1
|
Kumawat S, Martinez I, Logeswaran D, Chen H, Coughlan JM, Chen JJL, Yuan Y, Sobel JM, Choi JY. Transposition, duplication, and divergence of the telomerase RNA underlies the evolution of Mimulus telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.568249. [PMID: 38106000 PMCID: PMC10723376 DOI: 10.1101/2023.12.06.568249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomeres are nucleoprotein complexes with a crucial role of protecting chromosome ends. It consists of simple repeat sequences and dedicated telomere-binding proteins. Because of its vital functions, components of the telomere, for example its sequence, should be under strong evolutionary constraint. But across all plants, telomere sequences display a range of variation and the evolutionary mechanism driving this diversification is largely unknown. Here, we discovered in Monkeyflower (Mimulus) the telomere sequence is even variable between species. We investigated the basis of Mimulus telomere sequence evolution by studying the long noncoding telomerase RNA (TR), which is a core component of the telomere maintenance complex and determines the telomere sequence. We conducted total RNA-based de novo transcriptomics from 16 Mimulus species and analyzed reference genomes from 6 species, and discovered Mimulus species have evolved at least three different telomere sequences: (AAACCCT)n, (AAACCCG)n, and (AAACCG)n. Unexpectedly, we discovered several species with TR duplications and the paralogs had functional consequences that could influence telomere evolution. For instance, M. lewisii had two sequence-divergent TR paralogs and synthesized a telomere with sequence heterogeneity, consisting of AAACCG and AAACCCG repeats. Evolutionary analysis of the M. lewisii TR paralogs indicated it had arisen from a transposition-mediate duplication process. Further analysis of the TR from multiple Mimulus species showed the gene had frequently transposed and inserted into new chromosomal positions during Mimulus evolution. From our results, we propose the TR transposition, duplication, and divergence model to explain the evolutionary sequence turnovers in Mimulus and potentially all plant telomeres.
Collapse
Affiliation(s)
- Surbhi Kumawat
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Irene Martinez
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | | | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Jenn M. Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | | | - Yaowu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - James M. Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - Jae Young Choi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Kumawat S, Choi JY. No end in sight: Mysteries of the telomeric variation in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16244. [PMID: 37733763 PMCID: PMC10873042 DOI: 10.1002/ajb2.16244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Surbhi Kumawat
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Jae Young Choi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
3
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
4
|
The nanoCUT&RUN technique visualizes telomeric chromatin in Drosophila. PLoS Genet 2022; 18:e1010351. [PMID: 36048878 PMCID: PMC9473618 DOI: 10.1371/journal.pgen.1010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/14/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag. The method of chromatin immunoprecipitation followed by genomic sequencing (ChIP-seq) has been employed to study the distribution of chromatin binding proteins genome-wide. Such studies have greatly enhanced our understanding of the function of the target proteins. However, the uses of chemical crosslinking combined with the procedure of antibody-medicated precipitation of the protein-DNA complex have limited the efficiency of ChIP-seq. The recently developed CUT&RUN method has greatly improved that efficiency. We here developed the “nanoCUT&RUN” extension of CUT&RUN, which can be readily applied to any target protein with a GFP tag. Using nanoCUT&RUN, we profiled the HipHop and HOAP proteins that protect telomeric chromatin in Drosophila. We uncovered sequence-independent binding of both proteins predominantly to telomeres. Interestingly, HipHop binding can also be detected at centromeric chromatin suggestive of a novel function of a telomere capping protein.
