1
|
Amod A, Anand AA, Sahoo AK, Samanta SK. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01242-y. [PMID: 39865215 DOI: 10.1007/s12223-025-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhu Q, Guan J, Tian B, Wang P. Rational design of antibiotic-free antimicrobial contact lenses: Trade-offs between antimicrobial performance and biocompatibility. BIOMATERIALS ADVANCES 2024; 164:213990. [PMID: 39154560 DOI: 10.1016/j.bioadv.2024.213990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Microbial keratitis associated with contact lenses (CLs) wear remains a significant clinical concern. Antibiotic therapy is the current standard of care. However, the emergence of multidrug-resistant pathogens necessitates the investigation of alternative strategies. Antibiotic-free antimicrobial contact lenses (AFAMCLs) represent a promising approach in this regard. The effectiveness of CLs constructed with a variety of antibiotic-free antimicrobial strategies against microorganisms has been demonstrated. However, the impact of these antimicrobial strategies on CLs biocompatibility remains unclear. In the design and development of AFAMCLs, striking a balance between robust antimicrobial performance and optimal biocompatibility, including safety and wearing comfort, is a key issue. This review provides a comprehensive overview of recent advancements in AFAMCLs technology. The focus is on the antimicrobial efficacy and safety of various strategies employed in AFAMCLs construction. Furthermore, this review investigates the potential impact of these strategies on CLs parameters related to wearer comfort. This review aims to contribute to the continuous improvement of AFAMCLs and provide a reference for the trade-off between resistance to microorganisms and wearing comfort. In addition, it is hoped that this review can also provide a reference for the antimicrobial design of other medical devices.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Loffredo M, Casciaro B, Bellavita R, Troiano C, Brancaccio D, Cappiello F, Merlino F, Galdiero S, Fabrizi G, Grieco P, Stella L, Carotenuto A, Mangoni ML. Strategic Single-Residue Substitution in the Antimicrobial Peptide Esc(1-21) Confers Activity against Staphylococcus aureus, Including Drug-Resistant and Biofilm Phenotype. ACS Infect Dis 2024; 10:2403-2418. [PMID: 38848266 PMCID: PMC11250030 DOI: 10.1021/acsinfecdis.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.
Collapse
Affiliation(s)
- Maria
Rosa Loffredo
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Cassandra Troiano
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Giancarlo Fabrizi
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, 00185 Rome, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Bălășoiu AT, Bălășoiu M, Zlatian OM, Ghenea AE. Bacterial and Fungal Keratitis in a Tertiary Care Hospital from Romania. Microorganisms 2024; 12:787. [PMID: 38674731 PMCID: PMC11052338 DOI: 10.3390/microorganisms12040787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious keratitis is a significant global problem that can lead to corneal blindness and visual impairments. This study aimed to investigate the etiology of infectious bacterial and fungal keratitis, identify the causative pathogens and their antimicrobial resistance patterns, and analyze the risk factors associated with the development of infectious keratitis. The study was observational and retrospective, involving 226 eyes from 223 patients presented at the Ophthalmology Clinic of the County Clinical Emergency Hospital of Craiova, Romania. The inclusion criteria included corneal ulceration/abscess/infiltrate present on slit-lamp examination and positive microbiological sampling for bacteria or fungi. The study found that the most common causes of infectious keratitis were coagulase-negative staphylococci (35.40%), Staphylococcus aureus (11.06%), and Pseudomonas aeruginosa (14.16%). The Gram-positive bacteria showed high resistance rates to penicillin, moderate rates to gentamycin and clindamycin, and low resistance to chinolones. The Gram-negative bacteria were highly resistant to ampicillin and amoxicillin-clavulanic acid, while third-generation cephalosporins, quinolones, and carbapenems were effective. Systemic antibiotics, such as vancomycine, piperacillin-tazobactam, amikacin, and ceftazidime, show promise against keratitis with low resistance rates, whereas carbapenems and topical aminoglycosides had higher resistance, leaving moxifloxacin as a potential topical option for Gram-positive bacteria and Pseudomonas aeruginosa, albeit with resistance concerns for Klebsiella spp. Although fungal keratitis was rare, Fusarium spp. and Candida albicans were the leading fungal pathogens, with incidences of 2.65% and 2.21%, respectively. Candida albicans was broadly susceptible to most antifungals, while Fusarium solani, Curvularia lunata, and Alternaria alternata exhibited resistance to many antifungals. Amphotericin B and caspofungin can be used as systemic antifungals in fungal keratitis. The study also identified risk factors for keratitis such as ocular trauma (65.92%, OR: 2.5), contact lens wear (11.94%, OR: 1.8), and corneal scarring/leukoma (10.17%, OR: 1.6). Keratitis was more frequent in individuals over 60 years old. The findings of this study have implications for the development of effective diagnostic, therapeutic, and preventive strategies for infectious keratitis.
Collapse
Affiliation(s)
- Andrei Theodor Bălășoiu
- Ophtalmology Department, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania;
- Ophtalmology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Bălășoiu
- Medical Laboratory, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania; (M.B.); (A.E.G.)
- Microbiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ovidiu Mircea Zlatian
- Medical Laboratory, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania; (M.B.); (A.E.G.)
- Microbiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alice Elena Ghenea
- Medical Laboratory, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania; (M.B.); (A.E.G.)
- Microbiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
5
|
Tripathi AK, Singh J, Trivedi R, Ranade P. Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications. J Funct Biomater 2023; 14:539. [PMID: 37998108 PMCID: PMC10672284 DOI: 10.3390/jfb14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and biomaterials, along with their diverse clinical applications. The incorporation of AMPs into various medical implants and biomaterials has shown immense potential in mitigating biofilm formation and preventing implant-related infections. We review the latest advancements in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their efficacy and stability within the implant environment. We also highlight successful examples of AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications, AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally, we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness, instability and implant-related complications. We also discuss strategies that can be employed to overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Jyotsana Singh
- Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Payal Ranade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| |
Collapse
|
6
|
Cappiello F, Verma S, Lin X, Moreno IY, Casciaro B, Dutta D, McDermott AM, Willcox M, Coulson-Thomas VJ, Mangoni ML. Novel Peptides with Dual Properties for Treating Pseudomonas aeruginosa Keratitis: Antibacterial and Corneal Wound Healing. Biomolecules 2023; 13:1028. [PMID: 37509064 PMCID: PMC10377436 DOI: 10.3390/biom13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
- School of Optometry, Aston University, Birmingham B4 7ET, UK
| | - Alison M. McDermott
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| |
Collapse
|
7
|
Wang X, Duan H, Li M, Xu W, Wei L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front Cell Dev Biol 2023; 11:1219427. [PMID: 37397255 PMCID: PMC10309037 DOI: 10.3389/fcell.2023.1219427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Wound-healing-promoting peptides are excellent candidates for developing wound-healing agents due to their small size and low production cost. Amphibians are one of the major sources of bioactive peptides, including wound-healing-promoting peptides. So far, a series of wound-healing-promoting peptides have been characterized from amphibians. We hereby summarized the amphibian-derived wound-healing-promoting peptides and their mechanism of action. Among these peptides, two peptides (tylotoin and TK-CATH) were characterized from salamanders, and twenty five peptides were characterized from frogs. These peptides generally have small sizes with 5-80 amino acid residues, nine peptides (tiger17, cathelicidin-NV, cathelicidin-DM, OM-LV20, brevinin-2Ta, brevinin-2PN, tylotoin, Bv8-AJ, and RL-QN15) have intramolecular disulfide bonds, seven peptides (temporin A, temporin B, esculentin-1a, tiger17, Pse-T2, DMS-PS2, FW-1, and FW-2) are amidated at the C-terminus, and the others are linear peptides without modifications. They all efficiently accelerated the healing of skin wounds or photodamage in mice or rats. They selectively promoted the proliferation and migration of keratinocytes and fibroblasts, recruited neutrophils and macrophages to wounds, and regulated the immune response of neutrophils and macrophages in wounds, which were essential for wound healing. Interestingly, MSI-1, Pse-T2, cathelicidin-DM, brevinin-2Ta, brevinin-2PN, and DMS-PS2 were just antimicrobial peptides, but they also significantly promoted the healing of infected wounds by clearing off bacteria. Considering the small size, high efficiency, and definite mechanism, amphibian-derived wound-healing-promoting peptides might be excellent candidates for developing novel wound-healing-promoting agents in future.
Collapse
|
8
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
9
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Zhao Y, Wang XY, Sun Y, Li Z, Liu T, Liu QM, Chen J. Truncated analog Brevinin2-CE-N26V5K: Revelation the Augmentation of Antimicrobial Activity. World J Microbiol Biotechnol 2022; 38:162. [PMID: 35834028 DOI: 10.1007/s11274-022-03333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Brevinin2-CE (B2CE), a natural peptide containing 37 amino acids, was first isolated from the skin secretions of the Chinese forest frog Rana chensinensis. B2CE shows good antibacterial activity. In this study, a series of B2CE analogs with differences in cationicity, α-helicity, hydrophobicity and amphipathic properties were designed through chain-length deletion and amino acid substitution. The most potent, nontoxic analog, B2CE-N26V5K, was identified by examination of its antibacterial activity, hemolytic activity, and stability under physiological conditions. The increased cationicity, hydrophobicity and more obvious hydrophilic and hydrophobic surface of B2CE-N26-N16WA18KG23K did not improve the antibacterial activity but increased the hemolytic activity of this modified peptide. The helicity might promote antibacterial activity for brevinin-2 peptides, as the 15-aa analogs with lower helicity show decreased potency against different test bacteria (approximately 2- to 72-fold) compared to B2CE-N26V5K. Additionally, the results indicated that the "Rana box" does not affect the antimicrobial activity of brevinin-2 peptides, as B2CE, B2CE-nonDS and B2CE-C31-37 S have similar strong inhibitory effects on both gram-positive and gram-negative bacteria. However, the "Rana box" does affect the hemolytic activity, as the HC50 values of the 3 peptides range from 25 ~ 130 µM. Furthermore, B2CE-N26V5K caused obvious morphological alterations of the bacterial surfaces, as shown by atomic force microscopy. Additionally, B2CE-N26V5K exhibited strong membrane-disrupting activity when examined using the LIVE/DEAD Bac Light Bacterial Viability Kit. Thus, the antibacterial effect of B2CE-N26V5K on gram-negative and gram-positive bacteria may be caused by cell membrane attack. In conclusion, the excellent candidate B2CE-N26V5K was obtained and has application prospects as a novel anti-infective agent.
Collapse
Affiliation(s)
- Yi Zhao
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Xiao-Yan Wang
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Yan Sun
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Zhi Li
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Tao Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Qing-Mei Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jingyi Chen
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| |
Collapse
|
11
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
12
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Salama A. The development of a novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial effect. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e81954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional antibiotics are facing significant microbial resistance, which has recently reached previously unnoticed critical levels. As a result of this situation, a large proportion of antimicrobial agents currently used in the clinic have significantly reduced therapeutic potential. Antimicrobial peptides (AMPs) may offer the medical community an alternative strategy to traditional antibiotics in the fight against microbial resistance. Current research efforts are focused on developing technologies that may reduce AMP toxicity while retaining their potent antimicrobial activity and possibly improving their delivery. The ionotropic gelation method was used to encapsulate a novel in-house designed potent ultrashort antimicrobial peptide (USAMP) into chitosan-based nanoparticles (CS-NPs) in this study. WRWRWR -CS-NPs were tested for antibacterial kinetics against two strains of Staphylococcus aureus for four days, and the developed WRWRWR -CS-NPs showed a 3-log decrease in the number of colonies when compared to CS-NP and a 5-log decrease when compared to control bacteria. Loaded WRWRWR into CS-NPs could represent an innovative approach to develop delivery systems based on NPs technology for achieving potent antimicrobial effects against multi-drug resistant and biofilm forming bacteria with negligible systemic toxicity and reduced synthetic costs that are obstructing the clinical development of AMPs generally.
Collapse
|
14
|
The Antimicrobial Peptide Esc(1-21) Synergizes with Colistin in Inhibiting the Growth and in Killing Multidrug Resistant Acinetobacter baumannii Strains. Antibiotics (Basel) 2022; 11:antibiotics11020234. [PMID: 35203836 PMCID: PMC8868345 DOI: 10.3390/antibiotics11020234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multidrug-resistant microbial infections and the scarce availability of new antibiotics capable of eradicating them are posing a serious problem to global health security. Among the microorganisms that easily acquire resistance to antibiotics and that are the etiological cause of severe infections, there is Acinetobacter baumannii. Carbapenems are the principal agents used to treat A. baumannii infections. However, when strains develop resistance to this class of antibiotics, colistin is considered one of the last-resort drugs. However, the appearance of resistance to colistin also makes treatment of the Acinetobacter infections very difficult. Antimicrobial peptides (AMP) from the innate immunity hold promise as new alternative antibiotics due to their multiple biological properties. In this study, we characterized the activity and the membrane-perturbing mechanism of bactericidal action of a derivative of a frog-skin AMP, namely Esc(1-21), when used alone or in combination with colistin against multidrug-resistant A. baumannii clinical isolates. We found that the mixture of the two compounds had a synergistic effect in inhibiting the growth and killing of all of the tested strains. When combined at dosages below the minimal inhibitory concentration, the two drugs were also able to slow down the microbial growth and to potentiate the membrane-perturbing effect. To the best of our knowledge, this is the first report showing a synergistic effect between AMPs, i.e., Esc(1-21), and colistin against colistin-resistant A. baumannii clinical isolates, highlighting the potential clinical application of such combinational therapy.
