARY ANSWER Melatonin receptors are expressed in human eutopic endometrium, endometriomas and peritoneal lesions, although to different extents, and melatonin treatment attenuated estradiol-induced endometrial epithelial cell proliferation in culture. WHAT IS KNOWN ALREADY Melatonin decreased endometriotic lesion volume in a rat model of endometriosis. Melatonin treatment reduced pain scores in and analgesic use by women with endometriosis. STUDY DESIGN, SIZE, DURATION Basic science study using human endometrial tissue and an endometrial epithelial cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS Measurement of melatonin receptor expression (mRNA and protein) in women with surgically confirmed endometriosis (endometrioma (n = 20) or peritoneal lesion (n = 11) alone) and women without surgical evidence of endometriosis (control, n = 15). Collection of endometrial and endometriotic tissue samples, gynecologic history and demographic information. Quantification of estradiol (1.0 nM) and melatonin (0.1 nM-1.0 μM) ± estradiol-induced endometrial epithelial cell proliferation in cultures of endometrial epithelial cells (CRL-1671) following 24 and 48 hours of culture. MAIN RESULTS AND THE ROLE OF CHANCE MR1A and MR1B were localized by immunohistochemistry in glandular epithelial cells of endometrial biopsies from women with and without endometriosis. Both receptors were expressed in eutopic and ectopic endometrial tissue. mRNA expression of MR1A and MR1B was significantly greater in peritoneal lesions than in either endometriomas or eutopic endometrium. However, protein expression of MR1A was decreased in peritoneal lesions compared to control eutopic endometrium, whereas MR1B expression did not differ between the groups. Melatonin (0.1 nM-1.0 μM) treatment inhibited estradiol (1.0 nM)-induced endometrial epithelial cell proliferation at 48 hours but not 24 hours of culture. LIMITATIONS, REASONS FOR CAUTION Beneficial effects of melatonin seen in culture have yet to be comprehensively evaluated in women with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Our data suggest that melatonin may be useful as an adjunct to current endometriosis treatments. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Canadian Institutes of Health Research (grant MOP142230 to W.G.F.). A.A.M. is supported by a resident research grant through the Physicians Services Incorporated Foundation. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- A A Mosher
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - M W Tsoulis
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - J Lim
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - C Tan
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - S K Agarwal
- Center for Endometriosis Research and Treatment, University of California San Diego, La Jolla, CA, USA
| | - N A Leyland
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - W G Foster
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada.,Center for Endometriosis Research and Treatment, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
15
|
Dana PM, Sadoughi F, Mobini M, Shafabakhsh R, Chaichian S, Moazzami B, Chamani M, Asemi Z. Molecular and Biological Functions of Melatonin in Endometrial Cancer. Curr Drug Targets 2020; 21:519-526. [DOI: 10.2174/1389450120666190927123746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/01/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is the fifth leading cancer among women. This rate is higher in developed countries and its incidence is increasing worldwide. Diabetes mellitus, obesity, hypertension and arteriosclerosis are major risk factors for endometrial cancer. Melatonin is a hormone synthesized in the pineal and extra-pineal organs such as the digestive tract, bone marrow, retina and more. Evidence shows the potential effects of melatonin in endometrial cancer inhibition. Therefore, the focus of this paper is to review this outstanding evidence and to summarize the molecular and biological mechanisms of melatonin for the inhibition of endometrial cancer.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Shala Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Chamani
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS One 2020; 15:e0228062. [PMID: 32012171 PMCID: PMC6996834 DOI: 10.1371/journal.pone.0228062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/19/2022] Open
Abstract
Melatonin, a hormone secreted by pineal gland, exerts antimetastatic effects by reducing tumor cell proliferation, migration and invasion. MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulation of gene expression and biological processes of the cells. Herein, we search for a link between the tumor/metastatic-suppressive actions of melatonin and miRNA expression in triple-negative breast cancer cells. We demonstrated that melatonin exerts its anti-tumor actions by reducing proliferation, migration and c-Myc expression of triple negative breast cancer cells. By using Taqman-based assays, we analyzed the expression levels of a set of miRNAs following melatonin treatment of triple negative breast cancer cells and we identified 17 differentially expressed miRNAs, 6 down-regulated and 11 up-regulated. We focused on the anti-metastatic miR-148b and the oncogenic miR-210 both up-regulated by melatonin treatment and studied the effect of their modulation on melatonin-mediated impairment of tumor progression. Surprisingly, when miR-148b or miR-210 were depleted in triple-negative breast cancer cells, using a specific miR-148b sponge or anti-miR-210, melatonin effects on migration inhibition and c-myc downregulation were still visible suggesting that the increase of miR-148b and miR-210 expression observed following melatonin treatment was not required for the efficacy of melatonin action. Nevertheless, ours results suggest that melatonin exhibit a compound for metastatic trait inhibition, especially in MDA-MB-231 breast cancer cells even if a direct link between modulation of expression of certain proteins or miRNAs and melatonin effects has still to be established.
