1
|
A Crucial Role of ACBD3 Required for Coxsackievirus Infection in Animal Model Developed by AAV-Mediated CRISPR Genome Editing Technique. Viruses 2021; 13:v13020237. [PMID: 33546322 PMCID: PMC7913485 DOI: 10.3390/v13020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic screens using CRISPR/Cas9 have been exploited to discover host–virus interactions. These screens have identified viral dependencies on host proteins during their life cycle and potential antiviral strategies. The acyl-CoA binding domain containing 3 (ACBD3) was identified as an essential host factor for the Coxsackievirus B3 (CVB3) infection. Other groups have also investigated the role of ACBD3 as a host factor for diverse enteroviruses in cultured cells. However, it has not been tested if ACBD3 is required in the animal model of CVB3 infection. Owing to embryonic lethality, conventional knockout mice were not available for in vivo study. As an alternative approach, we used adeno-associated virus (AAV)-mediated CRISPR genome editing to generate mice that lacked ACBD3 within the pancreas, the major target organ for CVB3. Delivery of sgRNAs using self-complementary (sc) AAV8 efficiently induced a loss-of-function mutation in the pancreas of the Cas9 knock-in mice. Loss of ACBD3 in the pancreas resulted in a 100-fold reduction in the CVB3 titer within the pancreas and a noticeable reduction in viral protein expression. These results indicate a crucial function of ACBD3 in CVB3 infection in vivo. AAV-mediated CRISPR genome editing may be applicable to many in vivo studies on the virus–host interaction and identify a novel target for antiviral therapeutics.
Collapse
|
2
|
Wang C, Zhang K, Meng L, Zhang X, Song Y, Zhang Y, Gai Y, Zhang Y, Yu B, Wu J, Wang S, Yu X. The C-terminal domain of feline and bovine SAMHD1 proteins has a crucial role in lentiviral restriction. J Biol Chem 2020; 295:4252-4264. [PMID: 32075911 PMCID: PMC7105322 DOI: 10.1074/jbc.ra120.012767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Indexed: 01/29/2023] Open
Abstract
SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; The First Hospital and Institute of Immunology, Jilin University, Changchun 130012, China
| | - Kaikai Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ying Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuepeng Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Li M, Xu X, Jiang Z, Liu C, Shi X, Qi G, Li Y, Chen X, Huang Q, Mao H, Hu C. Fish SAMHD1 performs as an activator for IFN expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:138-146. [PMID: 29753769 DOI: 10.1016/j.dci.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
As a host limiting factor, Sterile Alpha Motif and Histidine-Aspartate Domain 1 protein (SAMHD1) is associated with IRF3-mediated antiviral and apoptotic responses in mammals. However, the antiviral mechanism of SAMHD1 remains indistinct in fish. In this study, we found the expression of Ctenopharyngodon idella SAMHD1 (MF326081) was up-regulated after transfection with poly I:C (dsRNA analog), B-DNA or Z-DNA into C. idella kidney cells (CIKs), but these expression profiles had no obvious change when the cells were incubated with these nucleic acids. These data may indicate that CiSAMHD1 participates in the intracellular PRR-mediated signaling pathway rather than extracellular PRR-mediated signaling pathway. Subcellular localization assay suggested that a part of over-expressed CiSAMHD1 were translocated from nuclear to cytoplasm when C. idella ovary cells (COs) were transfected with poly I:C, B-DNA or Z-DNA. Nucleic acid pulldown assays were performed to investigate the reason for nuclear-cytoplasm translocation of CiSAMHD1. The results showed that CiSAMHD1 had a high affinity with B-DNA, Z-DNA and ISD-PS (dsRNA analog). In addition, co-IP assays revealed the interaction of CiSAMHD1 with CiSTING (KF494194). Taken together, all these results suggest that grass carp SAMHD1 performs as an activator for innate immune response through STING-mediated signaling pathway.