Collapse
|
15
|
de Souza GS, de Jesus Sonego L, Santos Mundim AC, de Miranda Moraes J, Sales-Campos H, Lorenzón EN. Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides 2022; 148:170707. [PMID: 34896165 DOI: 10.1016/j.peptides.2021.170707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Chronic non-healing wounds caused by microbial infections extend the necessity for hospital care and constitute a public health problem and a great financial burden. Classic therapies include a wide range of approaches, from wound debridement to vascular surgery. Antimicrobial peptides (AMPs) are a preserved trait of the innate immune response among different animal species, with known effects on the immune system and microorganisms. Thus, AMPs may represent promising candidates for the treatment of chronic wounds with dual functionality in two of the main agents that lead to this condition, proliferation of microorganisms and uncontrolled inflammation. Here, our goal is to critically review AMPs with wound healing properties. We strongly believe that these dual-function peptides alone, or in combination with other wound healing strategies, constitute an underexplored field that researchers can take advantage of.
Collapse
Affiliation(s)
| | | | | | | | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Departamento de Biociências e Tecnologia, Universidade Federal de Goiás, Goiás, Brazil
| | | |
Collapse
|
16
|
Multidrug resistance crisis during COVID-19 pandemic: Role of anti-microbial peptides as next-generation therapeutics. Colloids Surf B Biointerfaces 2021; 211:112303. [PMID: 34952285 PMCID: PMC8685351 DOI: 10.1016/j.colsurfb.2021.112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
The decreasing effectiveness of conventional drugs due to multidrug-resistance is a major challenge for the scientific community, necessitating development of novel antimicrobial agents. In the present era of coronavirus 2 (COVID-19) pandemic, patients are being widely exposed to antimicrobial drugs and hence the problem of multidrug-resistance shall be aggravated in the days to come. Consequently, revisiting the phenomena of multidrug resistance leading to formulation of effective antimicrobial agents is the need of the hour. As a result, this review sheds light on the looming crisis of multidrug resistance in wake of the COVID-19 pandemic. It highlights the problem, significance and approaches for tackling microbial resistance with special emphasis on anti-microbial peptides as next-generation therapeutics against multidrug resistance associated diseases. Antimicrobial peptides exhibit exceptional mechanism of action enabling rapid killing of microbes at low concentration, antibiofilm activity, immunomodulatory properties along with a low tendency for resistance development providing them an edge over conventional antibiotics. The review is unique as it discusses the mode of action, pharmacodynamic properties and application of antimicrobial peptides in areas ranging from therapeutics to agriculture.
Collapse
|
17
|
Ting DSJ, Goh ETL, Mayandi V, Busoy JMF, Aung TT, Periayah MH, Nubile M, Mastropasqua L, Said DG, Htoon HM, Barathi VA, Beuerman RW, Lakshminarayanan R, Mohammed I, Dua HS. Hybrid derivative of cathelicidin and human beta defensin-2 against Gram-positive bacteria: A novel approach for the treatment of bacterial keratitis. Sci Rep 2021; 11:18304. [PMID: 34526600 PMCID: PMC8443647 DOI: 10.1038/s41598-021-97821-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial keratitis (BK) is a major cause of corneal blindness globally. This study aimed to develop a novel class of antimicrobial therapy, based on human-derived hybrid host defense peptides (HyHDPs), for treating BK. HyHDPs were rationally designed through combination of functional amino acids in parent HDPs, including LL-37 and human beta-defensin (HBD)-1 to -3. Minimal inhibitory concentrations (MICs) and time-kill kinetics assay were performed to determine the concentration- and time-dependent antimicrobial activity and cytotoxicity was evaluated against human corneal epithelial cells and erythrocytes. In vivo safety and efficacy of the most promising peptide was examined in the corneal wound healing and Staphylococcus aureus (ATCC SA29213) keratitis murine models, respectively. A second-generation HyHDP (CaD23), based on rational hybridization of the middle residues of LL-37 and C-terminal of HBD-2, was developed and was shown to demonstrate good efficacy against methicillin-sensitive and methicillin-resistant S. aureus [MIC = 12.5-25.0 μg/ml (5.2-10.4 μM)] and S. epidermidis [MIC = 12.5 μg/ml (5.2 μM)], and moderate efficacy against P. aeruginosa [MIC = 25-50 μg/ml (10.4-20.8 μM)]. CaD23 (at 25 μg/ml or 2× MIC) killed all the bacteria within 30 min, which was 8 times faster than amikacin (25 μg/ml or 20× MIC). After 10 consecutive passages, S. aureus (ATCC SA29213) did not develop any antimicrobial resistance (AMR) against CaD23 whereas it developed significant AMR (i.e. a 32-fold increase in MIC) against amikacin, a commonly used treatment for BK. Pre-clinical murine studies showed that CaD23 (0.5 mg/ml) achieved a median reduction of S. aureus bioburden by 94% (or 1.2 log10 CFU/ml) while not impeding corneal epithelial wound healing. In conclusion, rational hybridization of human-derived HDPs has led to generation of a potentially efficacious and safe topical antimicrobial agent for treating Gram-positive BK, with no/minimal risk of developing AMR.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Joanna M F Busoy
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Thet Tun Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Mario Nubile
- Ophthalmic Clinic, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK
| | - Hla M Htoon
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, USA
| | | | - Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
18
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
19
|
Internalization and membrane activity of the antimicrobial peptide CGA-N12. Biochem J 2021; 478:1907-1919. [PMID: 33955460 DOI: 10.1042/bcj20201006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are conventional antibiotic alternatives due to their broad-spectrum antimicrobial activities and special mechanisms of action against pathogens. The antifungal peptide CGA-N12 was originally derived from human chromogranin A (CGA) and consists of the 65th to 76th amino acids of the CGA N-terminal region. In the present study, we found that CGA-N12 had fungicidal activity and exhibited time-dependent inhibition activity against Candida tropicalis. CGA-N12 entered the cells to exert its antagonist activity. The internalization of CGA-N12 was energy-dependent and accompanied by actin cytoskeleton-, clathrin-, sulfate proteoglycan-, endosome-, and lipid-depleting agent-mediated endocytosis. Moreover, the CGA-N12 internalization pathway was related to the peptide concentration. The effects of CGA-N12 on the cell membrane were investigated. CGA-N12 at a low concentration less than 4 × MIC100 did not destroy the cell membrane. While with increasing concentration, the damage to the cell membrane caused by CGA-N12 became more serious. At concentrations greater than 4 × MIC100, CGA-N12 destroyed the cell membrane integrity. Therefore, the membrane activity of CGA-N12 is concentration dependant.