Collapse
|
17
|
Lin PH, Tung YT, Chen HY, Chiang YF, Hong HC, Huang KC, Hsu SP, Huang TC, Hsia SM. Melatonin activates cell death programs for the suppression of uterine leiomyoma cell proliferation. J Pineal Res 2020; 68:e12620. [PMID: 31710386 DOI: 10.1111/jpi.12620] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The circadian nature of melatonin has a protective effect on the progression of female reproductive cancers, including breast and ovarian cancers. However, the effect of melatonin on the growth of uterine leiomyoma is still unclear. In this study, we found that the growth of uterine leiomyoma ELT3 cells was reduced by treatment with melatonin. Treatment with melatonin increased the distribution of sub-G1 phase and increased DNA condensation in ELT3 cells. Melatonin-induced apoptosis and autophagy cell death progression were observed in ELT3 cells. Melatonin exerts a highly selective effect on primary normal human uterine smooth muscle (UtSMC) cells. The UtSMC cell cycle was arrested by melatonin treatment through up-regulation of p21, p27, and PTEN protein expression, but melatonin did not further promote apoptosis program activation. Melatonin reduced cell proliferation in ELT3 cells underlying the activation of melatonin MT1 and MT2 receptors, which in turn down-regulated the Akt-ERK1/2-NFκB signaling pathway. Melatonin reduced ELT3 tumor growth in both xenograft and orthotopic uterine tumor mice models. The extracellular matrix of the tumor was also reduced by melatonin treatment. Taken together, these results suggest that melatonin potentially plays a role in suppression of uterine leiomyoma growth.
Collapse
Affiliation(s)
- Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ting Tung
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chih Hong
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Molecular Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- School of Food and Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Bjørklund G, Rajib SA, Saffoon N, Pen JJ, Chirumbolo S. Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What's New? Curr Med Chem 2019; 26:6304-6320. [PMID: 29714136 DOI: 10.2174/0929867325666180501094850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Nadia Saffoon
- Department of Pharmacy and Forensic Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Liu P, Xie X, Yang A, Kong Y, Allen-Gipson D, Tian Z, Zhou L, Tang H, Xie X. Melatonin Regulates Breast Cancer Progression by the lnc010561/miR-30/FKBP3 Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:765-774. [PMID: 31955008 PMCID: PMC6970137 DOI: 10.1016/j.omtn.2019.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023]
Abstract
Melatonin has been recognized to slow breast cancer growth. The molecular mechanisms may involve long non-coding RNAs (lncRNAs). However, little is known on how melatonin affects lncRNA expression and function in breast cancer. We used microarrays to explore the expression profile of mRNAs and lncRNAs in melatonin-treated breast cancer cells. Kyoto encyclopedia of genes and genomes (KEGG) and Reactome pathways analysis were performed to identify the signaling pathways affected by altered expressed mRNAs after melatonin treatment. To explore the functions and mechanisms of the selected differentially expressed mRNA and lncRNA in breast cancer, we performed a series of experiments. We found that FK506-binding protein 3 (FKBP3) and lnc010561 were downregulated in melatonin-treated breast cancer cells. Knockdown of FKBP3 and lnc010561 inhibited breast cancer proliferation and invasion, and induced apoptosis. Also, lnc010561 and FKBP3 functioned as competing endogenous RNAs (ceRNAs) for miR-30. Our findings suggested that melatonin regulated breast cancer progression by the lnc010561/miR-30/FKBP3 axis. Melatonin may, therefore, function as an anticancer strategy for breast cancer.