Collapse
Affiliation(s)
- Meifeng Li
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Changxin Liu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiao Shi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Guoqin Qi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Qingli Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Martinez-Lopez A, Martin-Fernandez M, Buta S, Kim B, Bogunovic D, Diaz-Griffero F. SAMHD1 deficient human monocytes autonomously trigger type I interferon. Mol Immunol 2018; 101:450-460. [PMID: 30099227 DOI: 10.1016/j.molimm.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
Germline mutations in the human SAMHD1 gene cause the development of Aicardi-Goutières Syndrome (AGS), with a dominant feature being increased systemic type I interferon(IFN) production. Here we tested the state of type I IFN induction and response to, in SAMHD1 knockout (KO) human monocytic cells. SAMHD1 KO cells exhibited spontaneous transcription and translation of IFN-β and subsequent interferon-stimulated genes (ISGs) as compared to parental wild-type cells. This elevation of IFN-β and ISGs was abrogated via inhibition of the TBK1-IRF3 pathway in the SAMHD1 KO cells. In agreement, we found that SAMHD1 KO cells present high levels of phosphorylated TBK1 when compared to control cells. Moreover, addition of blocking antibody against type I IFN also reversed elevation of ISGs. These experiments suggested that SAMHD1 KO cells are persistently auto-stimulating the TBK1-IRF3 pathway, leading to an enhanced production of type I IFN and subsequent self-induction of ISGs.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, GA 30322, United States
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
5
|
Blanco-Melo D, Gifford RJ, Bieniasz PD. Reconstruction of a replication-competent ancestral murine endogenous retrovirus-L. Retrovirology 2018; 15:34. [PMID: 29716624 PMCID: PMC5930517 DOI: 10.1186/s12977-018-0416-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND About 10% of the mouse genome is composed of endogenous retroviruses (ERVs) that represent a molecular fossil record of past retroviral infections. One such retrovirus, murine ERV-L (MuERV-L) is an env-deficient ERV that has undergone episodic proliferation, with the most recent amplification occurring ~ 2 million years ago. MuERV-L related sequences have been co-opted by mice for antiretroviral defense, and possibly as promoters for some genes that regulate totipotency in early mouse embryos. However, MuERV-L sequences present in modern mouse genomes have not been observed to replicate. RESULTS Here, we describe the reconstruction of an ancestral MuERV-L (ancML) sequence through paleovirological analyses of MuERV-L elements in the modern mouse genome. The resulting MuERV-L (ancML) sequence was synthesized and a reporter gene embedded. The reconstructed MuERV-L (ancML) could replicate in a manner that is dependent on reverse transcription and generated de novo integrants. Notably, MuERV-L (ancML) exhibited a narrow host range. Interferon-α could reduce MuERV-L (ancML) replication, suggesting the existence of interferon-inducible genes that could inhibit MuERV-L replication. While mouse APOBEC3 was able to restrict the replication of MuERV-L (ancML), inspection of endogenous MuERV-L sequences suggested that the impact of APOBEC3 mediated hypermutation on MuERV-L has been minimal. CONCLUSION The reconstruction of an ancestral MuERV-L sequence highlights the potential for the retroviral fossil record to illuminate ancient events and enable studies of the impact of retroviral elements on animal evolution.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Paul D Bieniasz
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Termini JM, Silver ZA, Connor B, Antonopoulos A, Haslam SM, Dell A, Desrosiers RC. HEK293T cell lines defective for O-linked glycosylation. PLoS One 2017; 12:e0179949. [PMID: 28654657 PMCID: PMC5487050 DOI: 10.1371/journal.pone.0179949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022] Open
Abstract
Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE), galactokinase 1 (GALK1), and galactokinase 2 (GALK2) genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc) to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2), O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.
Collapse
Affiliation(s)
- James M. Termini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Zachary A. Silver
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Bryony Connor
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
7
|
Maelfait J, Bridgeman A, Benlahrech A, Cursi C, Rehwinkel J. Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1. Cell Rep 2016; 16:1492-1501. [PMID: 27477283 PMCID: PMC4978700 DOI: 10.1016/j.celrep.2016.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection. Spontaneous IFN production in SAMHD1-deficient cells requires cGAS and STING During HIV-1 infection, SAMHD1 limits activation of myeloid cells cGAS and STING detect HIV-1 infection in SAMHD1-deficient cells and induce IFN SAMHD1 prevents virus-specific CD8 T cell responses in vivo
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adel Benlahrech
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
8
|
Stolp B, Melican K. Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 2016; 590:2014-26. [PMID: 26938770 DOI: 10.1002/1873-3468.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Intravital multiphoton imaging allows visualization of infections and pathogenic mechanisms within intact organs in their physiological context. Today, most organs of mice and rats are applicable to in vivo or ex vivo imaging, opening completely new avenues for many researchers. Advances in fluorescent labeling of pathogens and infected cells, as well as improved small animal models for human pathogens, led to the increased application of in vivo imaging in infectious diseases research in recent years. Here, we review the latest literature on intravital or ex vivo imaging of viral and bacterial infections and critically discuss requirements, benefits and drawbacks of applied animal models, labeling strategies, and imaged organs.
