1
|
Mattick JSA, Bromley RE, Watson KJ, Adkins RS, Holt CI, Lebov JF, Sparklin BC, Tyson TS, Rasko DA, Dunning Hotopp JC. Deciphering transcript architectural complexity in bacteria and archaea. mBio 2024; 15:e0235924. [PMID: 39287442 PMCID: PMC11481537 DOI: 10.1128/mbio.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
Collapse
Affiliation(s)
- John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tyonna S. Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Yassine H, Schrader JM. APEX2 proximity labeling of RNA in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612050. [PMID: 39345536 PMCID: PMC11429957 DOI: 10.1101/2024.09.18.612050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Studies over the past several years have shown that distinct RNAs can be targeted to subcellular locations in bacterial cells. The ability to investigate localized RNAs in bacteria is currently limited to imaging-based approaches or to laborious procedures to isolate ribonucleoprotein complexes by grad-seq, HITS-CLIP, or Rloc-seq. However, a major challenge in studying mRNA localization in bacterial cells is that bacterial mRNAs typically last for only a few minutes in the cell, while experiments to investigate their localization or interaction partners can take much longer. Therefore, rapid methods of studying RNA localization are needed to bridge this technical challenge.
Collapse
Affiliation(s)
- Hadi Yassine
- Departments of Chemistry and Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Jared M. Schrader
- Departments of Chemistry and Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
3
|
Laalami S, Cavaiuolo M, Oberto J, Putzer H. Membrane Localization of RNase Y Is Important for Global Gene Expression in Bacillus subtilis. Int J Mol Sci 2024; 25:8537. [PMID: 39126106 PMCID: PMC11313650 DOI: 10.3390/ijms25158537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
RNase Y is a key endoribonuclease that regulates global mRNA turnover and processing in Bacillus subtilis and likely many other bacteria. This enzyme is anchored to the cell membrane, creating a pseudo-compartmentalization that aligns with its role in initiating the decay of mRNAs primarily translated at the cell periphery. However, the reasons behind and the consequences of RNase Y's membrane attachment remain largely unknown. In our study, we examined a strain expressing wild-type levels of a cytoplasmic form of RNase Y from its chromosomal locus. This strain exhibits a slow-growth phenotype, similar to that of an RNase Y null mutant. Genome-wide data reveal a significant impact on the expression of hundreds of genes. While certain RNA substrates clearly depend on RNase Y's membrane attachment, others do not. We observed no correlation between mRNA stabilization in the mutant strains and the cellular location or function of the encoded proteins. Interestingly, the Y-complex, a specificity factor for RNase Y, also appears also recognize the cytoplasmic form of the enzyme, restoring wild-type levels of the corresponding transcripts. We propose that membrane attachment of RNase Y is crucial for its functional interaction with many coding and non-coding RNAs, limiting the cleavage of specific substrates, and potentially avoiding unfavorable competition with other ribonucleases like RNase J, which shares a similar evolutionarily conserved cleavage specificity.
Collapse
Affiliation(s)
- Soumaya Laalami
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
| | - Marina Cavaiuolo
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
- Laboratory for Food Safety, SBCL Unit, University Paris Est, ANSES, 94701 Maisons-Alfort, France
| | - Jacques Oberto
- Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
| |
Collapse
|
4
|
Le Scornet A, Jousselin A, Baumas K, Kostova G, Durand S, Poljak L, Barriot R, Coutant E, Pigearias R, Tejero G, Lootvoet J, Péllisier C, Munoz G, Condon C, Redder P. Critical factors for precise and efficient RNA cleavage by RNase Y in Staphylococcus aureus. PLoS Genet 2024; 20:e1011349. [PMID: 39088561 PMCID: PMC11321564 DOI: 10.1371/journal.pgen.1011349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 06/23/2024] [Indexed: 08/03/2024] Open
Abstract
Cellular processes require precise and specific gene regulation, in which continuous mRNA degradation is a major element. The mRNA degradation mechanisms should be able to degrade a wide range of different RNA substrates with high efficiency, but should at the same time be limited, to avoid killing the cell by elimination of all cellular RNA. RNase Y is a major endoribonuclease found in most Firmicutes, including Bacillus subtilis and Staphylococcus aureus. However, the molecular interactions that direct RNase Y to cleave the correct RNA molecules at the correct position remain unknown. In this work we have identified transcripts that are homologs in S. aureus and B. subtilis, and are RNase Y targets in both bacteria. Two such transcript pairs were used as models to show a functional overlap between the S. aureus and the B. subtilis RNase Y, which highlighted the importance of the nucleotide sequence of the RNA molecule itself in the RNase Y targeting process. Cleavage efficiency is driven by the primary nucleotide sequence immediately downstream of the cleavage site and base-pairing in a secondary structure a few nucleotides downstream. Cleavage positioning is roughly localised by the downstream secondary structure and fine-tuned by the nucleotide immediately upstream of the cleavage. The identified elements were sufficient for RNase Y-dependent cleavage, since the sequence elements from one of the model transcripts were able to convert an exogenous non-target transcript into a target for RNase Y.
Collapse
Affiliation(s)
- Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Kamila Baumas
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Gergana Kostova
- UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Leonora Poljak
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Eve Coutant
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Romain Pigearias
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Gabriel Tejero
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Jonas Lootvoet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Céline Péllisier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Gladys Munoz
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Ganske A, Busch LM, Hentschker C, Reder A, Michalik S, Surmann K, Völker U, Mäder U. Exploring the targetome of IsrR, an iron-regulated sRNA controlling the synthesis of iron-containing proteins in Staphylococcus aureus. Front Microbiol 2024; 15:1439352. [PMID: 39035440 PMCID: PMC11257911 DOI: 10.3389/fmicb.2024.1439352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Staphylococcus aureus is a common colonizer of the skin and nares of healthy individuals, but also a major cause of severe human infections. During interaction with the host, pathogenic bacteria must adapt to a variety of adverse conditions including nutrient deprivation. In particular, they encounter severe iron limitation in the mammalian host through iron sequestration by haptoglobin and iron-binding proteins, a phenomenon called "nutritional immunity." In most bacteria, including S. aureus, the ferric uptake regulator (Fur) is the key regulator of iron homeostasis, which primarily acts as a transcriptional repressor of genes encoding iron acquisition systems. Moreover, Fur can control the expression of trans-acting small regulatory RNAs that play an important role in the cellular iron-sparing response involving major changes in cellular metabolism under iron-limiting conditions. In S. aureus, the sRNA IsrR is controlled by Fur, and most of its predicted targets are iron-containing proteins and other proteins related to iron metabolism and iron-dependent pathways. To characterize the IsrR targetome on a genome-wide scale, we combined proteomics-based identification of potential IsrR targets using S. aureus strains either lacking or constitutively expressing IsrR with an in silico target prediction approach, thereby suggesting 21 IsrR targets, of which 19 were negatively affected by IsrR based on the observed protein patterns. These included several Fe-S cluster- and heme-containing proteins, such as TCA cycle enzymes and catalase encoded by katA. IsrR affects multiple metabolic pathways connected to the TCA cycle as well as the oxidative stress response of S. aureus and links the iron limitation response to metabolic remodeling. In contrast to the majority of target mRNAs, the IsrR-katA mRNA interaction is predicted upstream of the ribosome binding site, and further experiments including mRNA half-life measurements demonstrated that IsrR, in addition to inhibiting translation initiation, can downregulate target protein levels by affecting mRNA stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Ostovar G, Boedicker JQ. Phenotypic memory in quorum sensing. PLoS Comput Biol 2024; 20:e1011696. [PMID: 38976753 PMCID: PMC11257393 DOI: 10.1371/journal.pcbi.1011696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Quorum sensing (QS) is a regulatory mechanism used by bacteria to coordinate group behavior in response to high cell densities. During QS, cells monitor the concentration of external signals, known as autoinducers, as a proxy for cell density. QS often involves positive feedback loops, leading to the upregulation of genes associated with QS signal production and detection. This results in distinct steady-state concentrations of QS-related molecules in QS-ON and QS-OFF states. Due to the slow decay rates of biomolecules such as proteins, even after removal of the initial stimuli, cells can retain elevated levels of QS-associated biomolecules for extended periods of time. This persistence of biomolecules after the removal of the initial stimuli has the potential to impact the response to future stimuli, indicating a memory of past exposure. This phenomenon, which is a consequence of the carry-over of biomolecules rather than genetic inheritance, is known as "phenotypic" memory. This theoretical study aims to investigate the presence of phenotypic memory in QS and the conditions that influence this memory. Numerical simulations based on ordinary differential equations and analytical modeling were used to study gene expression in response to sudden changes in cell density and extracellular signal concentrations. The model examined the effect of various cellular parameters on the strength of QS memory and the impact on gene regulatory dynamics. The findings revealed that QS memory has a transient effect on the expression of QS-responsive genes. These consequences of QS memory depend strongly on how cell density was perturbed, as well as various cellular parameters, including the Fold Change in the expression of QS-regulated genes, the autoinducer synthesis rate, the autoinducer threshold required for activation, and the cell growth rate.
