1
|
Liu J, Liu K, Wang Y, Shi Z, Xu R, Zhang Y, Li J, Liu C, Xue B. Death receptor 5 is required for intestinal stem cell activity during intestinal epithelial renewal at homoeostasis. Cell Death Dis 2024; 15:27. [PMID: 38199990 PMCID: PMC10782029 DOI: 10.1038/s41419-023-06409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Intestinal epithelial renewal, which depends on the proliferation and differentiation of intestinal stem cells (ISCs), is essential for epithelial homoeostasis. Understanding the mechanism controlling ISC activity is important. We found that death receptor 5 (DR5) gene deletion (DR5-/-) mice had impaired epithelial absorption and barrier function, resulting in delayed weight gain, which might be related to the general reduction of differentiated epithelial cells. In DR5-/- mice, the expression of ISC marker genes, the number of Olfm4+ ISCs, and the number of Ki67+ and BrdU+ cells in crypt were reduced. Furthermore, DR5 deletion inhibited the expression of lineage differentiation genes driving ISC differentiation into enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Therefore, DR5 gene loss may inhibit the intestinal epithelial renewal by dampening ISC activity. The ability of crypts from DR5-/- mice to form organoids decreased, and selective DR5 activation by Bioymifi promoted organoid growth and the expression of ISC and intestinal epithelial cell marker genes. Silencing of endogenous DR5 ligand TRAIL in organoids down-regulated the expression of ISC and intestinal epithelial cell marker genes. So, DR5 expressed in intestinal crypts was involved in the regulation of ISC activity. DR5 deletion in vivo or activation in organoids inhibited or enhanced the activity of Wnt, Notch, and BMP signalling through regulating the production of Paneth cell-derived ISC niche factors. DR5 gene deletion caused apoptosis and DNA damage in transit amplifying cells by inhibiting ERK1/2 activity in intestinal crypts. Inhibition of ERK1/2 with PD0325901 dampened the ISC activity and epithelial regeneration. In organoids, when Bioymifi's effect in activating ERK1/2 activity was completely blocked by PD0325901, its role in stimulating ISC activity and promoting epithelial regeneration was also eliminated. In summary, DR5 in intestinal crypts is essential for ISC activity during epithelial renewal under homoeostasis.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaixuan Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziru Shi
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yundi Zhang
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
3
|
Peng H, Guo X, He J, Duan C, Yang M, Zhang X, Zhang L, Fu R, Wang B, Wang D, Chen H, Xie M, Feng P, Dai L, Tang X, Luo J. Intracranial delivery of synthetic mRNA to suppress glioblastoma. Mol Ther Oncolytics 2022; 24:160-170. [PMID: 35024442 PMCID: PMC8724946 DOI: 10.1016/j.omto.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Owing to messenger RNA's unique biological advantages, it has received increasing attention to be used as a therapeutic, known as mRNA-based gene therapy. It is critical to have an ideal strategy of mRNA gene therapy for glioma, which grows in a special environment. In the present study, we screened out a safe and efficient transfection reagent for intracranial delivery of synthetic mRNA in mouse brain. First, in order to analyze the effect of different transfection reagents on the intracranial delivery of mRNA, the synthetic luciferase mRNA was wrapped with two different transfection reagents and microinjected into the brain at the fixed point. The expression status of delivered mRNA was monitored by a small animal imaging system. The possible reagent-induced biological toxicity was evaluated by behavioral and blood biochemical measurements. Then, to test the therapeutic effect of our intracranial delivery mRNA model on glioma, synthetic modified tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA was used as an example of therapeutic application. This model demonstrated that synthetic mRNA could be successfully delivered into the brain using commercially available transfection reagents, and TransIT-mRNA showed better results than in vivo-jetPEI kit. This model can be applied in precise targeting and personalized gene therapy of glioma.