Collapse
|
20
|
Tummanapalli SS, Willcox MD. Antimicrobial resistance of ocular microbes and the role of antimicrobial peptides. Clin Exp Optom 2021; 104:295-307. [PMID: 32924208 DOI: 10.1111/cxo.13125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Isolation of antimicrobial-resistant microbes from ocular infections may be becoming more frequent. Infections caused by these microbes can be difficult to treat and lead to poor outcomes. However, new therapies are being developed which may help improve clinical outcomes. This review examines recent reports on the isolation of antibiotic-resistant microbes from ocular infections. In addition, an overview of the development of some new antibiotic therapies is given. The recent literature regarding antibiotic use and resistance, isolation of antibiotic-resistant microbes from ocular infections and the development of potential new antibiotics that can be used to treat these infections was reviewed. Ocular microbial infections are a global public health issue as they can result in vision loss which compromises quality of life. Approximately 70 per cent of ocular infections are caused by bacteria including Chlamydia trachomatis, Staphylococcus aureus, and Pseudomonas aeruginosa and fungi such as Candida albicans, Aspergillus spp. and Fusarium spp. Resistance to first-line antibiotics such as fluoroquinolones and azoles has increased, with resistance of S. aureus isolates from the USA to fluoroquinolones reaching 32 per cent of isolates and 35 per cent being methicillin-resistant (MRSA). Lower levels of MRSA (seven per cent) were isolated by an Australian study. Antimicrobial peptides, which are broad-spectrum alternatives to antibiotics, have been tested as possible new drugs. Several have shown promise in animal models of keratitis, especially treating P. aeruginosa, S. aureus or C. albicans infections. Reports of increasing resistance of ocular isolates to mainstay antibiotics are a concern, and there is evidence that for ocular surface disease this resistance translates into worse clinical outcomes. New antibiotics are being developed, but not by large pharmaceutical companies and mostly in university research laboratories and smaller biotech companies. Antimicrobial peptides show promise in treating keratitis.
Collapse
Affiliation(s)
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Evaluation of a Cationic Antimicrobial Peptide as the New Antibiotic Candidate to Treat Staphylococcus aureus Keratitis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Li J, Ma X, Zhao L, Li Y, Zhou Q, Du X. Extended Contact Lens Wear Promotes Corneal Norepinephrine Secretion and Pseudomonas aeruginosa Infection in Mice. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32298434 PMCID: PMC7401850 DOI: 10.1167/iovs.61.4.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Extended contact lens (CL) wear predisposes the wearer to Pseudomonas aeruginosa infection of the cornea, but the mechanism involved remains incompletely understood. The purpose of this study was to investigate the role of the stress hormone norepinephrine (NE) in the pathogenesis of CL-induced P. aeruginosa keratitis. Methods A total 195 adult C57BL/6 mice were used in this study. Corneal NE content was measured after 48 hours of sterile CL wear in mice. The effect of NE on P. aeruginosa adhesion and biofilm formation on the CL surface was examined in vitro. Moreover, mouse eyes were covered with P. aeruginosa-contaminated CLs, and either 500-µM NE was topically applied or the eyes were subconjunctivally injected with 100 µg of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete local NE. Clinical scores, neutrophil infiltration, proinflammatory cytokine levels, and bacterial load on the corneas and CLs were evaluated. Results Corneal NE content was elevated with extended CL wear in mice. In vitro, NE promoted the adhesion and biofilm formation of P. aeruginosa on the CL surface. In mice, topical application of NE aggravated P. aeruginosa infection, accompanied with increased clinical scores, neutrophil infiltration, proinflammatory cytokine expression, and bacterial burden on the corneas and CLs. However, pre-depletion of local NE with DSP-4 significantly alleviated the severity of P. aeruginosa keratitis. Conclusions Extended CL wear elevates corneal NE content, which promotes the pathogenesis of CL-induced P. aeruginosa keratitis in mice. Targeting NE may provide a potential strategy for the treatment of CL-related corneal infection caused by P. aeruginosa.
Collapse
|
24
|
Frog Skin-Derived Peptides Against Corynebacterium jeikeium: Correlation between Antibacterial and Cytotoxic Activities. Antibiotics (Basel) 2020; 9:antibiotics9080448. [PMID: 32722535 PMCID: PMC7459541 DOI: 10.3390/antibiotics9080448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Corynebacterium jeikeium is a commensal bacterium that colonizes human skin, and it is part of the normal bacterial flora. In non-risk subjects, it can be the cause of bad body smell due to the generation of volatile odorous metabolites, especially in the wet parts of the body that this bacterium often colonizes (i.e., groin and axillary regions). Importantly, in the last few decades, there have been increasing cases of serious infections provoked by this bacterium, especially in immunocompromised or hospitalized patients who have undergone installation of prostheses or catheters. The ease in developing resistance to commonly-used antibiotics (i.e., glycopeptides) has made the search for new antimicrobial compounds of clinical importance. Here, for the first time, we characterize the antimicrobial activity of some selected frog skin-derived antimicrobial peptides (AMPs) against C. jeikeium by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC) by a microdilution method. The results highlight esculentin-1b(1-18) [Esc(1-18)] and esculentin-1a(1-21) [Esc(1-21)] as the most active AMPs with MIC and MBC of 4-8 and 0.125-0.25 µM, respectively, along with a non-toxic profile after a short- and long-term (40 min and 24 h) treatment of mammalian cells. Overall, these findings indicate the high potentiality of Esc(1-18) and Esc(1-21) as (i) alternative antimicrobials against C. jeikeium infections and/or as (ii) additives in cosmetic products (creams, deodorants) to reduce the production of bad body odor.