Collapse
Affiliation(s)
- Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Curry E, Muir G, Qu J, Kis Z, Hulley M, Brown A. Engineering an Escherichia coli based in vivo mRNA manufacturing platform. Biotechnol Bioeng 2024; 121:1912-1926. [PMID: 38419526 DOI: 10.1002/bit.28684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Synthetic mRNA is currently produced in standardized in vitro transcription systems. However, this one-size-fits-all approach has associated drawbacks in supply chain shortages, high reagent costs, complex product-related impurity profiles, and limited design options for molecule-specific optimization of product yield and quality. Herein, we describe for the first time development of an in vivo mRNA manufacturing platform, utilizing an Escherichia coli cell chassis. Coordinated mRNA, DNA, cell and media engineering, primarily focussed on disrupting interactions between synthetic mRNA molecules and host cell RNA degradation machinery, increased product yields >40-fold compared to standard "unengineered" E. coli expression systems. Mechanistic dissection of cell factory performance showed that product mRNA accumulation levels approached theoretical limits, accounting for ~30% of intracellular total RNA mass, and that this was achieved via host-cell's reallocating biosynthetic capacity away from endogenous RNA and cell biomass generation activities. We demonstrate that varying sized functional mRNA molecules can be produced in this system and subsequently purified. Accordingly, this study introduces a new mRNA production technology, expanding the solution space available for mRNA manufacturing.
Collapse
Affiliation(s)
- Edward Curry
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - George Muir
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Adam Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Ling H, Lv Y, Zhang Y, Zhou NY, Xu Y. Widespread and active piezotolerant microorganisms mediate phenolic compound degradation under high hydrostatic pressure in hadal trenches. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:331-348. [PMID: 38827128 PMCID: PMC11136905 DOI: 10.1007/s42995-024-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024]
Abstract
Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00224-2.
Collapse
Affiliation(s)
- Hao Ling
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yongxin Lv
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
9
|
Hoffmann UA, Lichtenberg E, Rogh SN, Bilger R, Reimann V, Heyl F, Backofen R, Steglich C, Hess WR, Wilde A. The role of the 5' sensing function of ribonuclease E in cyanobacteria. RNA Biol 2024; 21:1-18. [PMID: 38469716 PMCID: PMC10939160 DOI: 10.1080/15476286.2024.2328438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.
Collapse
Affiliation(s)
- Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elisabeth Lichtenberg
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Said N. Rogh
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Haq IU, Müller P, Brantl S. A comprehensive study of the interactions in the B. subtilis degradosome with special emphasis on the role of the small proteins SR1P and SR7P. Mol Microbiol 2024; 121:40-52. [PMID: 37994189 DOI: 10.1111/mmi.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Here, we employ coelution experiments and far-western blotting to identify stable interactions between the main components of the B. subtilis degradosome and the small proteins SR1P and SR7P. Our data indicate that B. subtilis has a degradosome comprising at least RNases Y and PnpA, enolase, phosphofructokinase, glycerol-3-phosphate dehydrogenase GapA, and helicase CshA that can be co-purified without cross-linking. All interactions were corroborated by far-western blotting with proteins purified from E. coli. Previously, we discovered that stress-induced SR7P binds enolase to enhance its interaction with and activity of enolase-bound RNase Y (RnY), while SR1P transcribed under gluconeogenic conditions interacts with GapA to stimulate its interaction with and the activity of RnjA (RnjA). We show that SR1P can directly bind RnjA, RnY, and PnpA independently of GapA, whereas SR7P only interacts with enolase. Northern blotting suggests that the degradation of individual RNAs in B. subtilis under gluconeogenic or stress conditions depends on either RnjA or RnY alone or on RnjA-SR1P, RnY-SR1P, or RnY-Eno. In vitro degradation assays with RnY or RnjA substrates corroborate the in vivo role of SR1P. Currently, it is unknown which substrate property is decisive for the utilization of one of the complexes.
Collapse
Affiliation(s)
- Inam Ul Haq
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| |
Collapse
|
11
|
Schilder A, Göpel Y, Khan MA, Görke B. Evaluation of 5'-End Phosphorylation for Small RNA Stability and Target Regulation In Vivo. Methods Mol Biol 2024; 2741:255-272. [PMID: 38217658 DOI: 10.1007/978-1-0716-3565-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Bacterial small RNAs (sRNAs) can be equipped at the 5' end with triphosphate (5'PPP) or monophosphate (5'P) groups, depending on whether they are primary transcripts, undergo dephosphorylation or originate via processing. Often, 5' groups hallmark RNAs for rapid decay, but whether this also applies to sRNAs is little explored. Moreover, the sRNA 5'P group could activate endoribonuclease RNase E to cleave the base-paired target RNA, but a tool for investigation in vivo was lacking. Here, we describe a two-plasmid system suitable for the generation of 5' monophosphorylated RNAs on demand inside the cell. The sRNA gene of interest is fused to the 3' end of a fragment of sRNA GlmZ and transcribed from a plasmid in an IPTG-inducible manner. The fusion RNA gets cleaved upon arabinose-controlled expression of rapZ, provided on a compatible plasmid. Adaptor protein RapZ binds the GlmZ aptamer and directs RNase E to release the sRNA of choice with 5'P ends. An isogenic plasmid generating the same sRNA with a 5'PPP end allows for direct comparison. The fates of the sRNA variants and target RNA(s) are monitored by Northern blotting. This tool is applicable to E. coli and likely other enteric bacteria.