Collapse
|
5
|
Puzakov MV, Puzakova LV. Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians. Mol Biol 2022. [DOI: 10.1134/s0026893322030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Myler LR, Kinzig CG, Sasi NK, Zakusilo G, Cai SW, de Lange T. The evolution of metazoan shelterin. Genes Dev 2021; 35:1625-1641. [PMID: 34764137 PMCID: PMC8653790 DOI: 10.1101/gad.348835.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
In this study, Myler et al. investigated the evolutionary origins of shelterin complex, which is comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1; blocks the DNA damage response at chromosome ends; and interacts with telomerase and the CST complex to regulate telomere length. They describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor, and providing insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins. The mammalian telomeric shelterin complex—comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Charles G Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
7
|
Vedelek B, Kovács Á, Boros IM. Evolutionary mode for the functional preservation of fast-evolving Drosophila telomere capping proteins. Open Biol 2021; 11:210261. [PMID: 34784790 PMCID: PMC8596017 DOI: 10.1098/rsob.210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
8
|
Watson JM, Trieb J, Troestl M, Renfrew K, Mandakova T, Fulnecek J, Shippen DE, Riha K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021; 219:6339584. [PMID: 34849882 DOI: 10.1093/genetics/iyab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Johanna Trieb
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Martina Troestl
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Kyle Renfrew
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Dorothy E Shippen
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Prušáková D, Peska V, Pekár S, Bubeník M, Čížek L, Bezděk A, Čapková Frydrychová R. Telomeric DNA sequences in beetle taxa vary with species richness. Sci Rep 2021; 11:13319. [PMID: 34172809 PMCID: PMC8233369 DOI: 10.1038/s41598-021-92705-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
Collapse
Affiliation(s)
- Daniela Prušáková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Bubeník
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lukáš Čížek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Bezděk
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, Shakirov EV, Purugganan MD. Natural variation in plant telomere length is associated with flowering time. THE PLANT CELL 2021; 33:1118-1134. [PMID: 33580702 PMCID: PMC8599780 DOI: 10.1093/plcell/koab022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life-history strategies.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Jun Yin
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Inna B Chastukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Alabama 35806, USA
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, West Virginia 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia 25755, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| |
Collapse
|
11
|
Kim C, Sung S, Kim J, Lee J. Repair and Reconstruction of Telomeric and Subtelomeric Regions and Genesis of New Telomeres: Implications for Chromosome Evolution. Bioessays 2020; 42:e1900177. [PMID: 32236965 DOI: 10.1002/bies.201900177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Indexed: 12/12/2022]
Abstract
DNA damage repair within telomeres are suppressed to maintain the integrity of linear chromosomes, but the accidental activation of repairs can lead to genome instability. This review develops the concept that mechanisms to repair DNA damage in telomeres contribute to genetic variability and karyotype evolution, rather than catastrophe. Spontaneous breaks in telomeres can be repaired by telomerase, but in some cases DNA repair pathways are activated, and can cause chromosomal rearrangements or fusions. The resultant changes can also affect subtelomeric regions that are adjacent to telomeres. Subtelomeres are actively involved in such chromosomal changes, and are therefore the most variable regions in the genome. The case of Caenorhabditis elegans in the context of changes of subtelomeric structures revealed by long-read sequencing is also discussed. Theoretical and methodological issues covered in this review will help to explore the mechanism of chromosome evolution by reconstruction of chromosomal ends in nature.