Collapse
Affiliation(s)
- Bettina Stolp
- Heidelberg University Hospital, Center of Infectious Diseases, Integrative Virology, Heidelberg, Germany
| | - Keira Melican
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Zhu JW, Liu FL, Mu D, Deng DY, Zheng YT. Increased expression and dysregulated association of restriction factors and type I interferon in HIV, HCV mono- and co-infected patients. J Med Virol 2015; 88:987-95. [PMID: 26519943 DOI: 10.1002/jmv.24419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Host restriction factors and type I interferon are important in limiting HIV and HCV infections, yet the role of HIV, HCV mono- and co-infection in regulating these antiviral genes expression is not clear. In this study, we measured the levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β mRNA expression in peripheral blood mononuclear cells of 43 HIV mono-infected, 70 HCV mono-infected and 64 HIV/HCV co-infected patients along with 98 healthy controls. We also quantified HIV and HCV viral loads in mono- and co-infected patients. The results showed that HCV, HIV mono- and co-infection differentially increased TRIM22, APOBEC3G, and IFN-α, -β mRNA expression while the mRNA expression of TRIMα was upregulated only by HCV-mono infection. HIV/HCV co-infection was associated with higher viral load, compared to either HIV or HCV mono-infection. Additionally, we showed TRIMα and TRIM22 positively correlated with IFN-α, -β, which could be dysregulated by HIV, HCV mono- and co-infection. Furthermore, we found TRIM22 negatively correlated with HCV viral load in mono-infected patients and APOBEC3G positively correlated with HCV viral load in co-infected patients. Collectively, our findings suggest the potential role of restriction factors in restricting HIV, HCV mono- and co-infection in vivo, which appears to be a therapeutic target for potential drug discovery.
Collapse
Affiliation(s)
- Jia-Wu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
10
|
Badia R, Angulo G, Riveira-Muñoz E, Pujantell M, Puig T, Ramirez C, Torres-Torronteras J, Martí R, Pauls E, Clotet B, Ballana E, Esté JA. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1. J Antimicrob Chemother 2015; 71:387-94. [PMID: 26542306 DOI: 10.1093/jac/dkv363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Guillem Angulo
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Ramirez
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Pauls
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
11
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
12
|
Stavrou S, Blouch K, Kotla S, Bass A, Ross SR. Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 2015; 17:478-88. [PMID: 25816774 DOI: 10.1016/j.chom.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Intrinsic restriction factors and viral nucleic acid sensors are important for the anti-viral response. Here, we show how upstream sensing of retroviral reverse transcripts integrates with the downstream effector APOBEC3, an IFN-induced cytidine deaminase that introduces lethal mutations during retroviral reverse transcription. Using a murine leukemia virus (MLV) variant with an unstable capsid that induces a strong IFNβ antiviral response, we identify three sensors, IFI203, DDX41, and cGAS, required for MLV nucleic acid recognition. These sensors then signal using the adaptor STING, leading to increased production of IFNβ and other targets downstream of the transcription factor IRF3. Using knockout and mutant mice, we show that APOBEC3 limits the levels of reverse transcripts that trigger cytosolic sensing, and that nucleic acid sensing in vivo increases expression of IFN-regulated restriction factors like APOBEC3 that in turn reduce viral load. These studies underscore the importance of the multiple layers of protection afforded by host factors.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swathi Kotla
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Bass
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R Ross
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Farberov L, Herzig E, Modai S, Isakov O, Hizi A, Shomron N. MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection. J Cell Sci 2015; 128:1607-16. [PMID: 25717002 PMCID: PMC4406127 DOI: 10.1242/jcs.167817] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in the regulation of gene expression by binding to target mRNAs. Several studies have revealed alterations in cellular miRNA profiles following HIV-1 infection, mostly for miRNAs involved in inhibiting viral infection. These miRNA expression modifications might also serve to block the innate HIV-1 inhibition mechanism. As a result, it is expected that during HIV-1 infection miRNAs target genes that hinder or prevent the progression of the HIV-1 replication cycle. One of the major sets of genes known to inhibit the progression of HIV-1 infection are cellular restriction factors. In this study, we identified a direct miRNA target gene that modulates viral spread in T-lymphocytes and HeLa-CCR5 cell lines. Following infection, let-7c, miR-34a or miR-124a were upregulated, and they targeted and downregulated p21 and TASK1 (also known as CDKN1A and KCNK3, respectively) cellular proteins. This eventually led to increased virion release and higher copy number of viral genome transcripts in infected cells. Conversely, by downregulating these miRNAs, we could suppress viral replication and spread. Our data suggest that HIV-1 exploits the host miRNA cellular systems in order to block the innate inhibition mechanism, allowing a more efficient infection process.