Collapse
Affiliation(s)
- Alexandra Schilder
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Lexogen, Campus Vienna Biocenter 5, Vienna, Austria
| | - Muna Ayesha Khan
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Lexogen, Campus Vienna Biocenter 5, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
12
|
Pazos-Rojas LA, Cuellar-Sánchez A, Romero-Cerón AL, Rivera-Urbalejo A, Van Dillewijn P, Luna-Vital DA, Muñoz-Rojas J, Morales-García YE, Bustillos-Cristales MDR. The Viable but Non-Culturable (VBNC) State, a Poorly Explored Aspect of Beneficial Bacteria. Microorganisms 2023; 12:39. [PMID: 38257865 PMCID: PMC10818521 DOI: 10.3390/microorganisms12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Many bacteria have the ability to survive in challenging environments; however, they cannot all grow on standard culture media, a phenomenon known as the viable but non-culturable (VBNC) state. Bacteria commonly enter the VBNC state under nutrient-poor environments or under stressful conditions. This review explores the concept of the VBNC state, providing insights into the beneficial bacteria known to employ this strategy. The investigation covers different chemical and physical factors that can induce the latency state, cell features, and gene expression observed in cells in the VBNC state. The review also covers the significance and applications of beneficial bacteria, methods of evaluating bacterial viability, the ability of bacteria to persist in environments associated with higher organisms, and the factors that facilitate the return to the culturable state. Knowledge about beneficial bacteria capable of entering the VBNC state remains limited; however, beneficial bacteria in this state could face adverse environmental conditions and return to a culturable state when the conditions become suitable and continue to exert their beneficial effects. Likewise, this unique feature positions them as potential candidates for healthcare applications, such as the use of probiotic bacteria to enhance human health, applications in industrial microbiology for the production of prebiotics and functional foods, and in the beer and wine industry. Moreover, their use in formulations to increase crop yields and for bacterial bioremediation offers an alternative pathway to harness their beneficial attributes.
Collapse
Affiliation(s)
- Laura Abisaí Pazos-Rojas
- Faculty of Stomatology, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico; (L.A.P.-R.); (A.R.-U.)
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Alma Cuellar-Sánchez
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Ana Laura Romero-Cerón
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - América Rivera-Urbalejo
- Faculty of Stomatology, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico; (L.A.P.-R.); (A.R.-U.)
| | - Pieter Van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Diego Armando Luna-Vital
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
- Faculty of Biological Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - María del Rocío Bustillos-Cristales
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| |
Collapse
|
13
|
Moon JH, Roh DH, Kwack KH, Lee JH. Bacterial single-cell transcriptomics: Recent technical advances and future applications in dentistry. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:253-262. [PMID: 37674900 PMCID: PMC10477369 DOI: 10.1016/j.jdsr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/17/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Metagenomics and metatranscriptomics have enhanced our understanding of the oral microbiome and its impact on oral health. However, these approaches have inherent limitations in exploring individual cells and the heterogeneity within mixed microbial communities, which restricts our current understanding to bulk cells and species-level information. Fortunately, recent technical advances have enabled the application of single-cell RNA sequencing (scRNA-seq) for studying bacteria, shedding light on cell-to-cell diversity and interactions between host-bacterial cells at the single-cell level. Here, we address the technical barriers in capturing RNA from single bacterial cells and highlight pioneering studies from the past decade. We also discuss recent achievements in host-bacterial dual transcriptional profiling at the single-cell level. Bacterial scRNA-seq provides advantages in various research fields, including the investigation of phenotypic heterogeneity within genetically identical bacteria, identification of rare cell types, detection of antibiotic-resistant or persistent cells, analysis of individual gene expression patterns and metabolic activities, and characterization of specific microbe-host interactions. Integrating single-cell techniques with bulk approaches is essential to gain a comprehensive understanding of oral diseases and develop targeted and personalized treatment in dentistry. The reviewed pioneering studies are expected to inspire future research on the oral microbiome at the single-cell level.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wiegard JC, Damm K, Lechner M, Thölken C, Ngo S, Putzer H, Hartmann RK. Processing and decay of 6S-1 and 6S-2 RNAs in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1481-1499. [PMID: 37369528 PMCID: PMC10578484 DOI: 10.1261/rna.079666.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.
Collapse
Affiliation(s)
- Jana Christin Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Katrin Damm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Marcus Lechner
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Clemens Thölken
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
15
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
16
|
Huang L, Tam KS, Xie W. Structural and Biochemical Studies of the Novel Hexameric Endoribonuclease YicC. ACS Chem Biol 2023; 18:1738-1747. [PMID: 37535940 DOI: 10.1021/acschembio.3c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The decay of mRNA is an essential process to bacteria. The newly identified E. coli protein YicC is a founding member of the UPF0701 family, and biochemical studies indicated that it is an RNase involved in mRNA degradation. However, its biochemical properties and catalytic mechanism are poorly understood. Here, we report the crystal structure of YicC, which shows an extended shape consisting of modular domains. While the backbone trace of the monomer forms a unique, nearly closed loop, the three monomers present in the asymmetric unit make a "shoulder-by-shoulder" trimer. In vitro RNA cleavage assays indicated that this endoribonuclease mainly recognizes the consensus GUG motif, with a preference for an extended CGUG sequence. Additionally, the active enzyme exists as a hexamer in solution and assumes a funnel shape. Structural analysis indicated that the hexamer interface is mainly formed by the hexamerization domain consisting of D71-D124 and that the disruption of the oligomeric form greatly diminished the enzymatic activity. By studying the surface charge potential and the sequence conservation, we identified a series of residues that play critical functional roles, which helps to reveal the catalytic mechanism of this divalent metal-ion-dependent RNase. Last but not least, we discovered that the catalytic domain of YicC did not share similarity with any known nuclease fold, suggesting that the enzyme adopts a novel fold to perform its catalysis and in vivo functions. In summary, our investigations into YicC provide an in-depth understanding of the functions of the UPF0701 protein family and the DUF1732 domain in general.
Collapse
Affiliation(s)
- Lin Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - King Sing Tam
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
17
|
Schilder A, Görke B. Role of the 5' end phosphorylation state for small RNA stability and target RNA regulation in bacteria. Nucleic Acids Res 2023; 51:5125-5143. [PMID: 36987877 PMCID: PMC10250213 DOI: 10.1093/nar/gkad226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In enteric bacteria, several small RNAs (sRNAs) including MicC employ endoribonuclease RNase E to stimulate target RNA decay. A current model proposes that interaction of the sRNA 5' monophosphate (5'P) with the N-terminal sensing pocket of RNase E allosterically activates cleavage of the base-paired target in the active site. In vivo evidence supporting this model is lacking. Here, we engineered a genetic tool allowing us to generate 5' monophosphorylated sRNAs of choice in a controllable manner in the cell. Four sRNAs were tested and none performed better in target destabilization when 5' monophosphorylated. MicC retains full activity even when RNase E is defective in 5'P sensing, whereas regulation is lost upon removal of its scaffolding domain. Interestingly, sRNAs MicC and RyhB that originate with a 5' triphosphate group are dramatically destabilized when 5' monophosphorylated, but stable when in 5' triphosphorylated form. In contrast, the processing-derived sRNAs CpxQ and SroC, which carry 5'P groups naturally, are highly stable. Thus, the 5' phosphorylation state determines stability of naturally triphosphorylated sRNAs, but plays no major role for target RNA destabilization in vivo. In contrast, the RNase E C-terminal half is crucial for MicC-mediated ompD decay, suggesting that interaction with Hfq is mandatory.
Collapse
Affiliation(s)
- Alexandra Schilder
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
18
|
Korobeinikova A, Laalami S, Berthy C, Putzer H. RNase Y Autoregulates Its Synthesis in Bacillus subtilis. Microorganisms 2023; 11:1374. [PMID: 37374876 DOI: 10.3390/microorganisms11061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The instability of messenger RNA is crucial to the control of gene expression. In Bacillus subtilis, RNase Y is the major decay-initiating endoribonuclease. Here, we show how this key enzyme regulates its own synthesis by modulating the longevity of its mRNA. Autoregulation is achieved through cleavages in two regions of the rny (RNase Y) transcript: (i) within the first ~100 nucleotides of the open reading frame, immediately inactivating the mRNA for further rounds of translation; (ii) cleavages in the rny 5' UTR, primarily within the 5'-terminal 50 nucleotides, creating entry sites for the 5' exonuclease J1 whose progression is blocked around position -15 of the rny mRNA, potentially by initiating ribosomes. This links the functional inactivation of the transcript by RNase J1 to translation efficiency, depending on the ribosome occupancy at the translation initiation site. By these mechanisms, RNase Y can initiate degradation of its own mRNA when the enzyme is not occupied with degradation of other RNAs and thus prevent its overexpression beyond the needs of RNA metabolism.