Collapse
Affiliation(s)
- Peng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinhua Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anli Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanan Kong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Zhi Tian
- Colleges of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hailin Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
20
|
|
21
|
Veiga ECDA, Simões R, Valenti VE, Cipolla-Neto J, Abreu LC, Barros EPM, Sorpreso ICE, Baracat MCP, Baracat EC, Soares Junior JM. Repercussions of melatonin on the risk of breast cancer: a systematic review and meta-analysis. Rev Assoc Med Bras (1992) 2019; 65:699-705. [DOI: 10.1590/1806-9282.65.5.699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022] Open
Abstract
SUMMARY Breast Cancer is common in women, but its etiology is not yet fully understood. Several factors may contribute to its genesis, such as genetics, lifestyle, and the environment. Melatonin may be involved in the process of breast cancer. Therefore, the aim of this study is to evaluate the influence of the levels of melatonin on breast cancer through a systematic review and meta-analysis. We performed a systematic review according to PRISMA recommendations. The primary databases MEDLINE, Embase, and Cochrane were consulted. There was no restriction on the year of publication and language. Data of systematic reviews from April 2017 to September to 2017 were analyzed. The meta-analysis was conducted using RevMan 5.3 software provided by the Cochrane Collaboration. From a total of 570 articles, 9 manuscripts were included in this review. They analy onzed women with breast cancer and control patients, of which 10% and 90% were in the reproductive period and after menopause, respectively. The lowest level of melatonin was found in approximately 55% of studies with breast cancer in post-menopause. The metanalyses of the studies demonstrated low levels of melatonin in breast cancer patients (n=963) compared with control patients (n= 1332), with a mean difference between the studies of −3.54 (CI −6.01, −1.06). Another difference found was in the comparison between smoking patients, with an average difference between 1.80 [0.97-2.63]. Our data suggest that low levels of melatonin might be a risk factor for breast cancer.
Collapse
|
22
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
23
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 2018; 43:945-955. [PMID: 30569127 PMCID: PMC6317691 DOI: 10.3892/ijmm.2018.4021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is an essential process involved in various physiological, including placentation, and pathological, including cancer and endometriosis, processes. Melatonin (MLT), a well-known natural hormone secreted primarily in the pineal gland, is involved in regulating neoangiogenesis and inhibiting the development of a variety of cancer types, including lung and breast cancer. However, the specific mechanism of its anti-angiogenesis activity has not been systematically elucidated. In the present study, the effect of MLT on viability and angiogenesis of human umbilical vein endothelial cells (HUVECs), and the production of vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS), under normoxia or hypoxia was analyzed using Cell Counting kit 8, tube formation, flow cytometry, ELISA and western blot assays. It was determined that the secretion of VEGF by HUVECs was significantly increased under hypoxia, while MLT selectively obstructed VEGF release as well as the production of ROS under hypoxia. Furthermore, MLT inhibited the viability of HUVECs in a dose-dependent manner and reversed the increase in cell viability and tube formation that was induced by hypoxia/VEGF/H2O2. Additionally, treatment with an inhibitor of hypoxia inducible factor (HIF)-1α (KC7F2) and MLT synergistically reduced the release of ROS and VEGF, and inhibited cell viability and tube formation of HUVECs. These observations demonstrate that MLT may serve dual roles in the inhibition of angiogenesis, as an antioxidant and a free radical scavenging agent. MLT suppresses the viability and angiogenesis of HUVECs through the downregulation of HIF-1α/ROS/VEGF. In summary, the present data indicate that MLT may be a potential anticancer agent in solid tumors with abundant blood vessels, particularly combined with KC7F2.
Collapse
Affiliation(s)
- Jiao Cheng
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
24
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Proietti S, Catizone A, Masiello MG, Dinicola S, Fabrizi G, Minini M, Ricci G, Verna R, Reiter RJ, Cucina A, Bizzarri M. Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J Pineal Res 2018; 64:e12467. [PMID: 29338098 DOI: 10.1111/jpi.12467] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023]
Abstract
Through activation of the ERK pathway, nicotine, in both normal MCF-10A and low-malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on nonstimulated cells, it is likely that melatonin can counteract ERK activation only downstream of nicotine-induced activation. This finding suggests that melatonin hampers ERK phosphorylation presumably by targeting a still unknown intermediate factor that connects nicotine stimulation to ERK phosphorylation. Furthermore, downstream of ERK activation, melatonin significantly reduces fascin and calpain activation while restoring normal vinculin levels. Melatonin also counteracts nicotine effects by reshaping the overall cytoskeleton architecture and abolishing invasive membrane protrusion. In addition, melatonin decreases nicotine-dependent ROCK1/ROCK2 activation, thus further inhibiting cell contractility and motility. Melatonin actions are most likely attributable to ERK inhibition, although melatonin could display other ERK-independent effects, namely through a direct modulation of additional molecular and structural factors, including coronin, cofilin, and cytoskeleton components.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Dinicola
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianmarco Fabrizi
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Mirko Minini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Roberto Verna
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Azienda Policlinico Umberto I, Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Griffin F, Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol 2018. [PMID: 29521142 DOI: 10.1080/09553002.2018.1446227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin is an endogenous hormone primarily known for its action on the circadian rhythms. But pre-clinical studies are reporting both its radioprotective and radiosensitizing properties, possibly mediated through an interaction between melatonin and the regulation of estrogens. Melatonin pre-treatment prior to ionizing radiation was associated with a decrease in cell proliferation and an increase in p53 mRNA expression, leading to an increase in the radiosensitivity of breast cancer cells. At the same time, a decrease in radiation-induced side effects was described in breast cancer patients and in rodent models. This review examines the potential for melatonin to improve the therapeutic outcomes of breast radiation therapy, specifically estrogen receptor positive patients. Evidence suggests that melatonin may offer a novel, non-toxic and cheap adjuvant therapy to improve the existing treatment modalities. But further research is required in the clinical setting before a clear understanding of its therapeutic benefits is determined.