Collapse
Affiliation(s)
- Chuna Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea.,Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon, 34141, Korea
| | - Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08827, Korea
| |
Collapse
|
12
|
Saint-Leandre B, Levine MT. The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins. Trends Genet 2020; 36:232-242. [PMID: 32155445 DOI: 10.1016/j.tig.2020.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Rodriguez-Centeno J, Manguán-García C, Perona R, Sastre L. Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms. PLoS One 2019; 14:e0222909. [PMID: 31550289 PMCID: PMC6759168 DOI: 10.1371/journal.pone.0222909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Telomeres are nucleo-protein structures that protect the ends of eukaryotic chromosomes. They are not completely synthesized during DNA replication and are elongated by specific mechanisms. The structure of the telomeres and the elongation mechanism have not been determined in Dictyostelium discoideum. This organism presents extrachromosomal palindromic elements containing two copies of the rDNA, also present at the end of the chromosomes. In this article the structure of the terminal region of the rDNA is shown to consist of repetitions of the A(G)n sequence where the number of Gs is variable. These repeats extend as a 3’ single stranded region. The G-rich region is preceded by four tandem repetitions of two different DNA motifs. D. discoideum telomere reverse transcriptase homologous protein (TERTHP) presented RNase-sensitive enzymatic activity and was required to maintain telomere structure since terthp-mutant strains presented reorganizations of the DNA terminal regions. These modifications were different in several terthp-mutants and changed with their prolonged culture and subcloning. However, the terthp gene is not essential for D. discoideum proliferation. Telomeres could be maintained in terthp-mutant strains by homologous recombination mechanisms such as ALT (Alternative Lengthening of Telomeres) or HAATI (heterochromatin amplification-mediated and telomerase-independent). In agreement with this hypothesis, the expression of mRNAs coding for several proteins involved in homologous recombination was induced in terthp-mutant strains. Extrachromosomal rDNA could serve as substrate in these DNA homologous recombination reactions.
Collapse
Affiliation(s)
- Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
| | - Cristina Manguán-García
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier, IdiPaz, C/Pedro Rico, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Tomaska L, Nosek J, Kar A, Willcox S, Griffith JD. A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution. Front Genet 2019; 10:792. [PMID: 31475042 PMCID: PMC6702307 DOI: 10.3389/fgene.2019.00792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Telomere loops (t-loops) are formed at the ends of chromosomes in species ranging from humans to worms, plants, and with genetic manipulation, some yeast. Recent in vitro studies demonstrated that transcription of telomeric DNA leads to highly efficient t-loop formation. It was also shown that both DNA termini are inserted into the preceding DNA to generate a highly stable t-loop junction. Furthermore, some telomeric RNA remains present at the junction, potentially acting as a plug to further protect and stabilize the t-loop. Modeling the loop junction reveals two mechanisms by which the canonical chromosomal replication factors could extend the telomere in the absence of telomerase. One mechanism would utilize the annealed 3’ terminus as a de novo replication origin. In vitro evidence for the ability of the t-loop to prime telomere extension using the T7 replication factors is presented. A second mechanism would involve resolution of the Holliday junction present in the t-loop bubble by factors such as GEN1 to generate a rolling circle template at the extreme terminus of the telomere. This could lead to large expansions of the telomeric tract. Here, we propose that telomeres evolved as terminal elements containing long arrays of short nucleotide repeats due to the ability of such arrays to fold back into loops and self-prime their replicative extension. In this view, telomerase may have evolved later to provide a more precise mechanism of telomere maintenance. Both pathways have direct relevance to the alternative lengthening of telomeres (ALT) pathway. This view also provides a possible mechanism for the very large repeat expansions observed in nucleotide repeat diseases such as Fragile X syndrome, myotonic dystrophy, familial amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). The evolution of telomeres is discussed in the framework of these models.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Departments of Genetics and Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Departments of Genetics and Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Anirban Kar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Eberhard S, Valuchova S, Ravat J, Fulneček J, Jolivet P, Bujaldon S, Lemaire SD, Wollman FA, Teixeira MT, Riha K, Xu Z. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci Alliance 2019; 2:2/3/e201900315. [PMID: 31160377 PMCID: PMC6549138 DOI: 10.26508/lsa.201900315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
This study characterizes the sequence, end structure, and length distribution of Chlamydomonas reinhardtii telomeres and shows that telomerase mutants are defective in telomere maintenance. Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3′ overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.