Collapse
|
25
|
Casciaro B, Cappiello F, Loffredo MR, Ghirga F, Mangoni ML. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr Med Chem 2020; 27:1405-1419. [PMID: 31333082 DOI: 10.2174/0929867326666190722095408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial Peptides (AMPs) are the key effectors of the innate immunity and represent promising molecules for the development of new antibacterial drugs. However, to achieve this goal, some problems need to be overcome: (i) the cytotoxic effects at high concentrations; (ii) the poor biostability and (iii) the difficulty in reaching the target site. Frog skin is one of the richest natural storehouses of AMPs, and over the years, many peptides have been isolated from it, characterized and classified into several families encompassing temporins, brevinins, nigrocins and esculentins. In this review, we summarized how the isolation/characterization of peptides belonging to the esculentin-1 family drove us to the design of an analogue, i.e. esculentin-1a(1-21)NH2, with a powerful antimicrobial action and immunomodulatory properties. The peptide had a wide spectrum of activity, especially against the opportunistic Gram-negative bacterium Pseudomonas aeruginosa. We described the structural features and the in vitro/in vivo biological characterization of this peptide as well as the strategies used to improve its biological properties. Among them: (i) the design of a diastereomer carrying Damino acids in order to reduce the peptide's cytotoxicity and improve its half-life; (ii) the covalent conjugation of the peptide to gold nanoparticles or its encapsulation into poly(lactide- co-glycolide) nanoparticles; and (iii) the peptide immobilization to biomedical devices (such as silicon hydrogel contact lenses) to obtain an antibacterial surface able to reduce microbial growth and attachment. Summing up the best results obtained so far, this review traces all the steps that led these frog-skin AMPs to the direction of peptide-based drugs for clinical use.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
26
|
Chen G, Miao Y, Ma C, Zhou M, Shi Z, Chen X, Burrows JF, Xi X, Chen T, Wang L. Brevinin-2GHk from Sylvirana guentheri and the Design of Truncated Analogs Exhibiting the Enhancement of Antimicrobial Activity. Antibiotics (Basel) 2020; 9:antibiotics9020085. [PMID: 32075067 PMCID: PMC7168151 DOI: 10.3390/antibiotics9020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Brevinins are an important antimicrobial peptide (AMP) family discovered in the skin secretions of Ranidae frogs. The members demonstrate a typical C-terminal ranabox, as well as a diverse range of other structural characteristics. In this study, we identified a novel brevinin-2 peptide from the skin secretion of Sylvirana guentheri, via cloning transcripts, and identifying the expressed mature peptide, in the skin secretion. The confirmed amino acid sequence of the mature peptide was designated brevinin-2GHk (BR2GK). Moreover, as a previous study had demonstrated that the N-terminus of brevinin-2 is responsible for exerting antimicrobial activity, we also designed a series of truncated derivatives of BR2GK. The results show that the truncated derivatives exhibit significantly improved antimicrobial activity and cytotoxicity compared to the parent peptide, except a Pro14 substituted analog. The circular dichroism (CD) analysis of this analog revealed that it did not fold into a helical conformation in the presence of either lipopolysaccharides (LPS) or TFE, indicating that position 14 is involved in the formation of the α-helix. Furthermore, three more analogs with the substitutions of Ala, Lys and Arg at the position 14, respectively, revealed the influence on the membrane disruption potency on bacteria and mammalian cells by the structural changes at this position. Overall, the N-terminal 25-mer truncates demonstrated the potent antimicrobial activity with low cytotoxicity.
Collapse
Affiliation(s)
- Guanzhu Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Yuxi Miao
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Zhanzhong Shi
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK;
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - James F. Burrows
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
- Correspondence: ; Tel.: +44-28-9097-1673
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| |
Collapse
|
27
|
Boparai JK, Sharma PK. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept Lett 2020; 27:4-16. [PMID: 31438824 PMCID: PMC6978648 DOI: 10.2174/0929866526666190822165812] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonstrates increased efficacy, high specificity, decreased drug interaction, low toxicity, biological diversity and direct attacking properties. Pharmaceutical industries are therefore conducting appropriate clinical trials to develop these peptides as potential therapeutic drugs. More than 60 peptide drugs have already reached the market and several hundreds of novel therapeutic peptides are in preclinical and clinical development. Rational designing can be used further to modify the chemical and physical properties of existing peptides. This mini review will discuss the sources, mechanism and recent therapeutic applications of antimicrobial peptides in treatment of infectious diseases.
Collapse
Affiliation(s)
- Jaspreet Kaur Boparai
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
28
|
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr Med Chem 2019; 26:5924-5946. [PMID: 30009702 DOI: 10.2174/0929867325666180713125314] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
Conlon JM, Mechkarska M, Leprince J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 2019; 16:897-908. [DOI: 10.1080/14789450.2019.1693894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Michael Conlon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom of Great Britain and Northern Ireland
| | - Milena Mechkarska
- Department of Life Sciences, University of the West Indies at Saint Augustine, Saint Augustine, Trinidad and Tobago
| | - Jérôme Leprince
- Equipe Facteurs Neurotrophiques et Différenciation Neuronale, Universite de Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
30
|
Mohammed I, Said DG, Nubile M, Mastropasqua L, Dua HS. Cathelicidin-Derived Synthetic Peptide Improves Therapeutic Potential of Vancomycin Against Pseudomonas aeruginosa. Front Microbiol 2019; 10:2190. [PMID: 31608030 PMCID: PMC6761703 DOI: 10.3389/fmicb.2019.02190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is the leading cause of corneal blindness worldwide. A constant increase in multi-drug resistant PA strains have heightened the challenge of effectively managing corneal infections with conventional antibiotics. Antimicrobial peptides are promising antibiotic analogs with a unique mode of action. Cathelicidin-derived shorter peptides (FK13 and FK16) have previously been shown to kill a range of pathogens in both in vitro and in vivo systems. Here, our aim was to exploit the potential of FK13 or FK16 to enhance the anti-Pseudomonas activity of vancomycin, which normally has low clinical efficacy against PA. Our results have demonstrated that FK16 is more potent than FK13 against different PA strains including a clinical isolate from a patient's ocular surface. FK16 was shown to enhance the membrane permeability of PAO1 at sub-inhibitory concentrations. Moreover, FK16 at lower concentrations was shown to increase the antibacterial susceptibility of vancomycin against PA strains up to eightfold. The bactericidal synergism between FK16 and vancomycin was shown to be stable in the presence of physiological tear salt concentration and did not cause toxic effects on the human corneal epithelial cells and human red blood cells. Our results have revealed that sub-inhibitory concentration of FK16 could augment the antimicrobial effects of vancomycin against PA. It is anticipated that the future exploitation of the peptide design approach may enhance the effectiveness of FK16 and its application as an adjuvant to antibiotic therapy for the treatment of multi-drug resistant infections.