Collapse
Affiliation(s)
- Fiona Griffin
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| | - Laure Marignol
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
27
|
Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget 2018; 7:46768-46784. [PMID: 27102150 PMCID: PMC5216835 DOI: 10.18632/oncotarget.8776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC.
Collapse
|
28
|
Melatonin and breast cancer: Evidences from preclinical and human studies. Crit Rev Oncol Hematol 2018; 122:133-143. [DOI: 10.1016/j.critrevonc.2017.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/20/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
|
29
|
Alkozi HA, Sánchez Montero JM, Doadrio AL, Pintor J. Docking studies for melatonin receptors. Expert Opin Drug Discov 2017; 13:241-248. [PMID: 29271261 DOI: 10.1080/17460441.2018.1419184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Melatonin is a neurohormone that controls many relevant physiological processes beyond the control of circadian rhythms. Melatonin's actions are carried out by two main types of melatonin receptors; MT1 and MT2. These receptors are important, and not just because of the biological actions of its natural agonist; but also, because melatonin analogues can improve or antagonize their biological effect. Area covered: The following article describes the importance of melatonin as a biologically relevant molecule. It also defines the receptors for this substance, as well as the second messengers coupled to these receptors. Lastly, the article describes the amino acid residues involved in the docking process in both MT1 and MT2 melatonin receptors. Expert opinion: The biological actions of melatonin and their interpretations are becoming more relevant and therefore require the development of new pharmacological tools. Understanding the second messenger mechanisms involved in melatonin actions, as well as the characteristics of the docking of this molecule to MT1 and MT2 melatonin receptors, will permit the development of more selective agonists and antagonists which will help us to better understand this molecule as well to develop new therapeutic compounds.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- a Department of Biochemistry and Molecular Biology IV, Faculty of Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - José Maria Sánchez Montero
- b Department of Organic Chemistry and Pharmaceutical, Faculty of Pharmacy , Ciudad Universitaria , Madrid , Spain
| | - Antonio Luis Doadrio
- c Department of Inorganic Chemistry and Bioorganic, Faculty of Pharmacy , University Complutense of Madrid , Ciudad Universitaria, Madrid , Spain
| | - Jesus Pintor
- a Department of Biochemistry and Molecular Biology IV, Faculty of Optometry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
30
|
Proietti S, Cucina A, Minini M, Bizzarri M. Melatonin, mitochondria, and the cancer cell. Cell Mol Life Sci 2017; 74:4015-4025. [PMID: 28785807 PMCID: PMC11107593 DOI: 10.1007/s00018-017-2612-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Mirko Minini
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
31
|
Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Jardim-Perassi BV, Calvinho GB, Facchini MC, Viloria-Petit AM, de Campos Zuccari DAP. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci 2017. [PMID: 28624391 DOI: 10.1016/j.lfs.2017.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.
Collapse
Affiliation(s)
- Gabriela Bottaro Gelaleti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Thaiz Ferraz Borin
- Tumor Imaging Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| | - Larissa Bazela Maschio-Signorini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Marina Gobbe Moschetta
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil
| | - Guilherme Berto Calvinho
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Mariana Castilho Facchini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Debora Aparecida Pires de Campos Zuccari
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
32
|
Martínez-Campa C, Menéndez-Menéndez J, Alonso-González C, González A, Álvarez-García V, Cos S. What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncol Lett 2017; 13:2003-2014. [PMID: 28454355 PMCID: PMC5403278 DOI: 10.3892/ol.2017.5712] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone-dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone-independent cancer, including ovarian, leukemic, pancreatic, gastric and non-small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone-dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non-desirable effects (such as altered gene expression and post-translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
- Correspondence to: Dr Carlos Martínez-Campa, Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, Av. Cardenal Herrera Oria s/n, 39011 Santander, Spain, E-mail:
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Virginia Álvarez-García
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, EH14 4AS Edinburgh, UK
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| |
Collapse
|
33
|
Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Hellmén E, Viloria-Petit AM, Zuccari DAPC. Melatonin and IL-25 modulate apoptosis and angiogenesis mediators in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumour cells. Vet Comp Oncol 2017; 15:1572-1584. [PMID: 28322030 DOI: 10.1111/vco.12303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/04/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Melatonin has oncostatic actions and IL-25 is active in inflammatory processes that induce apoptosis in tumor cells AIM: The aim of this study was to evaluate melatonin and IL-25 in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumor cells cultured as monolayers and tridimensional structures. MATERIALS AND METHODS The cells were treated with melatonin, IL-25 and IL-17B silencing gene and performed cell viability, gene and protein expression of caspase-3 and VEGFA (Vascular endothelial growth factor A) and an apoptosis membrane protein array. RESULTS Treatment with 1 mM of melatonin reduced cell viability of both tumor cell lines, all treatments alone and combined significantly increased caspase-3 cleaved and proteins involved in the apoptotic pathway and reduced pro-angiogenic VEGFA, confirming the effectiveness of these potential promising treatments. CONCLUSION This is the first study evaluating the potential use of these strategies in CF-41 and CMT-U229 cell lines and together encourages subsequent in vitro and in vivo studies for further exploration of clinical applications.