Collapse
Affiliation(s)
- Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Chao Duan
- Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Minghuan Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Xianghua Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Li Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Rui Fu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Dekang Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Hu Chen
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mengying Xie
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Ping Feng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Xiangjun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| |
Collapse
|
4
|
Huang CC, Cheng YC, Lin YC, Chou CH, Ho CT, Wang HK, Way TD. CSC-3436 sensitizes triple negative breast cancer cells to TRAIL-induced apoptosis through ROS-mediated p38/CHOP/death receptor 5 signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:2578-2588. [PMID: 34599545 DOI: 10.1002/tox.23372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) shows little or no toxicity in most normal cells and preferentially induces apoptosis in a variety of malignant cells. However, patients develop resistance to TRAIL, therefore, sensitizing agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are necessary. In this study, we investigated the effect of 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), an useful flavonoid, to overcome the TRAIL-resistant triple negative breast cancer (TNBC) cells. We found that CSC-3436 potentiated TRAIL-induced apoptosis in TRAIL-resistant TNBC cells and this correlated with the upregulation of death receptors (DR)-5 and down-regulation of decreased decoy receptor (DcR)-1 expression. When examined for its mechanism, we found that the decreased expression of anti-apoptotic proteins c-FLIPS/L, Bcl-Xl, Bcl-2, Survivin, and XIAP. CSC-3436 would increase the expression of Bax and promoted the cleavage of bid. In addition, the induction of DR5 by CSC-3436 was found to be dependent on the modulation of reactive oxygen species (ROS)/p38/C/EBP-homologous protein (CHOP) signaling pathways. Overall, our results indicated that CSC-3436 could potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and upregulation of DR5 via the ROS-mediated upregulation of CHOP protein.
Collapse
Affiliation(s)
- Chun-Chen Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ching Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Hung Chou
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Hao-Kuang Wang
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Chulpanova DS, Gilazieva ZE, Akhmetzyanova ER, Kletukhina SK, Rizvanov AA, Solovyeva VV. Cytochalasin B-induced membrane vesicles from human mesenchymal stem cells overexpressing TRAIL, PTEN and IFN-β1 can kill carcinoma cancer cells. Tissue Cell 2021; 73:101664. [PMID: 34678531 DOI: 10.1016/j.tice.2021.101664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are of interest as a new vector for the delivery of therapeutic agents into the tumor microenvironment. Cell-free EV-based therapy has a number of advantages over cell-based therapy, since the use of EVs allows avoiding potential undesirable transformation associated with MSCs. MSC-derived EVs can transfer natural proteins with immunomodulatory or antitumor properties. The aim of this study was to produce vesicles from mesenchymal stem cells with simultaneous overexpression of TRAIL, PTEN and IFN-β1 and analyze its antitumor and immunomodulatory properties. In this work, a stable line of human adipose tissue-derived mesenchymal stem cells (hADSCs) with simultaneous overexpression of TRAIL, PTEN and IFN-β1 was produced. To obtain this cell line hADSCs were genetically modified with a genetic multicistronic cassette encoding TRAIL, PTEN, and IFN-β1 genes separated with a self-cleaving P2A peptide nucleotide sequence. Membrane vesicles (CIMVs) were obtained from genetically modified hADSCs using cytochalasin B treatment. Antitumor and immunomodulatory properties of the CIMVs were analyzed in vitro. It was shown that CIMVs isolated from genetically modified hADSCs overexpressing TRAIL, PTEN and IFN-β1 genes are able to activate human immune cells and induce apoptosis in various types of carcinomas in vitro. Thus, the immunomodulatory and antitumor properties of CIMVs were shown. However, further studies on animal models in vivo are required.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Zarema E Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvira R Akhmetzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sevindzh K Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia.
| |
Collapse
|
6
|
Gurer DC, Erdogan İ, Ahmadov U, Basol M, Sweef O, Cakan-Akdogan G, Akgül B. Transcriptomics Profiling Identifies Cisplatin-Inducible Death Receptor 5 Antisense Long Non-coding RNA as a Modulator of Proliferation and Metastasis in HeLa Cells. Front Cell Dev Biol 2021; 9:688855. [PMID: 34497804 PMCID: PMC8419520 DOI: 10.3389/fcell.2021.688855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a well-known cancer chemotherapeutic agent but how extensively long non-coding RNA (lncRNA) expression is modulated by cisplatin is unknown. It is imperative to employ a comprehensive approach to obtain a better account of cisplatin-mediated changes in the expression of lncRNAs. In this study, we used a transcriptomics approach to profile lncRNAs in cisplatin-treated HeLa cells, which resulted in identification of 10,214 differentially expressed lncRNAs, of which 2,500 were antisense lncRNAs. For functional analyses, we knocked down one of the cisplatin inducible lncRNAs, death receptor 5 antisense (DR5-AS) lncRNA, which resulted in a morphological change in HeLa cell shape without inducing any cell death. A second round of transcriptomics-based profiling revealed differential expression of genes associated with immune system, motility and cell cycle in DR5-AS knockdown HeLa cells. Cellular analyses showed that DR5-AS reduced cell proliferation and caused a cell cycle arrest at S and G2/M phases. Moreover, DR5-AS knockdown reduced the invasive capacity of HeLa cells in zebrafish xenograft model. These results suggest that cisplatin-mediated pleiotropic effects, such as reduction in cell proliferation, metastasis and cell cycle arrest, may be mediated by lncRNAs.