Collapse
Affiliation(s)
- Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mario Nubile
- Ophthalmology Clinic, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH 2. FEBS J 2019; 286:3874-3891. [PMID: 31144441 DOI: 10.1111/febs.14940] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium known to cause serious human infections, especially in immune-compromised patients. This is due to its unique ability to transform from a drug-tolerant planktonic to a more dangerous and treatment-resistant sessile life form, called biofilm. Recently, two derivatives of the frog skin antimicrobial peptide esculentin-1a, i.e. Esc(1-21) and its D-amino acids containing diastereomer Esc(1-21)-1c, were characterized for their powerful anti-Pseudomonal activity against both forms. Prevention of biofilm formation already in its early stages could be even more advantageous for counteracting infections induced by this bacterium. In this work, we studied how the diastereomer Esc(1-21)-1c can inhibit Pseudomonas biofilm formation in comparison to the parent peptide and two clinically-used conventional antibiotics, i.e. colistin and aztreonam, when applied at dosages below the minimal growth inhibitory concentration. Biofilm prevention was correlated to the peptides' ability to inhibit Pseudomonas motility and to reduce the production of virulent metabolites, for example, pyoverdine and rhamnolipids. Furthermore, the molecular mechanism underlying these activities was evaluated by studying the peptides' effect on the expression of key genes involved in the virulence and motility of bacteria, as well as by monitoring the peptides' binding to the bacterial signaling nucleotide ppGpp. Our results demonstrate that the presence of only two D-amino acids in Esc(1-21)-1c is sufficient to downregulate ppGpp-mediated expression of biofilm-associated genes, presumably as a result of higher peptide stability and therefore prolonged interaction with the nucleotide. Overall, these studies should assist efficient design and optimization of new anti-infective agents with multiple pharmacologically beneficial properties.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry, KIT, Karlsruhe, Germany
| | - YuanPu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
32
|
Zeng B, Chai J, Deng Z, Ye T, Chen W, Li D, Chen X, Chen M, Xu X. Functional Characterization of a Novel Lipopolysaccharide-Binding Antimicrobial and Anti-Inflammatory Peptide in Vitro and in Vivo. J Med Chem 2018; 61:10709-10723. [PMID: 30427189 DOI: 10.1021/acs.jmedchem.8b01358] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs) are key components of host immune defense of vertebrates against microbial invasions. Here, we report a new AMP (esculentin-1GN) characterized from the skin of the frog Hylarana guentheri. Esculentin-1GN (GLFSKKGGKGGKSWIKGVFKGIKGIGKEVGGDVIRTGIEIAACKIKGEC) with high amphipathic α-helical structure in membrane-mimetic environments has the microbial-killing activity by destruction of the cell membrane. Moreover, esculentin-1GN inhibits LPS-induced expression of proinflammatory nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor while it enhances expression of interleukin-10. Furthermore, esculentin-1GN can bind to d-(+)-galacturonic acid and LPS. Meanwhile, esculentin-1GN suppresses the activation of inflammatory response pathway induced by LPS. In addition, esculentin-1GN significantly reduces acute inflammation in carrageenan-induced mice paw. Taken together, the novel LPS-binding esculentin-1GN with antimicrobial and anti-inflammatory activities will be an excellent temple for designing new antibiotic formulations.
Collapse
Affiliation(s)
- Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Tiaofei Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Wenbin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Dan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xin Chen
- Department of Respiratory Medicine , Zhujiang Hospital, Southern Medical University , Guangzhou 510282 , China
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin 541004 , China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
33
|
Xiao A, Dhand C, Leung CM, Beuerman RW, Ramakrishna S, Lakshminarayanan R. Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B 2018; 6:2171-2186. [PMID: 32254560 DOI: 10.1039/c7tb03136j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contact lens wear is a primary risk factor for developing ocular complications, such as contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU) and microbial keratitis (MK). Infections occur due to microbial contamination of contact lenses, lens cases and lens care solution, which are exacerbated by extended lens wear and unsanitary lens care practices. The development of microbial biofilms inside lens cases is an additional complication, as the developed biofilms are resistant to conventional lens cleaning solutions. Ocular infections, particularly in the case of MK, can lead to visual impairment or even blindness, so there is a pressing need for the development of antimicrobial contact lenses and cases. Additionally, with the increasing use of bandage contact lenses and contact lenses as drug depots and with the development of smart contact lenses, contact lens hygiene becomes a therapeutically important issue. In this review, we attempt to compile and summarize various chemical strategies for developing antimicrobial contact lenses and lens cases by using silver, free-radical producing agents, antimicrobial peptides or by employing passive surface modification approaches. We also evaluated the advantages and disadvantages of each system and tried to provide input to future directions. Finally, we summarize the developing technologies of therapeutic contact lenses to shed light on the future of contact lens applications.
Collapse
Affiliation(s)
- Amy Xiao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
34
|
Musale V, Abdel-Wahab YHA, Flatt PR, Conlon JM, Mangoni ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018; 50:723-734. [DOI: 10.1007/s00726-018-2551-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|
35
|
Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44:40-78. [PMID: 28423970 DOI: 10.1080/1040841x.2017.1313811] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance of disease-related microorganisms is considered a worldwide prevalent and serious issue which increases the failure of treatment outcomes and leads to high mortality. Considering that the increased resistance to systemic antimicrobial therapy often needs of the use of more toxic agents, topical antimicrobial therapy emerges as an attractive route for the treatment of infectious diseases. The topical antimicrobial therapy is based on the absorption of high drug doses in a readily accessible skin surface, resulting in a reduction of microbial proliferation at infected skin sites. Topical antimicrobials retain the following features: (a) they are able to escape the enzymatic degradation and rapid clearance in the gastrointestinal tract or the first-pass metabolism during oral administration; (b) alleviate the physical discomfort related to intravenous injection; (c) reduce possible adverse effects and drug interactions of systemic administrations; (d) increase patient compliance and convenience; and (e) reduce the treatment costs. Novel antimicrobials for topical application have been widely exploited to control the emergence of drug-resistant microorganisms. This review provides a description of antimicrobial resistance, common microorganisms causing skin and soft tissue infections, topical delivery route of antimicrobials, safety concerns of topical antimicrobials, recent advances, challenges and future prospective in topical antimicrobial development.
Collapse
Affiliation(s)
- P L Lam
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - K K H Lee
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - R S M Wong
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - G Y M Cheng
- c Faculty of Health Sciences , University of Macau , Macau , P.R. China
| | - Z X Bian
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - C H Chui
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - R Gambari
- e Department of Life Sciences and Biotechnology, Centre of Biotechnology , University of Ferrara , Ferrara , Italy
| |
Collapse
|
36
|
Clemens LE, Jaynes J, Lim E, Kolar SS, Reins RY, Baidouri H, Hanlon S, McDermott AM, Woodburn KW. Designed Host Defense Peptides for the Treatment of Bacterial Keratitis. Invest Ophthalmol Vis Sci 2017; 58:6273-6281. [PMID: 29242901 PMCID: PMC5730364 DOI: 10.1167/iovs.17-22243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose To limit corneal damage and potential loss of vision, bacterial keratitis must be treated aggressively. Innovation in antimicrobials is required due to the need for empirical treatment and the rapid emergence of bacterial resistance. Designed host defense peptides (dHDPs) are synthetic analogues of naturally occurring HDPs, which provide defense against invading pathogens. This study investigates the use of novel dHDPs for the treatment of bacterial keratitis. Methods The minimum inhibitory concentrations (MICs) were determined for dHDPs on both Gram-positive and -negative bacteria. The minimum biofilm eradication concentrations (MBEC) and in vitro time-kill assays were determined. The most active dHDP, RP444, was evaluated for propensity to induce drug resistance and therapeutic benefit in a murine Pseudomonas aeruginosa keratitis model. Results Designed HDPs were bactericidal with MICs ranging from 2 to >64 μg/mL and MBEC ranging from 6 to 750 μg/mL. In time-kill assays, dHDPs were able to rapidly reduce bacterial counts upon contact with as little as 2 μg/mL. RP444 did not induce resistance after repeated exposure of P. aeruginosa to subinhibitory concentrations. RP444 demonstrated significant efficacy in a murine model of bacterial keratitis as evidenced by a significant dose-dependent decrease in ocular clinical scores, a significantly reduced bacterial load, and substantially decreased inflammatory cell infiltrates. Conclusions Innovative dHDPs demonstrated potent antimicrobial activity, possess a limited potential for development of resistance, and reduced the severity of murine P. aeruginosa keratitis. These studies demonstrate that a novel dHDP may have potential to treat patients with sight-threatening bacterial keratitis.
