1
|
Zhao K, Li Y, Lai H, Niu R, Li H, He S, Su Z, Gui Y, Ren L, Yang X, Zhou L. Alterations in HCN1 expression and distribution during epileptogenesis in rats. Epilepsy Res 2024; 202:107355. [PMID: 38555654 DOI: 10.1016/j.eplepsyres.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN1) is predominantly located in key regions associated with epilepsy, such as the neocortex and hippocampus. Under normal physiological conditions, HCN1 plays a crucial role in the excitatory and inhibitory regulation of neuronal networks. In temporal lobe epilepsy, the expression of HCN1 is decreased in the hippocampi of both animal models and patients. However, whether HCN1 expression changes during epileptogenesis preceding spontaneous seizures remains unclear. OBJECTIVE The aim of this study was to determine whether the expression of HCN1 is altered during the epileptic prodromal phase, thereby providing evidence for its role in epileptogenesis. METHODS We utilized a cobalt wire-induced rat epilepsy model to observe changes in HCN1 during epileptogenesis and epilepsy. Additionally, we also compared HCN1 alterations in epileptogenic tissues between cobalt wire- and pilocarpine-induced epilepsy rat models. Long-term video EEG recordings were used to confirm seizures development. Transcriptional changes, translation, and distribution of HCN1 were assessed using high-throughput transcriptome sequencing, total protein extraction, membrane and cytoplasmic protein fractionation, western blotting, immunohistochemistry, and immunofluorescence techniques. RESULTS In the cobalt wire-induced rat epilepsy model during the epileptogenesis phase, total HCN1 mRNA and protein levels were downregulated. Specifically, the membrane expression of HCN1 was decreased, whereas cytoplasmic HCN1 expression showed no significant change. The distribution of HCN1 in the distal dendrites of neurons decreased. During the epilepsy period, similar HCN1 alterations were observed in the neocortex of rats with cobalt wire-induced epilepsy and hippocampus of rats with lithium pilocarpine-induced epilepsy, including downregulation of mRNA levels, decreased total protein expression, decreased membrane expression, and decreased distal dendrite expression. CONCLUSIONS Alterations in HCN1 expression and distribution are involved in epileptogenesis beyond their association with seizure occurrence. Similarities in HCN1 alterations observed in epileptogenesis-related tissues from different models suggest a shared pathophysiological pathway in epileptogenesis involving HCN1 dysregulation. Therefore, the upregulation of HCN1 expression in neurons, maintenance of the HCN1 membrane, and distal dendrite distribution in neurons may represent promising disease-modifying strategies in epilepsy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangzhou National Laboratory, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | | | - Ruili Niu
- Guangzhou National Laboratory, Guangzhou, China
| | - Huifeng Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Shipei He
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhengwei Su
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yue Gui
- Guangzhou National Laboratory, Guangzhou, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | | | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
2
|
Bodaszewska-Lubas M, Liao Y, Zegar A, Szelest O, Dobrucki J, Bulek K. Dominant-Negative Form of SIGIRR: SIGIRR ΔE8 Promotes Tumor Growth Through Regulation of Metabolic Pathways. J Interferon Cytokine Res 2022; 42:482-492. [PMID: 35900274 PMCID: PMC9527062 DOI: 10.1089/jir.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Colorectal carcinoma is the leading cause of cancer-related death. Previously we have shown that tumor suppressor single immunoglobulin interleukin-1-related receptor (SIGIRR) is frequently inactivated in human colorectal cancer by the increased expression of a novel SIGIRR isoform (SIGIRRΔE8). SIGIRRΔE8 showed increased retention in the cytoplasm and loss of complex glycan modification compared to the full-length SIGIRR. Now we found that the arginine residues located in the C-terminus of SIGIRRΔE8 serve as an endoplasmic reticulum retention signal and are required for resident protein ribophorin 1 (RPN1) interaction. In addition, we found that SIGIRRΔE8 exerts a direct impact on cell metabolism through interaction with the adenosine triphosphate synthase in the colorectal cancer cells. SIGIRRΔE8 expression promoted the metabolic shift through upregulation of mammalian target of rapamycin signaling pathway and dysregulation of mitochondrial function to promote survival and proliferation of colon cancer cells in xenograft model.
Collapse
Affiliation(s)
- Malgorzata Bodaszewska-Lubas
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Yun Liao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Aneta Zegar
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Oskar Szelest
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Bulek
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Lankford C, Houtman J, Baker SA. Identification of HCN1 as a 14-3-3 client. PLoS One 2022; 17:e0268335. [PMID: 35679272 PMCID: PMC9182292 DOI: 10.1371/journal.pone.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.