Collapse
Affiliation(s)
- Anna Korobeinikova
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Soumaya Laalami
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Clément Berthy
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
19
|
Schaffter SW, Wintenberg ME, Murphy TM, Strychalski EA. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits. ACS Synth Biol 2023; 12:1546-1561. [PMID: 37134273 DOI: 10.1021/acssynbio.3c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.
Collapse
Affiliation(s)
- Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Molly E Wintenberg
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Terence M Murphy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
20
|
Francis N, Behera MR, Natarajan K, Laishram RS. Tyrosine phosphorylation controlled poly(A) polymerase I activity regulates general stress response in bacteria. Life Sci Alliance 2023; 6:6/3/e202101148. [PMID: 36535710 PMCID: PMC9764084 DOI: 10.26508/lsa.202101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Malaya R Behera
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
21
|
Wu N, Zhang Y, Zhang S, Yuan Y, Liu S, Xu T, Cui P, Zhang W, Zhang Y. Polynucleotide Phosphorylase Mediates a New Mechanism of Persister Formation in Escherichia coli. Microbiol Spectr 2023; 11:e0154622. [PMID: 36475972 PMCID: PMC9927094 DOI: 10.1128/spectrum.01546-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the identification of many genes and pathways involved in the persistence phenomenon in bacteria, the mechanisms of persistence are not well understood. Here, using Escherichia coli, we identified polynucleotide phosphorylase (PNPase) as a key regulator of persister formation. We constructed the pnp knockout strain (Δpnp) and its complemented strain and exposed them to antibiotics and stress conditions. The results showed that, compared with the wild-type strain W3110, the Δpnp strain had significant defects in persistence to antibiotics and stresses, and the persistence phenotype was restored upon complementation with the pnp gene. Transcriptome sequencing (RNA-seq) analysis revealed that 242 (166 upregulated and 76 downregulated) genes were differentially expressed in the Δpnp strain compared with the W3110 strain. KEGG analysis of the upregulated genes showed that these genes were mostly mapped to metabolism and virulence pathways, of which most are positively regulated by the global regulator cyclic AMP receptor protein (CRP). Correspondingly, the transcription level of the crp gene in the Δpnp strain increased 3.22-fold in the early stationary phase. We further explored the indicators of cellular metabolism of the Δpnp strain, the phenotype of the pnp and crp double-deletion mutant, and the transcriptional activity of the crp gene. Our results indicate that PNPase controls cellular metabolism by negatively regulating the crp operon via targeting the 5'-untranslated region of the crp transcript. This study reveals a persister mechanism and provides novel targets for the development of drugs against persisters for more effective treatment. IMPORTANCE Persisters pose significant challenges for a more effective treatment of persistent infections. An improved understanding of mechanisms of persistence will provide therapeutic targets important for the development of better treatments. Since recent studies with the key tuberculosis persister drug pyrazinamide have implicated polynucleotide phosphorylase (PNPase) as a drug target, in this study, we addressed the possibility that PNPase might be involved in persistence in Escherichia coli. Our study demonstrates PNPase indeed being involved in persistence, provides a mechanism by which PNPase controls persister formation, and suggests a new therapeutic target for treating persistent bacterial infections.
Collapse
Affiliation(s)
- Nan Wu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Youhua Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold. Biomolecules 2022; 12:biom12121798. [PMID: 36551226 PMCID: PMC9775385 DOI: 10.3390/biom12121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.
Collapse
|
23
|
Herzel L, Stanley JA, Yao CC, Li GW. Ubiquitous mRNA decay fragments in E. coli redefine the functional transcriptome. Nucleic Acids Res 2022; 50:5029-5046. [PMID: 35524564 PMCID: PMC9122600 DOI: 10.1093/nar/gkac295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively map the 3’ status of cellular RNAs in Escherichia coli during steady-state growth and report a large fraction of molecules (median>60%) that are fragments of canonical full-length mRNAs. The majority of RNA fragments are decay intermediates, whereas nascent RNAs contribute to a smaller fraction. Despite the prevalence of decay intermediates in total cellular RNA, these intermediates are underrepresented in the pool of ribosome-associated transcripts and can thus distort quantifications and differential expression analyses for the abundance of full-length, functional mRNAs. The large heterogeneity within mRNA molecules in vivo highlights the importance in discerning functional transcripts and provides a lens for studying the dynamic life cycle of mRNAs.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Julian A Stanley
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chun-Chen Yao
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Zhang J, Hess WR, Zhang C. "Life is short, and art is long": RNA degradation in cyanobacteria and model bacteria. MLIFE 2022; 1:21-39. [PMID: 38818322 PMCID: PMC10989914 DOI: 10.1002/mlf2.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/01/2024]
Abstract
RNA turnover plays critical roles in the regulation of gene expression and allows cells to respond rapidly to environmental changes. In bacteria, the mechanisms of RNA turnover have been extensively studied in the models Escherichia coli and Bacillus subtilis, but not much is known in other bacteria. Cyanobacteria are a diverse group of photosynthetic organisms that have great potential for the sustainable production of valuable products using CO2 and solar energy. A better understanding of the regulation of RNA decay is important for both basic and applied studies of cyanobacteria. Genomic analysis shows that cyanobacteria have more than 10 ribonucleases and related proteins in common with E. coli and B. subtilis, and only a limited number of them have been experimentally investigated. In this review, we summarize the current knowledge about these RNA-turnover-related proteins in cyanobacteria. Although many of them are biochemically similar to their counterparts in E. coli and B. subtilis, they appear to have distinct cellular functions, suggesting a different mechanism of RNA turnover regulation in cyanobacteria. The identification of new players involved in the regulation of RNA turnover and the elucidation of their biological functions are among the future challenges in this field.
Collapse
Affiliation(s)
- Ju‐Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Cheng‐Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- Institut WUT‐AMUAix‐Marseille University and Wuhan University of TechnologyWuhanChina
| |
Collapse
|
25
|
Leitner M, Etebari K, Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection. J Gen Virol 2022; 103:001694. [PMID: 35006065 PMCID: PMC8895618 DOI: 10.1099/jgv.0.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus-host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia-transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia-transinfected Ae. aegypti's initial virus recognition and transcriptional response to DENV infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Induction of the Viable but Non-Culturable State in Salmonella Contaminating Dried Fruit. Appl Environ Microbiol 2021; 88:e0173321. [PMID: 34731057 PMCID: PMC8788685 DOI: 10.1128/aem.01733-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salmonella can become viable but nonculturable (VBNC) in response to environmental stressors, but the induction of the VBNC state in Salmonella contaminating ready-to-eat dried fruit is poorly characterized. Dried apples, strawberries, and raisins were mixed with a five-strain cocktail of Salmonella at 4% volume per weight of dried fruit at 109 CFU/g. The inoculated dried fruit were then dried in desiccators at 25°C until the water activity (aw) approximated that of the uninoculated dried fruit. However, Salmonella could not be recovered after drying, not even after enrichment, suggesting a population reduction of approximately 8 log CFU/g. To assess the potential impact of storage temperature on survival, dried apples were spot-inoculated with the Salmonella cocktail, dried under ambient atmosphere at 25°C, and stored at 4 and 25°C. Spot inoculation permitted recovery of Salmonella on dried apple after drying, with the population of Salmonella decreasing progressively on dried apples stored at 25°C until it was undetectable after about 46 days, even following enrichment. The population decline was noticeably slower at 4°C, with Salmonella being detected until 82 days. However, fluorescence microscopy and laser scanning confocal microscopy with the LIVE/DEAD BacLight bacterial viability system at time points at which no Salmonella could be recovered on growth media even following enrichment showed that a large proportion (56 to 85%) of the Salmonella cells on the dried fruit were viable. The data suggest that the unique combination of stressors in dried fruit can induce large numbers of VBNC cells of Salmonella. IMPORTANCESalmonella is a leading foodborne pathogen globally causing numerous outbreaks of foodborne illnesses and remains the leading contributor to deaths attributed to foodborne disease in the United States and other industrialized nations. Therefore, efficient detection methods for Salmonella contaminating food are critical for public health and food safety. Culture-based microbiological methods are considered the gold standard for the detection and enumeration of Salmonella in food. Findings from this study suggest that unique stressors on dried fruit can induce the VBNC state in Salmonella, thus rendering it undetectable with culture-based methods even though the bacteria remain viable. Therefore, strong consideration should be given to using, in addition to culture-based methods, microscopic and molecular methods for the accurate detection of all viable and/or culturable cells of Salmonella contaminating dried fruit, as all of these cells have the potential to cause human illness.