Collapse
Affiliation(s)
| | - Jesse Jaynes
- Integrative Biosciences, Tuskegee University, Tuskegee, Alabama, United States
| | - Edward Lim
- Lumigenics LLC, Richmond, California, United States
| | - Satya S. Kolar
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Rose Y. Reins
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Hasna Baidouri
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Samuel Hanlon
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Alison M. McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
37
|
Casciaro B, Dutta D, Loffredo MR, Marcheggiani S, McDermott AM, Willcox MD, Mangoni ML. Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Biopolymers 2017; 110. [PMID: 29086910 DOI: 10.1002/bip.23074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Contact lens (CL) wear is a risk factor for development of microbial keratitis, a vision threatening infection of the eye. Adverse events associated with colonization of lenses, especially by the multi-drug resistant and biofilm forming bacterium Pseudomonas aeruginosa remain a major safety issue. Therefore, novel strategies and compounds to reduce the onset of CL-associated ocular infections are needed. Recently, the activity of the frog skin-derived antimicrobial peptide Esc(1-21) and its diastereomer Esc(1-21)-1c was evaluated against both planktonic and sessile forms of this pathogen. Furthermore, Esc(1-21) was found to significantly reduce the severity of P. aeruginosa keratitis in a mouse model and preserve antipseudomonal activity in the presence of human basal tears. Here, we have analyzed the activity of the peptides on P. aeruginosa biofilm formed on soft CLs. Microbiological assays and scanning electron microscopy analysis indicated that the peptides were able to disrupt the bacterial biofilm, with the diastereomer having the greater efficacy (up to 85% killing vs no killing at 4 μM for some strains). Furthermore, upon covalent immobilization to the CL, the two peptides were found to cause more than four log reduction in the number of bacterial cells within 20 minutes and to reduce bacterial adhesion to the CL surface (77%-97% reduction) in 24 hours. Importantly, peptide immobilization was not toxic to mammalian cells and did not affect the lens characteristics. Overall, our data suggest that both peptides have great potential to be developed as novel pharmaceuticals for prevention and treatment of CL-associated P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Alison M McDermott
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mark Dp Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Reins RY, Courson J, Lema C, Redfern RL. MyD88 contribution to ocular surface homeostasis. PLoS One 2017; 12:e0182153. [PMID: 28796783 PMCID: PMC5552092 DOI: 10.1371/journal.pone.0182153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The cornea must maintain homeostasis, enabling rapid response to injury and microbial insult, to protect the eye from insult and infection. Toll-like receptors (TLRs) are critical to this innate immune response through the recognition and response to pathogens. Myeloid differentiation primary response (MyD88) is a key signaling molecule necessary for Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R)-mediated immune defense and has been shown to be necessary for corneal defense during infection. Here, we examined the intrinsic role of TLR signaling in ocular surface tissues by determining baseline levels of inflammatory mediators, the response to mechanical stimuli, and corneal infection in MyD88-deficient mice (MyD88-/-). In addition, cytokine, chemokine, and matrix metalloproteinase (MMP) expression was determined in ocular surface cells exposed to a panel of TLR agonists. Compared to wild-type (WT) animals, MyD88-/- mice expressed lower MMP-9 levels in the cornea and conjunctiva. Corneal IL-1α, TNFα, and conjunctival IL-1α, IL-2, IL-6, and IL-9 levels were also significantly reduced. Additionally, CXCL1 and RANTES expression was lower in both MyD88-/- tissues compared to WT and IL-1R-/- mice. Interestingly, MyD88-/- mice had lower corneal sensitivities (1.01±0.31 gm/mm2) than both WT (0.59±0.16 gm/mm2) and IL-1R-/- (0.52±0.08 gm/mm2). Following Pseudomonas aeruginosa challenge, MyD88-/- mice had better clinical scores (0.5±0.0) compared to IL-1R-/- (1.5±0.6) and WT (2.3±0.3) animals, but had significantly more corneal bacterial isolates. However, no signs of infection were detected in inoculated uninjured corneas from either MyD88 or IL-1R-deficient mice. This work furthers our understanding of the importance of TLR signaling in corneal defense and immune homeostasis, showing that a lack of MyD88 may compromise the baseline innate response to insult.
Collapse
Affiliation(s)
- Rose Y. Reins
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin Courson
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Carolina Lema
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Felgueiras HP, Amorim MTP. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces 2017; 156:133-148. [PMID: 28527357 DOI: 10.1016/j.colsurfb.2017.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Wound dressings have evolved considerably since ancient times. Modern dressings are now important systems that combine the physical and biochemical properties of natural and synthetic polymers with active compounds that are beneficial to wound healing. Antimicrobial peptides (AMPs) are the most recent addition to these systems. These aim to control the microbial proliferation and colonization of pathogens and to modulate the host's immune response. In the last decade, electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The control of the electrospinning processing parameters, the selection of the polymer and AMPs, and the definition of the most appropriate AMPs' functionalization method contribute to the successful treatment of acute and chronic wounds. Although the use of electrospinning in wound dressings' production has been previously reviewed, the increased development of AMPs and the establishment of functionalization methods for wound dressings over recent years has increased the need for such research. In the present review, we approach all these subjects and reveal the promising therapeutic potential of wound dressings functionalized with AMPs.