Collapse
Affiliation(s)
- Stephan Eberhard
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Sona Valuchova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Ravat
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Jaroslav Fulneček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pascale Jolivet
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sandrine Bujaldon
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Stéphane D Lemaire
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhou Xu
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France .,Sorbonne Université, CNRS, UMR 7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| |
Collapse
|
16
|
Monaghan P, Eisenberg DTA, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0435. [PMID: 29335374 DOI: 10.1098/rstb.2016.0435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, 314 Denny Hall, Box 353100 Seattle, WA 98195-3100, USA
| | - Lea Harrington
- Départemente de Médecine, Institut de recherche en immunologie et en cancérologie, Université de Montréal, 2950 chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Dan Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
17
|
Abstract
Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and architecture. In this chapter, we review how the genome can be viewed as both a structural and an informational unit of biological diversity and explicitly define our intended meaning of genetic information. A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We include a detailed review of genetic elements found outside the primary chromosomal structures, as these provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we reassess the definition of the genome in light of recent advancements in our understanding of the diversity of genomic structures and the mechanisms by which genetic information is expressed within the cell. Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field and provide a valuable reference for those developing new statistical or computation methods in genomics. This review also prepares the reader for anticipated transformations in thinking as the field of genome biology progresses.
Collapse
|
18
|
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol 2018; 19:199. [PMID: 30454069 PMCID: PMC6240941 DOI: 10.1186/s13059-018-1577-z] [Citation(s) in RCA: 659] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Collapse
Affiliation(s)
- Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0G1, Canada.
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec, H3A 0G1, Canada.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michaël Imbeault
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Henry L Levin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of BC, Vancouver, BC, V5Z1L3, Canada
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
19
|
Menezes RST, Bardella VB, Cabral-de-Mello DC, Lucena DAA, Almeida EAB. Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera? Naturwissenschaften 2017; 104:85. [PMID: 28956077 DOI: 10.1007/s00114-017-1507-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).
Collapse
Affiliation(s)
- Rodolpho S T Menezes
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Vanessa B Bardella
- Instituto de Biociências/IB, Departamento de Biologia, Universidade Estadual Paulista (UNESP), Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Diogo C Cabral-de-Mello
- Instituto de Biociências/IB, Departamento de Biologia, Universidade Estadual Paulista (UNESP), Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Daercio A A Lucena
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
20
|
Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet 2017; 33:773-783. [PMID: 28818345 DOI: 10.1016/j.tig.2017.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
The duality of group II introns, capable of carrying out both self-splicing and retromobility reactions, is hypothesized to have played a profound role in the evolution of eukaryotes. These introns likely provided the framework for the emergence of eukaryotic retroelements, spliceosomal introns and other key components of the spliceosome. Group II introns are found in all three domains of life and are therefore considered to be exceptionally successful mobile genetic elements. Initially identified in organellar genomes, group II introns are found in bacteria, chloroplasts, and mitochondria of plants and fungi, but not in nuclear genomes. Although there is no doubt that prokaryotic and organellar group II introns are evolutionary related, there are remarkable differences in survival strategies between them. Furthermore, an evolutionary relationship of group II introns to eukaryotic retroelements, including telomeres, and spliceosomes is unmistakable.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
21
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
22
|
Sonnenberg ASM, Gao W, Lavrijssen B, Hendrickx P, Sedaghat-Tellgerd N, Foulongne-Oriol M, Kong WS, Schijlen EGWM, Baars JJP, Visser RGF. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol 2016; 93:35-45. [PMID: 27288752 DOI: 10.1016/j.fgb.2016.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022]
Abstract
The button mushroom (Agaricus bisporus) is one of the world's most cultivated mushroom species, but in spite of its economic importance generation of new cultivars by outbreeding is exceptional. Previous genetic analyses of the white bisporus variety, including all cultivars and most wild isolates revealed that crossing over frequencies are low, which might explain the lack of introducing novel traits into existing cultivars. By generating two high quality whole genome sequence assemblies (one de novo and the other by improving the existing reference genome) of the first commercial white hybrid Horst U1, a detailed study of the crossover (CO) landscape was initiated. Using a set of 626 SNPs in a haploid offspring of 139 single spore isolates and whole genome sequencing on a limited number of homo- and heterokaryotic single spore isolates, we precisely mapped all COs showing that they are almost exclusively restricted to regions of about 100kb at the chromosome ends. Most basidia of A. bisporus var. bisporus produce two spores and pair preferentially via non-sister nuclei. Combined with the COs restricted to the chromosome ends, these spores retain most of the heterozygosity of the parent thus explaining how present-day white cultivars are genetically so close to the first hybrid marketed in 1980. To our knowledge this is the first example of an organism which displays such specific CO landscape.