Collapse
|
27
|
Santiago-Rodriguez TM, Hollister EB. Multi 'omic data integration: A review of concepts, considerations, and approaches. Semin Perinatol 2021; 45:151456. [PMID: 34256961 DOI: 10.1016/j.semperi.2021.151456] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of 'omic techniques including, but not limited to genomics/metagenomics, transcriptomics/meta-transcriptomics, proteomics/meta-proteomics, and metabolomics to generate multiple datasets from a single sample have facilitated hypothesis generation leading to the identification of biological, molecular and ecological functions and mechanisms, as well as associations and correlations. Despite their power and promise, a variety of challenges must be considered in the successful design and execution of a multi-omics study. In this review, various 'omic technologies applicable to single- and meta-organisms (i.e., host + microbiome) are described, and considerations for sample collection, storage and processing prior to data generation and analysis, as well as approaches to data storage, dissemination and analysis are discussed. Finally, case studies are included as examples of multi-omic applications providing novel insights and a more holistic understanding of biological processes.
Collapse
Affiliation(s)
| | - Emily B Hollister
- Diversigen, Inc, 3 Greenway Plaza, Suite 1575, Houston, TX 77046, USA.
| |
Collapse
|
28
|
Smallets S, Kendall MM. Post-transcriptional regulation in attaching and effacing pathogens: integration of environmental cues and the impact on gene expression and host interactions. Curr Opin Microbiol 2021; 63:238-243. [PMID: 34450388 DOI: 10.1016/j.mib.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
To establish infection, enteric pathogens integrate environmental cues to navigate the gastrointestinal tract and precisely control expression of virulence determinants. Emerging data indicate that post-transcriptional and post-translational gene regulation plays a key role in virulence regulation and pathogen adaptation to the host environment. Here, we highlight recent studies that reveal how physiologically relevant signals initiate post-transcriptional and post-translational regulatory circuits and the impact on virulence gene expression in the attaching and effacing pathogens, enteropathogenic Escherichia coli, enterohemorrhagic E. coli O157:H7, and Citrobacter rodentium.
Collapse
Affiliation(s)
- Sarah Smallets
- Department of Biology, University of Virginia, 485 McCormick Rd., Charlottesville, VA, 22904, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave., Charlottesville, VA, 22908, USA.
| |
Collapse
|
29
|
Enhanced Prodigiosin Production in Serratia marcescens JNB5-1 by Introduction of a Polynucleotide Fragment into the pigN 3' Untranslated Region and Disulfide Bonds into O-Methyl Transferase (PigF). Appl Environ Microbiol 2021; 87:e0054321. [PMID: 34232745 DOI: 10.1128/aem.00543-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Serratia marcescens JNB5-1, prodigiosin was highly produced at 30°C, but it was noticeably repressed at ≥37°C. Our initial results demonstrated that both the production and the stability of the O-methyl transferase (PigF) and oxidoreductase (PigN) involved in the prodigiosin pathway in S. marcescens JNB5-1 sharply decreased at ≥37°C. Therefore, in this study, we improved mRNA stability and protein production using de novo polynucleotide fragments (PNFs) and the introduction of disulfide bonds, respectively, and observed their effects on prodigiosin production. Our results demonstrate that adding PNFs at the 3' untranslated regions of pigF and pigN significantly improved the mRNA half-lives of these genes, leading to an increase in the transcript and expression levels. Subsequently, the introduction of disulfide bonds in pigF improved the thermal stability, pH stability, and copper ion resistance of PigF. Finally, shake flask fermentation showed that the prodigiosin titer with the engineered S. marcescens was increased by 61.38% from 5.36 to 8.65 g/liter compared to the JNB5-1 strain at 30°C and, significantly, the prodigiosin yield increased 2.05-fold from 0.38 to 0.78 g/liter at 37°C. In this study, we revealed that the introduction of PNFs and disulfide bonds greatly improved the expression and stability of pigF and pigN, hence efficiently enhancing prodigiosin production with S. marcescens at 30 and 37°C. IMPORTANCE This study highlights a promising strategy to improve mRNA/enzyme stability and to increase production using de novo PNF libraries and the introduction of disulfide bonds into the protein. PNFs could increase the half-life of target gene mRNA and effectively prevent its degradation. Moreover, PNFs could increase the relative intensity of target genes without affecting the expression of other genes; as a result, it could alleviate the cellular burden compared to other regulatory elements such as promoters. In addition, we obtained a PigF variant with improved activity and stability by the introduction of disulfide bonds into PigF. Collectively, we demonstrate here a novel approach for improving mRNA/enzyme stability using PNFs, which results in enhanced prodigiosin production in S. marcescens at 30°C.
Collapse
|
30
|
Design and Evaluation of Synthetic RNA-Based Incoherent Feed-Forward Loop Circuits. Biomolecules 2021; 11:biom11081182. [PMID: 34439849 PMCID: PMC8391864 DOI: 10.3390/biom11081182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way junction (3WJ) repressor, have been utilized to construct RNA-based synthetic gene circuits in living cells. In this work, we utilized these regulators to construct type 1 incoherent feed-forward loop (IFFL) circuits in vivo and explored their dynamic behaviors. A combination of a STAR and 3WJ repressor was used to construct an RNA-only IFFL circuit. However, due to the fast kinetics of RNA–RNA interactions, there was no significant timescale difference between the direct activation and the indirect inhibition, that no pulse was observed in the experiments. These findings were confirmed with mechanistic modeling and simulation results for a wider range of conditions. To increase delay in the inhibition pathway, we introduced a protein synthesis process to the circuit and designed an RNA–protein hybrid IFFL circuit using THS and TetR protein. Simulation results indicated that pulse generation could be achieved with this RNA–protein hybrid model, and this was further verified with experimental realization in E. coli. Our findings demonstrate that while RNA-based regulators excel in speed as compared to protein-based regulators, the fast reaction kinetics of RNA-based regulators could also undermine the functionality of a circuit (e.g., lack of significant timescale difference). The agreement between experiments and simulations suggests that the mechanistic modeling can help debug issues and validate the hypothesis in designing a new circuit. Moreover, the applicability of the kinetic parameters extracted from the RNA-only circuit to the RNA–protein hybrid circuit also indicates the modularity of RNA-based regulators when used in a different context. We anticipate the findings of this work to guide the future design of gene circuits that rely heavily on the dynamics of RNA-based regulators, in terms of both modeling and experimental realization.