Collapse
Affiliation(s)
- Helena P Felgueiras
- 2C2T, Centre for Science and Textile Technology, Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - M Teresa P Amorim
- 2C2T, Centre for Science and Textile Technology, Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
40
|
Casciaro B, Cappiello F, Cacciafesta M, Mangoni ML. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1-21)NH 2: Amino Acids Substitution and Conjugation to Nanoparticles. Front Chem 2017; 5:26. [PMID: 28487853 PMCID: PMC5404639 DOI: 10.3389/fchem.2017.00026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1–21)NH2, [Esc(1–21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1–21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1–21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Mauro Cacciafesta
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of RomeRome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| |
Collapse
|
41
|
Wu MF, Deichelbohrer M, Tschernig T, Laschke MW, Szentmáry N, Hüttenberger D, Foth HJ, Seitz B, Bischoff M. Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo. Sci Rep 2017; 7:44537. [PMID: 28295043 PMCID: PMC5353637 DOI: 10.1038/srep44537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Following corneal epithelium scratches, mouse corneas were infected with the multidrug resistant (MDR) P. aeruginosa strain PA54. 24 hours later, 0% (for control group), 0.01%, 0.05% or 0.1% Chlorin e6 (Ce6), a second generation photosensitizer derived from chlorophyll, was combined with red light, for photodynamic inactivation (PDI). 1 hour or 2 days later, entire mouse eyes were enucleated and homogenized for counting colony forming units (CFU) of P. aeruginosa. For comparison, 0.1% Ce6 mediated PDI was started at 12 hours post infection, and 0.005% methylene blue mediated PDI 24 hours post infection. Clinical scores of corneal manifestation were recorded daily. Compared to the control, CFU 1 hour after PDI started 24 hours post infection in the 0.01% Ce6 and 0.05% Ce6 groups were significantly lower (more than one log10 reduction), the CFU 2 days post PDI higher in the 0.1% Ce6 group, clinical score lower in the 0.1% Ce6 group at 1 day post PDI. These findings suggest that PDI with Ce6 and red light has a transient efficacy in killing MDR-PA in vivo, and repetitive PDI treatments are required to fully resolve the infection. Before its clinical application, the paradoxical bacterial regrowth post PDI has to be further studied.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mona Deichelbohrer
- Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical &Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Hans-Jochen Foth
- Department of Physics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
42
|
Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, de la Fuente JM, Mangoni ML. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH 2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 2017; 47:170-181. [PMID: 27693686 DOI: 10.1016/j.actbio.2016.09.041] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) hold promise as future therapeutics against multidrug resistant microorganisms. Recently, we have discovered that a derivative of the frog skin AMP esculentin-1a, Esc(1-21), is highly potent against both free living and biofilm forms of the bacterial pathogen Pseudomonas aeruginosa. However, bringing AMPs into clinics requires to overcome their low stability, high toxicity and inefficient delivery to the target site at high concentrations. Importantly, peptide conjugation to gold nanoparticles (AuNPs), which are among the most applied inorganic nanocarriers in biomedical sciences, represents a valuable strategy to solve these problems. Here we report that covalent conjugation of Esc(1-21) to soluble AuNPs [AuNPs@Esc(1-21)] via a poly(ethylene glycol) linker increased by ∼15-fold the activity of the free peptide against the motile and sessile forms of P. aeruginosa without being toxic to human keratinocytes. Furthermore, AuNPs@Esc(1-21) resulted to be significantly more resistant to proteolytic digestion and to disintegrate the bacterial membrane at very low concentration (5nM). Finally, we demonstrated for the first time the capability of peptide-coated AuNPs to display a wound healing activity on a keratinocytes monolayer. Overall, these findings suggest that our engineered AuNPs can serve as attractive novel biological-derived material for topical treatment of epithelial infections and healing of the injured tissue. STATEMENT OF SIGNIFICANCE Despite conjugation of AMPs to AuNPs represents a worthwhile solution to face some limitations for their development as new therapeutics, only a very limited number of studies is available on peptide-coated AuNPs. Importantly, this is the first report showing that a covalent binding of a linear AMP via a poly(ethylene glycol) linker to AuNPs highly enhances antipseudomonal activity, preserving the same mode of action of the free peptide, without being harmful. Furthermore, AuNPs@Esc(1-21) are expected to accelerate recovery of an injured skin layer. All together, these findings suggest our peptide-coated AuNPs as attractive novel nanoscale formulation to treat bacterial infections and to heal the injured tissue.
Collapse
|
43
|
Pinnock A, Shivshetty N, Roy S, Rimmer S, Douglas I, MacNeil S, Garg P. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol 2016; 255:333-342. [PMID: 27844206 PMCID: PMC5285415 DOI: 10.1007/s00417-016-3546-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. METHODS Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 108 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. RESULTS We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p < 0.05) in the majority of organisms from infected corneas. Histology of the scalpel-wounded and injection models indicated extensive infiltration of P. aeruginosa throughout the entire cornea, with less infiltration observed for S. aureus, C. albicans and F. solani. The models also supported dual infections. CONCLUSIONS Both scalpel wounding and injection methods are suitable for inducing infection of ex vivo rabbit and human cornea models. These simple and reproducible models will be useful as an alternative to in vitro and in vivo models for investigating the detection and treatment of microbial keratitis, particularly when this might be due to two infective organisms.
Collapse
Affiliation(s)
| | | | - Sanhita Roy
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| | | | - Ian Douglas
- University of Sheffield, Sheffield, S10 2TA, UK
| | - Sheila MacNeil
- University of Sheffield, Sheffield, S10 2TA, UK.
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK.
| | - Prashant Garg
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| |
Collapse
|
44
|
Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids 2016; 49:139-150. [DOI: 10.1007/s00726-016-2341-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
45
|
Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents. Peptides 2015; 72:88-94. [PMID: 26048089 DOI: 10.1016/j.peptides.2015.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Doctoral Degree Program in Marine Biotechnology, Institute of Cellular and Orgasmic Biology, Academia Sinica and National Sun-Yat Sen University, Kaohsiung, Taiwan; Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
| |
Collapse
|
46
|
Mangoni ML, Luca V, McDermott AM. Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides 2015; 71:286-95. [PMID: 25959536 DOI: 10.1016/j.peptides.2015.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/20/2023]
Abstract
Due to the growing emergence of resistance to commercially available antibiotics/antimycotics in virtually all clinical microbial pathogens, the discovery of alternative anti-infective agents, is greatly needed. Gene-encoded antimicrobial peptides (AMPs) hold promise as novel therapeutics. In particular, amphibian skin is one of the richest storehouses of AMPs, especially that of the genus Rana, with esculentins-1 being among the longest (46 amino acids) AMPs found in nature to date. Here, we report on the recently discovered in vitro and in vivo activities and mechanism of action of two derivatives of the N-terminal part of esculentin-1a and -1b peptides, primarily against two relevant opportunistic microorganisms causing a large number of life-threatening infections worldwide; i.e. the Gram-negative bacterium Pseudomonas aeruginosa and the yeast Candida albicans. Because of distinct advantages compared to several mammalian AMPs, the two selected frog skin AMP-derivatives represent attractive candidates for the development of new antimicrobial compounds with expanded properties, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy.
| | - Vincenzo Luca
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
47
|
D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids 2015; 47:2505-19. [PMID: 26162435 DOI: 10.1007/s00726-015-2041-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.
Collapse
|
48
|
The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing? PLoS One 2015; 10:e0128663. [PMID: 26068861 PMCID: PMC4466536 DOI: 10.1371/journal.pone.0128663] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025–4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.
Collapse
|