Collapse
Affiliation(s)
- Luba Farberov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eytan Herzig
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Modai
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Isakov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amnon Hizi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Rosales Gerpe MC, Renner TM, Bélanger K, Lam C, Aydin H, Langlois MA. N-linked glycosylation protects gammaretroviruses against deamination by APOBEC3 proteins. J Virol 2015; 89:2342-57. [PMID: 25505062 PMCID: PMC4338886 DOI: 10.1128/jvi.03330-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Retroviruses are pathogens with rapid infection cycles that can be a source of disease, genome instability, and tumor development in their hosts. Host intrinsic restriction factors, such as APOBEC3 (A3) proteins, are constitutively expressed and dedicated to interfering with the replication cycle of retroviruses. To survive, propagate, and persist, retroviruses must counteract these restriction factors, often by way of virus genome-encoded accessory proteins. Glycosylated Gag, also called glycosylated Pr80 Gag (gPr80), is a gammaretrovirus genome-encoded protein that inhibits the antiretroviral activity of mouse A3 (mA3). Here we show that gPr80 exerts two distinct inhibitory effects on mA3: one that antagonizes deamination-independent restriction and another one that inhibits its deaminase activity. More specifically, we find that the number of N-glycosylated residues in gPr80 inversely correlates with the sensitivity of a gammaretrovirus to deamination by mouse A3 and also, surprisingly, by human A3G. Finally, our work highlights that retroviruses which have successfully integrated into the mouse germ line generally express a gPr80 with fewer glycosylated sites than exogenous retroviruses. This observation supports the suggestion that modulation of A3 deamination intensity could be a desirable attribute for retroviruses to increase genetic diversification and avoid immune detection. Overall, we present here the first description of how gammaretroviruses employ posttranslational modification to antagonize and modulate the activity of a host genome-encoded retroviral restriction factor. IMPORTANCE APOBEC3 proteins are host factors that have a major role in protecting humans and other mammals against retroviruses. These enzymes hinder their replication and intensely mutate their DNA, thereby inactivating viral progeny and the spread of infection. Here we describe a newly recognized way in which some retroviruses protect themselves against the mutator activity of APOBEC3 proteins. We show that gammaretroviruses expressing an accessory protein called glycosylated Gag, or gPr80, use the host's posttranslational machinery and, more specifically, N-linked glycosylation as a way to modulate their sensitivity to mutations by APOBEC3 proteins. By carefully controlling the amount of mutations caused by APOBEC3 proteins, gammaretroviruses can find a balance that helps them evolve and persist.
Collapse
Affiliation(s)
- María Carla Rosales Gerpe
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Milston Renner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cindy Lam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Halil Aydin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Barrett BS, Guo K, Harper MS, Li SX, Heilman KJ, Davidson NO, Santiago ML. Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo. Virology 2014; 468-470:601-608. [PMID: 25303118 DOI: 10.1016/j.virol.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/21/2022]
Abstract
APOBEC1 is a cytidine deaminase involved in cholesterol metabolism that has been linked to retrovirus restriction, analogous to the evolutionarily-related APOBEC3 proteins. In particular, murine APOBEC1 was shown to inhibit Friend retrovirus (FV) in vitro, generating high levels of C-to-T and G-to-A mutations. These observations raised the possibility that FV infection might be altered in APOBEC1-null mice. To examine this question directly, we infected wild-type and APOBEC1-null mice with FV complex and evaluated acute infection levels. Surprisingly, APOBEC1-null mice exhibited similar cellular infection levels and plasma viremia relative to wild-type mice. Moreover, next-generation sequencing analyses revealed that in contrast to APOBEC3, APOBEC1 did not enhance retroviral C-to-T and G-to-A mutational frequencies in genomic DNA. Thus, APOBEC1 neither inhibited nor significantly drove the molecular evolution of FV in vivo. Our findings reinforce that not all retrovirus restriction factors characterized as potent in vitro may be functionally relevant in vivo.
Collapse
Affiliation(s)
- Bradley S Barrett
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Karl J Heilman
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
van Montfoort N, Olagnier D, Hiscott J. Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 2014; 25:657-68. [PMID: 25240798 DOI: 10.1016/j.cytogfr.2014.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retroviruses can selectively trigger an array of innate immune responses through various PRR. The identification and the characterization of the molecular basis of retroviral DNA sensing by the DNA sensors IFI16 and cGAS has been one of the most exciting developments in viral immunology in recent years. DNA sensing by these cytosolic sensors not only leads to the initiation of the type I interferon (IFN) antiviral response and the induction of the inflammatory response, but also triggers cell death mechanisms including pyroptosis and apoptosis in retrovirus-infected cells, thereby providing important insights into the pathophysiology of chronic retroviral infection. Host restriction factors such as SAMHD1 and Trex1 play important roles in regulating innate immune sensing, and have led to the idea that innate immune defense and host restriction actually converge at different levels to determine the outcome of retroviral infection. In this review, we discuss the sensing of retroviruses by cytosolic DNA sensors, the relevance of host factors during retroviral infection, and the interplay between host factors and the innate antiviral response in different cell types, within the context of two human pathogenic retroviruses - human immunodeficiency virus (HIV-1) and human T cell-leukemia virus type I (HTLV-1).
Collapse
Affiliation(s)
- Nadine van Montfoort
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|