Collapse
Affiliation(s)
- G B Gelaleti
- Programa de Pós-Graduação em Genética, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP/IBILCE), São José do Rio Preto, Brazil.,Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - T F Borin
- Georgia Cancer Center, Tumor Imaging Angiogenesis Laboratory, Augusta University, Augusta, Georgia
| | - L B Maschio-Signorini
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - M G Moschetta
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - E Hellmén
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - D A P C Zuccari
- Programa de Pós-Graduação em Genética, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP/IBILCE), São José do Rio Preto, Brazil.,Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| |
Collapse
|
34
|
Devore EE, Warner ET, Eliassen AH, Brown SB, Beck AH, Hankinson SE, Schernhammer ES. Urinary Melatonin in Relation to Postmenopausal Breast Cancer Risk According to Melatonin 1 Receptor Status. Cancer Epidemiol Biomarkers Prev 2016; 26:413-419. [PMID: 28151704 DOI: 10.1158/1055-9965.epi-16-0630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background: Urinary melatonin levels have been associated with a reduced risk of breast cancer in postmenopausal women, but this association might vary according to tumor melatonin 1 receptor (MT1R) expression.Methods: We conducted a nested case-control study among 1,354 postmenopausal women in the Nurses' Health Study, who were cancer free when they provided first-morning spot urine samples in 2000 to 2002; urine samples were assayed for 6-sulfatoxymelatonin (aMT6s, a major metabolite of melatonin). Five-hundred fifty-five of these women developed breast cancer before May 31, 2012, and were matched to 799 control subjects. In a subset of cases, immunohistochemistry was used to determine MT1R status of tumor tissue. We used multivariable-adjusted conditional logistic regression to estimate the relative risk (RR) of breast cancer [with 95% confidence intervals (CI)] across quartiles of creatinine-standardized urinary aMT6s level, including by MT1R subtype.Results: Higher urinary melatonin levels were suggestively associated with a lower overall risk of breast cancer (multivariable-adjusted RR = 0.78; 95% CI = 0.61-0.99, comparing quartile 4 vs. quartile 1; Ptrend = 0.08); this association was similar for invasive vs. in situ tumors (Pheterogeneity = 0.12). There was no evidence that associations differed according to MT1R status of the tumor (e.g., Pheterogeneity for overall breast cancer = 0.88).Conclusions: Higher urinary melatonin levels were associated with reduced breast cancer risk in this cohort of postmenopausal women, and the association was not modified by MT1R subtype.Impact: Urinary melatonin levels appear to predict the risk of breast cancer in postmenopausal women. However, future research should evaluate these associations with longer-term follow-up and among premenopausal women. Cancer Epidemiol Biomarkers Prev; 26(3); 413-9. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth E Devore
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Erica T Warner
- Clinical Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Susan B Brown
- Division of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Susan E Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Role of high-fat diet on the effect of pioglitazone and melatonin in a rat model of breast cancer. Eur J Cancer Prev 2016; 25:395-403. [DOI: 10.1097/cej.0000000000000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Lopes J, Arnosti D, Trosko JE, Tai MH, Zuccari D. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer 2016; 7:209-17. [PMID: 27551335 PMCID: PMC4979593 DOI: 10.18632/genesandcancer.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Juliana Lopes
- Department of Biology, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
| | - David Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - James E. Trosko
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Mei-Hui Tai
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Debora Zuccari
- Department of Biology, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
- Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| |
Collapse
|
37
|
Lima RC, Pinto da Cunha J, Peixinho N. Light pollution: Assessment of sky glow on two dark sky regions of Portugal. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:307-319. [PMID: 27029512 DOI: 10.1080/15287394.2016.1153446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.