Collapse
Affiliation(s)
- Anton S M Sonnenberg
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands.
| | - Wei Gao
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Brian Lavrijssen
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Patrick Hendrickx
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Narges Sedaghat-Tellgerd
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Marie Foulongne-Oriol
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, F-33883 Villenave d'Ornon, France
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Elio G W M Schijlen
- PRI Bioscience, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Johan J P Baars
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
23
|
Mason JM, Randall TA, Capkova Frydrychova R. Telomerase lost? Chromosoma 2016; 125:65-73. [PMID: 26162505 PMCID: PMC6512322 DOI: 10.1007/s00412-015-0528-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023]
Abstract
Telomerase and telomerase-generated telomeric DNA sequences are widespread throughout eukaryotes, yet they are not universal. Neither telomerase nor the simple DNA repeats associated with telomerase have been found in some plant and animal species. Telomerase was likely lost from Diptera before the divergence of Diptera and Siphonaptera, some 260 million years ago. Even so, Diptera is one of the most successful animal orders, making up 11% of known animal species. In addition, many species of Coleoptera and Hemiptera seem to lack canonical telomeric repeats at their chromosome ends. These and other insects that appear to lack canonical terminal repeat sequences account for another 10-15% of animal species. Conversely, the silk moth Bombyx mori maintains canonical telomeric sequences at its chromosome ends but seems to lack a functional telomerase. We speculate that a telomere-specific capping complex that recognizes the telomeric repeats and protects chromosome ends is the determining factor in maintaining canonical telomeric sequences and that telomerase is an early and efficacious mechanism for satisfying the needs of capping complex. There are alternate mechanisms for maintaining chromosome ends that do not depend on telomerase, such as recombination found in some human cancer cells and yeast mutants. These mechanisms may maintain the canonical telomeric repeats or allow the terminal sequence to evolve when specificity of the capping complex for terminal repeat sequences is weak.
Collapse
Affiliation(s)
- James M Mason
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
24
|
Vedelek B, Blastyák A, Boros IM. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins. PLoS One 2015; 10:e0142771. [PMID: 26566042 PMCID: PMC4643883 DOI: 10.1371/journal.pone.0142771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - András Blastyák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
25
|
Dubruille R, Loppin B. Protection of Drosophila chromosome ends through minimal telomere capping. J Cell Sci 2015; 128:1969-81. [PMID: 25908850 DOI: 10.1242/jcs.167825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
In Drosophila, telomere-capping proteins have the remarkable capacity to recognize chromosome ends in a sequence-independent manner. This epigenetic protection is essential to prevent catastrophic ligations of chromosome extremities. Interestingly, capping proteins occupy a large telomere chromatin domain of several kilobases; however, the functional relevance of this to end protection is unknown. Here, we investigate the role of the large capping domain by manipulating HOAP (encoded by caravaggio) capping-protein expression in the male germ cells, where telomere protection can be challenged without compromising viability. We show that the exhaustion of HOAP results in a dramatic reduction of other capping proteins at telomeres, including K81 [encoded by ms(3)K81], which is essential for male fertility. Strikingly however, we demonstrate that, although capping complexes are barely detected in HOAP-depleted male germ cells, telomere protection and male fertility are not dramatically affected. Our study thus demonstrates that efficient protection of Drosophila telomeres can be achieved with surprisingly low amounts of capping complexes. We propose that these complexes prevent fusions by acting at the very extremity of chromosomes, reminiscent of the protection conferred by extremely short telomeric arrays in yeast or mammalian systems.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| |
Collapse
|