Collapse
|
31
|
Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria? mBio 2021; 12:e0104121. [PMID: 34372700 PMCID: PMC8406224 DOI: 10.1128/mbio.01041-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model GammaproteobacteriaEscherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model FirmicutesBacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3′→5′ exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3′ UTR cleavage fragments that contain stabilizing 3′ structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5′ and 3′ ends, efficiently degrading mRNA 3′ UTR fragments. Here, we propose that the lack of 5′→3′ exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3′ UTR ends as the “default” setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3′ UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes.
Collapse
|
32
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins (Basel) 2021; 13:toxins13070443. [PMID: 34206796 PMCID: PMC8309854 DOI: 10.3390/toxins13070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.
Collapse
|
34
|
Laalami S, Cavaiuolo M, Roque S, Chagneau C, Putzer H. Escherichia coli RNase E can efficiently replace RNase Y in Bacillus subtilis. Nucleic Acids Res 2021; 49:4643-4654. [PMID: 33788929 PMCID: PMC8096251 DOI: 10.1093/nar/gkab216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
RNase Y and RNase E are disparate endoribonucleases that govern global mRNA turnover/processing in the two evolutionary distant bacteria Bacillus subtilis and Escherichia coli, respectively. The two enzymes share a similar in vitro cleavage specificity and subcellular localization. To evaluate the potential equivalence in biological function between the two enzymes in vivo we analyzed whether and to what extent RNase E is able to replace RNase Y in B. subtilis. Full-length RNase E almost completely restores wild type growth of the rny mutant. This is matched by a surprising reversal of transcript profiles both of individual genes and on a genome-wide scale. The single most important parameter to efficient complementation is the requirement for RNase E to localize to the inner membrane while truncation of the C-terminal sequences corresponding to the degradosome scaffold has only a minor effect. We also compared the in vitro cleavage activity for the major decay initiating ribonucleases Y, E and J and show that no conclusions can be drawn with respect to their activity in vivo. Our data confirm the notion that RNase Y and RNase E have evolved through convergent evolution towards a low specificity endonuclease activity universally important in bacteria.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Marina Cavaiuolo
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Sylvain Roque
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Carine Chagneau
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| |
Collapse
|
35
|
Guimarães VA, Le Scornet A, Khemici V, Hausmann S, Armitano J, Prados J, Jousselin A, Manzano C, Linder P, Redder P. RNase J1 and J2 Are Host-Encoded Factors for Plasmid Replication. Front Microbiol 2021; 12:586886. [PMID: 34017314 PMCID: PMC8129170 DOI: 10.3389/fmicb.2021.586886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids need to ensure their transmission to both daughter-cells when their host divides, but should at the same time avoid overtaxing their hosts by directing excessive host-resources toward production of plasmid factors. Naturally occurring plasmids have therefore evolved regulatory mechanisms to restrict their copy-number in response to the volume of the cytoplasm. In many plasmid families, copy-number control is mediated by a small plasmid-specified RNA, which is continuously produced and rapidly degraded, to ensure that its concentration is proportional to the current plasmid copy-number. We show here that pSA564 from the RepA_N-family is regulated by a small antisense RNA (RNA1), which, when over-expressed in trans, blocks plasmid replication and cures the bacterial host. The 5' untranslated region (5'UTR) of the plasmid replication initiation gene (repA) potentially forms two mutually exclusive secondary structures, ON and OFF, where the latter both sequesters the repA ribosome binding site and acts as a rho-independent transcriptional terminator. Duplex formation between RNA1 and the 5'UTR shifts the equilibrium to favor the putative OFF-structure, enabling a single small RNA to down-regulate repA expression at both transcriptional and translational levels. We further examine which sequence elements on the antisense RNA and on its 5'UTR target are needed for this regulation. Finally, we identify the host-encoded exoribonucleases RNase J1 and J2 as the enzymes responsible for rapidly degrading the replication-inhibiting section of RNA1. This region accumulates and blocks RepA expression in the absence of either RNase J1 or J2, which are therefore essential host factors for pSA564 replication in Staphylococcus aureus.
Collapse
Affiliation(s)
- Vanessa Andrade Guimarães
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| |
Collapse
|
36
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
37
|
Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, Shin E, Yeom JH, Kim YH, Bae J, Lee K. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog 2021; 17:e1009263. [PMID: 33524062 PMCID: PMC7877770 DOI: 10.1371/journal.ppat.1009263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/11/2021] [Accepted: 01/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria utilize endoribonuclease-mediated RNA processing and decay to rapidly adapt to environmental changes. Here, we report that the modulation of hns mRNA stability by the endoribonuclease RNase G plays a key role in Salmonella Typhimurium pathogenicity. We found that RNase G determines the half-life of hns mRNA by cleaving its 5′ untranslated region and that altering its cleavage sites by genome editing stabilizes hns mRNA, thus decreasing S. Typhimurium virulence in mice. Under anaerobic conditions, the FNR-mediated transcriptional repression of rnc encoding RNase III, which degrades rng mRNA, and simultaneous induction of rng transcription resulted in rapid hns mRNA degradation, leading to the derepression of genes involved in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Together, our findings show that RNase III and RNase G levels-mediated control of hns mRNA abundance acts as a regulatory pathway upstream of a complex feed-forward loop for SPI-1 expression. Recent studies have shown that pathogenic bacteria with ribonuclease mutations display attenuated virulence, impaired mobility, and reduced proliferation in host cells. However, the molecular mechanisms underlying ribonuclease-associated pathogenesis have not yet been characterised. Here, we provide strong experimental evidence that the coordinated modulation of endoribonuclease activity constitutes an additional regulatory layer upstream of a complex feed-forward loop controlling global regulatory systems in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). In addition, we showed that this regulatory pathway plays a key role in the virulence of S. Typhimurium in the host. Thus, our study improves the understanding of the mechanisms through which bacterial pathogens sense the host environment and respond precisely by expressing gene products required for adaptation to that particular niche.
Collapse
Affiliation(s)
- Minho Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Jeehyeon Bae
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| |
Collapse
|
38
|
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Noncoding RNA 2021; 7:ncrna7010003. [PMID: 33466464 PMCID: PMC7839045 DOI: 10.3390/ncrna7010003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
mRNA stability influences gene expression and translation in almost all living organisms, and the levels of mRNA molecules in the cell are determined by a balance between production and decay. Maintaining an accurate balance is crucial for the correct function of a wide variety of biological processes and to maintain an appropriate cellular homeostasis. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of gene expression through different molecular mechanisms, including mRNA stabilization. In this review we provide an overview on the molecular mechanisms by which lncRNAs modulate mRNA stability and decay. We focus on how lncRNAs interact with RNA binding proteins and microRNAs to avoid mRNA degradation, and also on how lncRNAs modulate epitranscriptomic marks that directly impact on mRNA stability.
Collapse
Affiliation(s)
- Maialen Sebastian-delaCruz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Itziar Gonzalez-Moro
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Izortze Santin
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-94-601-32-09
| |
Collapse
|
39
|
Basu S, Mallik S, Hait S, Kundu S. Genome-scale molecular principles of mRNA half-life regulation in yeast. FEBS J 2020; 288:3428-3447. [PMID: 33319437 DOI: 10.1111/febs.15670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/07/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Precise control of protein and messenger RNA (mRNA) degradation is essential for cellular metabolism and homeostasis. Controlled and specific degradation of both molecular species necessitates their engagements with the respective degradation machineries; this engagement involves a disordered/unstructured segment of the substrate traversing the degradation tunnel of the machinery and accessing the catalytic sites. However, while molecular factors influencing protein degradation have been extensively explored on a genome scale, and in multiple organisms, such a comprehensive understanding remains missing for mRNAs. Here, we analyzed multiple genome-scale experimental yeast mRNA half-life data in light of experimentally derived mRNA secondary structures and protein binding data, along with high-resolution X-ray crystallographic structures of the RNase machines. Results unraveled a consistent genome-scale trend that mRNAs comprising longer terminal and/or internal unstructured segments have significantly shorter half-lives; the lengths of the 5'-terminal, 3'-terminal, and internal unstructured segments that affect mRNA half-life are compatible with molecular structures of the 5' exo-, 3' exo-, and endoribonuclease machineries. Sequestration into ribonucleoprotein complexes elongates mRNA half-life, presumably by burying ribonuclease engagement sites under oligomeric interfaces. After gene duplication, differences in terminal unstructured lengths, proportions of internal unstructured segments, and oligomerization modes result in significantly altered half-lives of paralogous mRNAs. Side-by-side comparison of molecular principles underlying controlled protein and mRNA degradation in yeast unravels their remarkable mechanistic similarities and suggests how the intrinsic structural features of the two molecular species, at two different levels of the central dogma, regulate their half-lives on genome scale.