Collapse
Affiliation(s)
- Raul Cerveira Lima
- a Physics , School of Allied Health Technologies of the Polytechnic Institute of Porto , Portugal
- b CITEUC, Centre for Earth and Space Science Research of the University of Coimbra, Observatório Astronómico da Universidade de Coimbra
| | | | - Nuno Peixinho
- b CITEUC, Centre for Earth and Space Science Research of the University of Coimbra, Observatório Astronómico da Universidade de Coimbra
- d Unidad de Astronomía, Fac. Cs. Básicas , Universidad de Antofagasta , Chile
| |
Collapse
|
38
|
Melatonin, an inhibitory agent in breast cancer. Breast Cancer 2016; 24:42-51. [PMID: 27017208 DOI: 10.1007/s12282-016-0690-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The heterogeneous nature of breast cancer makes it one of the most challenging cancers to treat. Due to the stimulatory effect of estrogen in mammary cancer progression, anti-estrogenic agents like melatonin have found their way into breast cancer treatment. Further studies confirmed a reverse correlation between nocturnal melatonin levels and the development of mammary cancer. In this study we reviewed the molecular inhibitory effects of melatonin in breast cancer therapy. METHODS To open access the articles, Google scholar and science direct were used as a motor search. We used from valid external and internal databases. To reach the search formula, we determined mean key words like breast cancer, melatonin, cell proliferation and death. To retrieval the related articles, we continuously search the articles from 1984 to 2015. The relevance and the quality of the 480 articles were screened; at least we selected 80 eligible articles about melatonin molecular mechanism in breast cancer. RESULT The results showed that melatonin not only inhibits breast cancer cell growth, but also is capable of inhibiting angiogenesis, cancer cell invasion, and telomerase activity. Interestingly this hormone is able to induce apoptosis through the suppression or induction of a wide range of signaling pathways. Moreover, it seems that the concomitant administration of melatonin with other conventional chemotherapy agents had beneficial effects for patients with breast cancer, by alleviating unfavorable effects of those agents and enhancing their efficacy. CONCLUSION The broad inhibitory effects of melatonin in breast cancer make it a promising agent and may add it to the list of potential drugs in treatment of this cancer.
Collapse
|
39
|
Borin TF, Arbab AS, Gelaleti GB, Ferreira LC, Moschetta MG, Jardim-Perassi BV, Iskander ASM, Varma NRS, Shankar A, Coimbra VB, Fabri VA, de Oliveira JG, de Campos Zuccari DAP. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res 2016; 60:3-15. [PMID: 26292662 PMCID: PMC4996347 DOI: 10.1111/jpi.12270] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023]
Abstract
The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of 'hot' spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment.
Collapse
Affiliation(s)
- Thaiz Ferraz Borin
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Ali Syed Arbab
- Tumor angiogenesis laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Gabriela Bottaro Gelaleti
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
- Universidade Estadual Paulista Julio de Mesquita Filho – IBILCE/UNESP, Sao Jose do Rio Preto, SP, Brazil
| | - Lívia Carvalho Ferreira
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
- Universidade Estadual Paulista Julio de Mesquita Filho – IBILCE/UNESP, Sao Jose do Rio Preto, SP, Brazil
| | - Marina Gobbe Moschetta
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - ASM Iskander
- Tumor angiogenesis laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Nadimpalli Ravi S. Varma
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Adarsh Shankar
- Tumor angiogenesis laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Verena Benedick Coimbra
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Vanessa Alves Fabri
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | | | - Debora Aparecida Pires de Campos Zuccari
- Laboratory of Molecular Investigation of Cancer – LIMC, Department of Molecular Biology, Faculdade de Medicina de Sao Jose do Rio Preto – FAMERP, Sao Jose do Rio Preto, SP, Brazil
- Universidade Estadual Paulista Julio de Mesquita Filho – IBILCE/UNESP, Sao Jose do Rio Preto, SP, Brazil
| |
Collapse
|
40
|
França EL, Honorio-França AC, Fernandes RTDS, Marins CMF, Pereira CCDS, Varotti FDP. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells. Neuroimmunomodulation 2016; 23:27-32. [PMID: 26445481 DOI: 10.1159/000439277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer.
Collapse
Affiliation(s)
- Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garx00E7;as, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Vriend J, Reiter RJ. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system--a review. Mol Cell Endocrinol 2015; 417:1-9. [PMID: 26363225 DOI: 10.1016/j.mce.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatonin and breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center San Antonio, TX, USA
| |
Collapse
|
42
|
Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 2015; 22:R183-204. [PMID: 25876649 PMCID: PMC4457700 DOI: 10.1530/erc-15-0030] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.