Collapse
Affiliation(s)
- Colten Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
5
|
Ropelewski P, Imanishi Y. RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors. eNeuro 2020; 7:ENEURO.0507-19.2020. [PMID: 32376599 PMCID: PMC7242815 DOI: 10.1523/eneuro.0507-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
Rhodopsin is mislocalized to the inner segment plasma membrane (IS PM) in various blinding disorders including autosomal-dominant retinitis pigmentosa caused by class I rhodopsin mutations. In these disorders, rhodopsin-laden microvesicles are secreted into the extracellular milieu by afflicted photoreceptor cells. Using a Xenopus laevis model expressing class I mutant rhodopsin or Na+/K+-ATPase (NKA) fused to Dendra2, we fluorescently labeled the microvesicles and found retinal pigment epithelial (RPE) cells are capable of engulfing microvesicles containing rhodopsin. A unique sorting mechanism allows class I mutant rhodopsin, but not NKA, to be packaged into the microvesicles. Under normal physiological conditions, NKA is not shed as microvesicles to the extracellular space, but is degraded intracellularly. Those studies provide novel insights into protein homeostasis in the photoreceptor IS PM.
Collapse
Affiliation(s)
- Philip Ropelewski
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yoshikazu Imanishi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
6
|
Datta P, Hendrickson B, Brendalen S, Ruffcorn A, Seo S. The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors. J Biol Chem 2019; 294:19119-19136. [PMID: 31694913 DOI: 10.1074/jbc.ra119.009712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the centrosomal protein 290 (CEP290) gene cause various ciliopathies involving retinal degeneration. CEP290 proteins localize to the ciliary transition zone and are thought to act as a gatekeeper that controls ciliary protein trafficking. However, precise roles of CEP290 in photoreceptors and pathomechanisms of retinal degeneration in CEP290-associated ciliopathies are not sufficiently understood. Using conditional Cep290 mutant mice, in which the C-terminal myosin-tail homology domain of CEP290 is disrupted after the connecting cilium is assembled, we show that this domain is essential for protein confinement between the inner and the outer segments. Upon disruption of the myosin-tail homology domain, inner segment plasma membrane proteins, including syntaxin 3 (STX3), synaptosome-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2), rapidly accumulated in the outer segment. In contrast, localization of endomembrane proteins was not altered. Trafficking and confinement of most outer segment-resident proteins appeared to be unaffected or only minimally affected in Cep290 mutant mice. One notable exception was rhodopsin (RHO), which severely mislocalized to inner segments during the initial stage of degeneration. Similar mislocalization phenotypes were observed in Cep290rd16 mice. These results suggest that a failure of protein confinement at the connecting cilium and consequent accumulation of inner segment membrane proteins in the outer segment, along with insufficient RHO delivery, is part of the disease mechanisms that cause retinal degeneration in CEP290-associated ciliopathies. Our study provides insights into the pathomechanisms of retinal degenerations associated with compromised ciliary gates.
Collapse
Affiliation(s)
- Poppy Datta
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa 52242.,Institute for Vision Research, University of Iowa, Iowa City, Iowa 52242
| | - Brandon Hendrickson
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa 52242.,Institute for Vision Research, University of Iowa, Iowa City, Iowa 52242
| | - Sarah Brendalen
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa 52242.,Institute for Vision Research, University of Iowa, Iowa City, Iowa 52242
| | - Avri Ruffcorn
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa 52242.,Institute for Vision Research, University of Iowa, Iowa City, Iowa 52242
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa 52242 .,Institute for Vision Research, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Bernal Rubio YL, González-Reymúndez A, Wu KHH, Griguer CE, Steibel JP, de Los Campos G, Doseff A, Gallo K, Vazquez AI. Whole-Genome Multi-omic Study of Survival in Patients with Glioblastoma Multiforme. G3 (BETHESDA, MD.) 2018; 8:3627-3636. [PMID: 30228192 PMCID: PMC6222579 DOI: 10.1534/g3.118.200391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) has been recognized as the most lethal type of malignant brain tumor. Despite efforts of the medical and research community, patients' survival remains extremely low. Multi-omic profiles (including DNA sequence, methylation and gene expression) provide rich information about the tumor. These profiles are likely to reveal processes that may be predictive of patient survival. However, the integration of multi-omic profiles, which are high dimensional and heterogeneous in nature, poses great challenges. The goal of this work was to develop models for prediction of survival of GBM patients that can integrate clinical information and multi-omic profiles, using multi-layered Bayesian regressions. We apply the methodology to data from GBM patients from The Cancer Genome Atlas (TCGA, n = 501) to evaluate whether integrating multi-omic profiles (SNP-genotypes, methylation, copy number variants and gene expression) with clinical information (demographics as well as treatments) leads to an improved ability to predict patient survival. The proposed Bayesian models were used to estimate the proportion of variance explained by clinical covariates and omics and to evaluate prediction accuracy in cross validation (using the area under the Receiver Operating Characteristic curve, AUC). Among clinical and demographic covariates, age (AUC = 0.664) and the use of temozolomide (AUC = 0.606) were the most predictive of survival. Among omics, methylation (AUC = 0.623) and gene expression (AUC = 0.593) were more predictive than either SNP (AUC = 0.539) or CNV (AUC = 0.547). While there was a clear association between age and methylation, the integration of age, the use of temozolomide, and either gene expression or methylation led to a substantial increase in AUC in cross-validaton (AUC = 0.718). Finally, among the genes whose methylation was higher in aging brains, we observed a higher enrichment of these genes being also differentially methylated in cancer.