Collapse
Affiliation(s)
- Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| | - Saurav Mallik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| |
Collapse
|
40
|
Layton E, Fairhurst AM, Griffiths-Jones S, Grencis RK, Roberts IS. Regulatory RNAs: A Universal Language for Inter-Domain Communication. Int J Mol Sci 2020; 21:E8919. [PMID: 33255483 PMCID: PMC7727864 DOI: 10.3390/ijms21238919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, microRNAs (miRNAs) have roles in development, homeostasis, disease and the immune response. Recent work has shown that plant and mammalian miRNAs also mediate cross-kingdom and cross-domain communications. However, these studies remain controversial and are lacking critical mechanistic explanations. Bacteria do not produce miRNAs themselves, and therefore it is unclear how these eukaryotic RNA molecules could function in the bacterial recipient. In this review, we compare and contrast the biogenesis and functions of regulatory RNAs in eukaryotes and bacteria. As a result, we discovered several conserved features and homologous components in these distinct pathways. These findings enabled us to propose novel mechanisms to explain how eukaryotic miRNAs could function in bacteria. Further understanding in this area is necessary to validate the findings of existing studies and could facilitate the use of miRNAs as novel tools for the directed remodelling of the human microbiota.
Collapse
Affiliation(s)
- Emma Layton
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore;
| | - Sam Griffiths-Jones
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Ian S. Roberts
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| |
Collapse
|
41
|
Chavez Rodriguez L, Ingalls B, Schwarz E, Streck T, Uksa M, Pagel H. Gene-Centric Model Approaches for Accurate Prediction of Pesticide Biodegradation in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13638-13650. [PMID: 33064475 DOI: 10.1021/acs.est.0c03315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used in agriculture despite their negative impact on ecosystems and human health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics and pesticide turnover with measurements of the abundance and expression of functional genes. To assess the advantages of informing models with genetic data, we developed a novel "gene-centric" model and compared model variants of differing structural complexity against a standard biomass-based model. The models were calibrated and validated using data from two batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating against data on pesticide mineralization, the gene-centric and biomass-based models performed equally well. However, accounting for pesticide-triggered gene regulation allows improved performance in capturing microbial dynamics and in predicting pesticide mineralization. This novel modeling approach also reveals a hysteretic relationship between pesticide degradation rates and gene expression, implying that the biodegradation performance in soils cannot be directly assessed by measuring the expression of functional genes. Our gene-centric model provides an effective approach for exploiting molecular biology data to simulate pesticide degradation in soils.
Collapse
Affiliation(s)
- Luciana Chavez Rodriguez
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Erik Schwarz
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Thilo Streck
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Marie Uksa
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Stuttgart, Germany
| | - Holger Pagel
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
42
|
Muthunayake NS, Tomares DT, Childers WS, Schrader JM. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1599. [PMID: 32445438 PMCID: PMC7554086 DOI: 10.1002/wrna.1599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
In bacteria, mRNA decay is controlled by megadalton scale macromolecular assemblies called, "RNA degradosomes," composed of nucleases and other RNA decay associated proteins. Recent advances in bacterial cell biology have shown that RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress granules. This review will highlight the functional role that BR-bodies play in the mRNA decay process through its organization into a membraneless organelle in the bacterial cytoplasm. This review will also highlight the phylogenetic distribution of BR-bodies across bacterial species, which suggests that these phase-separated structures are broadly distributed across bacteria, and in evolutionarily related mitochondria and chloroplasts. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
43
|
Azpeitia E, Balanzario EP, Wagner A. Signaling pathways have an inherent need for noise to acquire information. BMC Bioinformatics 2020; 21:462. [PMID: 33066727 PMCID: PMC7568421 DOI: 10.1186/s12859-020-03778-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND All living systems acquire information about their environment. At the cellular level, they do so through signaling pathways. Such pathways rely on reversible binding interactions between molecules that detect and transmit the presence of an extracellular cue or signal to the cell's interior. These interactions are inherently stochastic and thus noisy. On the one hand, noise can cause a signaling pathway to produce the same response for different stimuli, which reduces the amount of information a pathway acquires. On the other hand, in processes such as stochastic resonance, noise can improve the detection of weak stimuli and thus the acquisition of information. It is not clear whether the kinetic parameters that determine a pathway's operation cause noise to reduce or increase the acquisition of information. RESULTS We analyze how the kinetic properties of the reversible binding interactions used by signaling pathways affect the relationship between noise, the response to a signal, and information acquisition. Our results show that, under a wide range of biologically sensible parameter values, a noisy dynamic of reversible binding interactions is necessary to produce distinct responses to different stimuli. As a consequence, noise is indispensable for the acquisition of information in signaling pathways. CONCLUSIONS Our observations go beyond previous work by showing that noise plays a positive role in signaling pathways, demonstrating that noise is essential when such pathways acquire information.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Eugenio P Balanzario
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
44
|
Abstract
RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products. RNA degradation is an important process that influences the ultimate concentration of individual proteins inside cells. While the main enzymes that facilitate this process have been identified, global maps of RNA turnover are available for only a few species. Even in these cases, there are few sequence elements that are known to enhance or destabilize a native transcript; even fewer confer the same effect when added to a heterologous transcript. To address this knowledge gap, we assayed genome-wide RNA degradation in the cyanobacterium Synechococcus sp. strain PCC 7002 by collecting total RNA samples after stopping nascent transcription with rifampin. We quantified the abundance of each position in the transcriptome as a function of time using RNA-sequencing data and later analyzed the global mRNA decay map using machine learning principles. Half-lives, calculated on a per-ORF (open reading frame) basis, were extremely short, with a median half-life of only 0.97 min. Despite extremely rapid turnover of most mRNA, transcripts encoding proteins involved in photosynthesis were both highly expressed and highly stable. Upon inspection of these stable transcripts, we identified an enriched motif in the 3′ untranslated region (UTR) that had similarity to Rho-independent terminators. We built statistical models for half-life prediction and used them to systematically identify sequence motifs in both 5′ and 3′ UTRs that correlate with stabilized transcripts. We found that transcripts linked to a terminator containing a poly(U) tract had a longer half-life than both those without a poly(U) tract and those without a terminator. IMPORTANCE RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products.