Collapse
Affiliation(s)
- Steven M Hill
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Robert T Dauchy
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Shulin Xiang
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Samantha Brimer
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lulu Mao
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Adam Hauch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Peter W Lundberg
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Whitney Summers
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lin Yuan
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Tripp Frasch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - David E Blask
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
43
|
Abstract
Melatonin is a small, highly conserved indole with numerous receptor-mediated and receptor-independent actions. Receptor-dependent functions include circadian rhythm regulation, sleep, and cancer inhibition. The receptor-independent actions relate to melatonin's ability to function in the detoxification of free radicals, thereby protecting critical molecules from the destructive effects of oxidative stress under conditions of ischemia/reperfusion injury (stroke, heart attack), ionizing radiation, and drug toxicity, among others. Melatonin has numerous applications in physiology and medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Dun Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico D.F., Mexico
| |
Collapse
|
44
|
Xin Z, Jiang S, Jiang P, Yan X, Fan C, Di S, Wu G, Yang Y, Reiter RJ, Ji G. Melatonin as a treatment for gastrointestinal cancer: a review. J Pineal Res 2015; 58:375-87. [PMID: 25752643 DOI: 10.1111/jpi.12227] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancer is a disease that affects the population worldwide with high morbidity and mortality. Melatonin, an endogenously produced molecule, may provide a defense against a variety of cancer types. In particular, the ability of melatonin to inhibit gastrointestinal cancer is substantial. In this review, we first clarify the relationship between the disruption of the melatonin rhythm and gastrointestinal cancer (based on epidemiologic surveys and animal and human studies) and summarize the preventive effect of melatonin on carcinogenesis. Thereafter, the mechanisms through which melatonin exerts its anti-gastrointestinal cancer actions are explained, including inhibition of proliferation, invasion, metastasis, and angiogenesis, and promotion of apoptosis and cancer immunity. Moreover, we discuss the drug synergy effects and the role of melatonin receptors involved in the growth-inhibitory effects on gastrointestinal cancer. Taken together, the information compiled here serves as a comprehensive reference for the anti-gastrointestinal cancer actions of melatonin that have been identified to date and will hopefully aid in the design of further experimental and clinical studies and increase the awareness of melatonin as a therapeutic agent in cancers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Zhenlong Xin
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Brown SB, Hankinson SE, Eliassen AH, Reeves KW, Qian J, Arcaro KF, Wegrzyn LR, Willett WC, Schernhammer ES. Urinary melatonin concentration and the risk of breast cancer in Nurses' Health Study II. Am J Epidemiol 2015; 181:155-62. [PMID: 25587174 DOI: 10.1093/aje/kwu261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experimental and epidemiologic data support a protective role for melatonin in breast cancer etiology, yet studies in premenopausal women are scarce. In a case-control study nested within the Nurses' Health Study II cohort, we measured the concentration of melatonin's major urinary metabolite, 6-sulfatoxymelatonin (aMT6s), in urine samples collected between 1996 and 1999 among 600 breast cancer cases and 786 matched controls. Cases were predominantly premenopausal women who were diagnosed with incident breast cancer after urine collection and before June 1, 2007. Using multivariable conditional logistic regression, we computed odds ratios and 95% confidence intervals. Melatonin levels were not significantly associated with total breast cancer risk (for the fourth (top) quartile (Q4) of aMT6s vs. the first (bottom) quartile (Q1), odds ratio (OR) = 0.91, 95% confidence interval (CI): 0.64, 1.28; Ptrend = 0.38) or risk of invasive or in situ breast cancer. Findings did not vary by body mass index, smoking status, menopausal status, or time between urine collection and diagnosis (all Pinteraction values ≥ 0.12). For example, the odds ratio for total breast cancer among women with ≤5 years between urine collection and diagnosis was 0.74 (Q4 vs. Q1; 95% CI: 0.45, 1.20; Ptrend = 0.09), and it was 1.20 (Q4 vs. Q1; 95% CI: 0.72, 1.98; Ptrend = 0.70) for women with >5 years. Our data do not support an overall association between urinary melatonin levels and breast cancer risk.