Collapse
Affiliation(s)
| | | | - Kuan-Han H Wu
- Department of Epidemiology and Biostatistics
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, 48202
| | - Corinne E Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Juan P Steibel
- Department of Animal Science and Department of Fisheries and Wildlife
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics
- Institute for Quantitative Health Science and Engineering
- Department of Statistics and Probability
| | - Andrea Doseff
- Department of Physiology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48823
| | | | - Ana I Vazquez
- Department of Epidemiology and Biostatistics
- Institute for Quantitative Health Science and Engineering
| |
Collapse
|
8
|
N-Glycosylation is required for FDNC5 stabilization and irisin secretion. Biochem J 2017; 474:3167-3177. [PMID: 28733331 DOI: 10.1042/bcj20170241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Irisin, a myokine derived from the extracellular domain of FNDC5, has been shown to mediate thermogenesis of white adipose tissue. Biochemical data have shown that N-glycosylation of FNDC5 is unlikely to affect ligand or receptor activation of irisin. The N-glycosylation of FNDC5 remains poorly understood. In the present study, we analysed N-glycosylation sites of FNDC5 and found that two potential N-glycosylation sites (Asn36 and Asn81) could indeed be occupied by N-glycan. Furthermore we showed that the lack of N-glycosylation decreases the secretion of irisin, which is relevant to the instability of FNDC5 and the deficiency of cleavage of the signal peptide. We also found that the expression level of N-glycosylated FNDC5 was elevated after myoblast differentiation. These findings show that the secretion of irisin is modulated by N-glycosylation, which in turn enhances our understanding of the secretion of glycosylated irisin.
Collapse
|
9
|
Laird JG, Pan Y, Modestou M, Yamaguchi DM, Song H, Sokolov M, Baker SA. Identification of a VxP Targeting Signal in the Flagellar Na+ /K+ -ATPase. Traffic 2015; 16:1239-53. [PMID: 26373354 DOI: 10.1111/tra.12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Na(+) /K(+) -ATPase (NKA) participates in setting electrochemical gradients, cardiotonic steroid signaling and cellular adhesion. Distinct isoforms of NKA are found in different tissues and subcellular localization patterns. For example, NKA α1 is widely expressed, NKA α3 is enriched in neurons and NKA α4 is a testes-specific isoform found in sperm flagella. In some tissues, ankyrin, a key component of the membrane cytoskeleton, can regulate the trafficking of NKA. In the retina, NKA and ankyrin-B are expressed in multiple cell types and immunostaining for each is striking in the synaptic layers. Labeling for NKA is also prominent along the inner segment plasma membrane (ISPM) of photoreceptors. NKA co-immunoprecipitates with ankyrin-B, but on a subcellular level colocalization of these two proteins varies dependent on the cell type. We used transgenic Xenopus laevis tadpoles to evaluate the subcellular trafficking of NKA in photoreceptors. GFP-NKA α3 and α1 are localized to the ISPM, but α4 is localized to outer segments (OSs). We identified a VxP motif responsible for the OS targeting by using a series of chimeric and mutant NKA constructs. This motif is similar to previously identified ciliary targeting motifs. Given the structural similarities between OSs and flagella, our findings shed light on the subcellular targeting of this testes-specific NKA isoform.
Collapse
Affiliation(s)
- Joseph G Laird
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yuan Pan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Current address: Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Modestos Modestou
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David M Yamaguchi
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Hongman Song
- Department of Ophthalmology, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, WV, 26506, USA.,Current address: Section for Translational Research in Retina & Macular Degeneration, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, WV, 26506, USA
| | - Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Pan Y, Laird JG, Yamaguchi DM, Baker SA. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors. Invest Ophthalmol Vis Sci 2015; 56:3514-21. [PMID: 26030105 DOI: 10.1167/iovs.15-16902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. METHODS We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. RESULTS We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. CONCLUSIONS We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.
Collapse
|