Collapse
|
45
|
Cavaiuolo M, Chagneau C, Laalami S, Putzer H. Impact of RNase E and RNase J on Global mRNA Metabolism in the Cyanobacterium Synechocystis PCC6803. Front Microbiol 2020; 11:1055. [PMID: 32582060 PMCID: PMC7283877 DOI: 10.3389/fmicb.2020.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria Escherichia coli and Bacillus subtilis, RNA decay has not been studied in detail in cyanobacteria. Synechocystis sp. PCC6803 encodes orthologs of both E. coli and B. subtilis RNases, including RNase E and RNase J, respectively. We show that in vitro Sy RNases E and J have an endonucleolytic cleavage specificity that is very similar between them and also compared to orthologous enzymes from E. coli, B. subtilis, and Chlamydomonas. Moreover, Sy RNase J displays a robust 5′-exoribonuclease activity similar to B. subtilis RNase J1, but unlike the evolutionarily related RNase J in chloroplasts. Both nucleases are essential and gene deletions could not be fully segregated in Synechocystis. We generated partially disrupted strains of Sy RNase E and J that were stable enough to allow for their growth and characterization. A transcriptome analysis of these strains partially depleted for RNases E and J, respectively, allowed to observe effects on specific transcripts. RNase E altered the expression of a larger number of chromosomal genes and antisense RNAs compared to RNase J, which rather affects endogenous plasmid encoded transcripts. Our results provide the first description of the main transcriptomic changes induced by the partial depletion of two essential ribonucleases in cyanobacteria.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Carine Chagneau
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Soumaya Laalami
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Harald Putzer
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| |
Collapse
|
46
|
Azpeitia E, Wagner A. Short Residence Times of DNA-Bound Transcription Factors Can Reduce Gene Expression Noise and Increase the Transmission of Information in a Gene Regulation System. Front Mol Biosci 2020; 7:67. [PMID: 32411721 PMCID: PMC7198700 DOI: 10.3389/fmolb.2020.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression noise is not just ubiquitous but also variable, and we still do not understand some of the most elementary factors that affect it. Among them is the residence time of a transcription factor (TF) on DNA, the mean time that a DNA-bound TF remains bound. Here, we use a stochastic model of transcriptional regulation to study how residence time affects the gene expression noise that arises when a TF induces gene expression. We find that the effect of residence time on gene expression noise depends on the TF’s concentration and its affinity to DNA, which determine the level of induction of the gene. At high levels of induction, residence time has no effect on gene expression noise. However, as the level of induction decreases, short residence times reduce gene expression noise. The reason is that fast on-off TF binding dynamics prevent long periods where proteins are predominantly synthesized or degraded, which can cause excessive fluctuations in gene expression. As a consequence, short residence times can help a gene regulation system acquire information about the cellular environment it operates in. Our predictions are consistent with the observation that experimentally measured residence times are usually modest and lie between seconds to minutes.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
47
|
Broglia L, Lécrivain AL, Renault TT, Hahnke K, Ahmed-Begrich R, Le Rhun A, Charpentier E. An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3'-to-5' exoRNases and RNase Y. Nat Commun 2020; 11:1587. [PMID: 32221293 PMCID: PMC7101322 DOI: 10.1038/s41467-020-15387-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/29/2020] [Indexed: 11/29/2022] Open
Abstract
RNA degradation is an essential process that allows bacteria to control gene expression and adapt to various environmental conditions. It is usually initiated by endoribonucleases (endoRNases), which produce intermediate fragments that are subsequently degraded by exoribonucleases (exoRNases). However, global studies of the coordinated action of these enzymes are lacking. Here, we compare the targetome of endoRNase Y with the targetomes of 3′-to-5′ exoRNases from Streptococcus pyogenes, namely, PNPase, YhaM, and RNase R. We observe that RNase Y preferentially cleaves after guanosine, generating substrate RNAs for the 3′-to-5′ exoRNases. We demonstrate that RNase Y processing is followed by trimming of the newly generated 3′ ends by PNPase and YhaM. Conversely, the RNA 5′ ends produced by RNase Y are rarely further trimmed. Our strategy enables the identification of processing events that are otherwise undetectable. Importantly, this approach allows investigation of the intricate interplay between endo- and exoRNases on a genome-wide scale. Bacterial RNA degradation is typically initiated by endoribonucleases and followed by exoribonucleases. Here the authors report the targetome of endoRNase Y in Streptococcus pyogenes, revealing the interplay between RNase Y and 3′-to-5′ exoribonuclease PNPase and YhaM.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Anne-Laure Lécrivain
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden
| | - Thibaud T Renault
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Rina Ahmed-Begrich
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany. .,Institute for Biology, Humboldt University, D-10115, Berlin, Germany. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden.
| |
Collapse
|
48
|
Salze M, Muller C, Bernay B, Hartke A, Clamens T, Lesouhaitier O, Rincé A. Study of key RNA metabolism proteins in Enterococcus faecalis. RNA Biol 2020; 17:794-804. [PMID: 32070211 DOI: 10.1080/15476286.2020.1728103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The control of mRNA turnover is essential in bacteria to allow rapid adaptation, especially in opportunistic pathogen like Enterococcus faecalis. This mechanism involves RNase and DEAD-box helicases that are key elements in RNA processing and their associations form the degradosome with accessory proteins. In this study, we investigated the function of four RNases (J1, J2, Y and III) and three DEAD-box helicases (CshA, CshB, CshC) present in most Enterococci. The interactions of all these RNA metabolism actors were investigated in vitro, and the results are in accordance with a degradosome structure close to the one of Bacillus subtilis. At the physiological level, we showed that RNase J1 is essential, whereas RNases J2 and III have a role in cold, oxidative and bile salts stress response, and RNase Y in general fitness. Furthermore, RNases J2, Y and III mutants are affected in virulence in the Galleria mellonella infection model. Concerning DEAD-box helicases, all of them are involved in cold shock response. Since the ΔcshA mutant was the most stress impacted strain, we studied this DEAD-box helicase CshA in more detail. This showed that CshA autoregulates its own expression by binding to its mRNA 5'Unstranslated Region. Interestingly, CshC is also involved in the expression control of CshA by a hitherto unprecedented mechanism.
Collapse
Affiliation(s)
- Marine Salze
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Cécile Muller
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Benoit Bernay
- Proteogen Platform, Normandie Univ, UNICAEN, SFR ICORE , Caen, France
| | - Axel Hartke
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Thomas Clamens
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM, Normandie Univ, University of Rouen , Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM, Normandie Univ, University of Rouen , Evreux, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| |
Collapse
|
49
|
Abstract
All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries. Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis. This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo. We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs.
Collapse
|
50
|
Neves D, Vos S, Blank LM, Ebert BE. Pseudomonas mRNA 2.0: Boosting Gene Expression Through Enhanced mRNA Stability and Translational Efficiency. Front Bioeng Biotechnol 2020; 7:458. [PMID: 32039175 PMCID: PMC6993053 DOI: 10.3389/fbioe.2019.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 11/14/2022] Open
Abstract
High gene expression of enzymes partaking in recombinant production pathways is a desirable trait among cell factories belonging to all different kingdoms of life. High enzyme abundance is generally aimed for by utilizing strong promoters, which ramp up gene transcription and mRNA levels. Increased protein abundance can alternatively be achieved by optimizing the expression on the post-transcriptional level. Here, we evaluated protein synthesis with a previously proposed optimized gene expression architecture, in which mRNA stability and translation initiation are modulated by genetic parts such as self-cleaving ribozymes and a bicistronic design, which have initially been described to support the standardization of gene expression. The optimized gene expression architecture was tested in Pseudomonas taiwanensis VLB120, a promising, novel microbial cell factory. The expression cassette was employed on a plasmid basis and after single genomic integration. We used three constitutive and two inducible promoters to drive the expression of two fluorescent reporter proteins and a short acetoin biosynthesis pathway. The performance was confronted with that of a traditional expression cassette harboring the same promoter and gene of interest but lacking the genetic parts for increased expression efficiency. The optimized expression cassette granted higher protein abundance independently of the expression basis or promoter used proving its value for applications requiring high protein abundance.
Collapse
Affiliation(s)
- Dário Neves
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Stefan Vos
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Birgitta E Ebert
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| |
Collapse
|