Collapse
|
47
|
Laothong U, Hiraku Y, Oikawa S, Intuyod K, Murata M, Pinlaor S. Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway. Oncol Rep 2015; 33:1443-9. [PMID: 25606968 DOI: 10.3892/or.2015.3738] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that melatonin could be used as a chemopreventive agent for inhibiting cholangiocarcinoma (CCA) development in a hamster model. However, the cytotoxic activity of melatonin in cancer remains unclear. In the present study, we investigated the effect of melatonin on CCA cell lines. Human CCA cell lines (KKU-M055 and KKU-M214) were treated with melatonin at concentrations of 0.5, 1 and 2 mM for 48 h. Melatonin treatment exerted a cytotoxic effect on CCA cells by inhibiting CCA cell viability in a concentration-dependent manner. Treatment with melatonin, especially at 2 mM, increased intracellular reactive oxygen species (ROS) production and in turn led to increased oxidative DNA damage and 8-oxodG formation. Moreover, melatonin treatment enhanced the production of cytochrome c leading to apoptosis in a concentration-dependent manner, as indicated by increased expression of apoptosis-related proteins caspase-3 and caspase-7. In conclusion, melatonin acts as a pro-oxidant by activating ROS-dependent DNA damage and thus leading to the apoptosis of CCA cells.
Collapse
Affiliation(s)
- Umawadee Laothong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‑8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‑8507, Japan
| | - Kitti Intuyod
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‑8507, Japan
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
48
|
Rezzani R, Rodella LF, Favero G, Damiani G, Paganelli C, Reiter RJ. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br J Dermatol 2014; 170:382-91. [PMID: 24024734 DOI: 10.1111/bjd.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sun exposure is responsible for long-term clinical skin changes such as photoageing, photodamage and photocancers. Ultraviolet (UV)A wavelengths stimulate the production of reactive oxygen species (ROS) that may contribute to photoageing. To protect against oxidative stress, skin cells have developed several defence systems, including ROS and metal ion scavengers and a battery of detoxifying, haem-degrading and repair enzymes. Melatonin's antioxidant activity is the result of three different but complementary actions: (i) a direct action due to its ability to act as a free radical scavenger; (ii) an indirect action that is a consequence of melatonin's ability to reduce free radical generation (radical avoidance); and (iii) its ability to upregulate antioxidant enzymes. OBJECTIVES In this study, we focused our attention on the prevention of photodamage, choosing melatonin as an antioxidant agent. METHODS In the present study we analysed the effects of pretreatment of murine fibroblasts cells (NIH3T3) with melatonin (1 mmol L(-1) ) followed by UVA irradiation (15 J cm(-2) ). Thereafter, changes in components of the extracellular matrix and in some antioxidant enzymes (inducible and constitutive haem oxygenase) were evaluated. RESULTS We observed that UVA radiation caused altered expression of extracellular matrix proteins and induced the expression of inducible haem oxygenase. This increase was not sufficient to protect the cells from damage. Instead, melatonin pretreatment led to increased expression of haem-degrading enzymes and suppression of UVA-induced photodamage. CONCLUSIONS These results suggest that melatonin, as a modifier of the dermatoendocrine system, may have utility in reducing the effects of skin ageing.
Collapse
Affiliation(s)
- R Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
49
|
CCAR2 deficiency augments genotoxic stress-induced apoptosis in the presence of melatonin in non-small cell lung cancer cells. Tumour Biol 2014; 35:10919-29. [PMID: 25085583 DOI: 10.1007/s13277-014-2370-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/16/2014] [Indexed: 02/08/2023] Open
Abstract
Melatonin exhibits oncostatic activity in several cancers but does not lead to cytotoxicity in estrogen receptor (ER)-negative non-small cell lung cancers (NSCLCs). In an effort to overcome the melatonin resistance of these cancers, we investigated whether cell cycle and apoptosis regulator 2 (CCAR2) depletion would promote apoptosis following genotoxic stress in melatonin-resistant cancer cells. Ordinarily, the NSCLC cell lines A549 and A427 did not undergo cell death following melatonin treatment for short period. These cell lines were irradiated with UV, a source of genotoxic damage, to trigger apoptotic signaling. Treatment with melatonin prior to irradiation did not produce any significant change in apoptosis. By contrast, in CCAR2-deficient cells, melatonin treatment increased apoptosis induced by genotoxic stress; this effect was dependent on the dose of melatonin. The increase in apoptosis in CCAR2-deficient cells was not dependent on SIRT1. The results indicate that CCAR2 is critical for maintaining cell survival in the presence of melatonin under genotoxic stress. Furthermore, CCAR2 is overexpressed in NSCLC; therefore, melatonin could be used as a potential supplement to classical anticancer drugs in therapies against CCAR2-deficient cancers.
Collapse
|
50
|
Proietti S, Cucina A, Dobrowolny G, D'Anselmi F, Dinicola S, Masiello MG, Pasqualato A, Palombo A, Morini V, Reiter RJ, Bizzarri M. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells. J Pineal Res 2014; 57:120-9. [PMID: 24920214 DOI: 10.1111/jpi.12150] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|