Collapse
Affiliation(s)
- Dilek Cansu Gurer
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - İpek Erdogan
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Ulvi Ahmadov
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Ízmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Ízmir, Turkey
| | - Osama Sweef
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | | | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| |
Collapse
|
7
|
Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021; 57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
8
|
ZHAI GY, QIE SY, GUO QY, QI Y, ZHOU YJ. sDR5-Fc inhibits macrophage M1 polarization by blocking the glycolysis. J Geriatr Cardiol 2021; 18:271-280. [PMID: 33995506 PMCID: PMC8100429 DOI: 10.11909/j.issn.1671-5411.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND M1 polarization of macrophages is an important pathological process in myocardial ischemia reperfusion injury, which is the major obstacle for the treatment of acute myocardial infarction. Currently, the strategies and mechanisms of inhibiting M1 polarization are poorly explored. This study aims to investigate the role of soluble death receptor 5-Fc (sDR5-Fc) in regulating M1 polarization of macrophages under extreme conditions and explore the mechanisms from the aspect of glycolysis. METHODS Extreme conditions were induced in RAW264.7 cells. Real-time quantitative polymerase chain reaction and western blot were used to detect the expression of mRNA and proteins, respectively. Cell counting kit-8 was used to investigate the proliferation activity of cells. Expression levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. RESULTS We found that sDR5-Fc rescues the proliferation of macrophages under extreme conditions, including nutrition deficiency, excessive peroxide, and ultraviolet irradiation. In addition, administration of sDR5-Fc inhibits the M1 polarization of macrophages induced by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ), as the expression of M1 polarization markers CD86, CXC motif chemokine ligand 10, matrix metalloproteinase 9, and tumor necrosis factor-α, as well as the secretion of inflammatory factors interleukin (IL)-1β and IL-6, were significantly decreased. By further investigation of the mechanisms, the results showed that sDR5-Fc can recover the LPS and IFN-γ induced pH reduction, lactic acid elevation, and increased expression of hexokinase 2 and glucose transporter 1, which were markers of glycolysis in macrophages. CONCLUSIONS sDR5-Fc inhibits the M1 polarization of macrophages by blocking the glycolysis, which provides a new direction for the development of strategies in the treatment of myocardial ischemia reperfusion injury.
Collapse
Affiliation(s)
- Guang-Yao ZHAI
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shu-Yan QIE
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Qian-Yun GUO
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yue QI
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yu-Jie ZHOU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol 2021; 17:581-596. [PMID: 33401962 DOI: 10.2217/fon-2020-0727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, can induce apoptosis in cancer cells, sparing normal cells when bound to its associated death receptors (DR4/DR5). This unique mechanism makes TRAIL a potential anticancer therapeutic agent. However, clinical trials of recombinant TRAIL protein and TRAIL receptor agonist monoclonal antibodies have shown disappointing results due to its short half-life, poor pharmacokinetics and the resistance of the cancer cells. This review summarizes TRAIL-induced apoptotic and survival pathways as well as mechanisms leading to apoptotic resistance. Recent development of methods to overcome cancer cell resistance to TRAIL-induced apoptosis, such as protein modification, combination therapy and TRAIL-based gene therapy, appear promising. We also discuss the challenges and opportunities in the development of TRAIL-based therapies for the treatment of human cancers.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Zhang J, Zhou Y, Li N, Liu W, Liang J, Sun Y, Zhang W, Fang R, Huang S, Sun Z, Wang Y, He Q. Curcumol Overcomes TRAIL Resistance of Non-Small Cell Lung Cancer by Targeting NRH:Quinone Oxidoreductase 2 (NQO2). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002306. [PMID: 33240775 PMCID: PMC7675185 DOI: 10.1002/advs.202002306] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Indexed: 05/09/2023]
Abstract
Resistance to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) of cancer cell remains a key obstacle for clinical cancer therapies. To overcome TRAIL resistance, this study identifies curcumol as a novel safe sensitizer from a food-source compound library, which exhibits synergistic lethal effects in combination with TRAIL on non-small cell lung cancer (NSCLC). SILAC-based cellular thermal shift profiling identifies NRH:quinone oxidoreductase 2 (NQO2) as the key target of curcumol. Mechanistically, curcumol directly targets NQO2 to cause reactive oxygen species (ROS) generation, which triggers endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) death receptor (DR5) signaling, sensitizing NSCLC cell to TRAIL-induced apoptosis. Molecular docking analysis and surface plasmon resonance assay demonstrate that Phe178 in NQO2 is a critical site for curcumol binding. Mutation of Phe178 completely abolishes the function of NQO2 and augments the TRAIL sensitization. This study characterizes the functional role of NQO2 in TRAIL resistance and the sensitizing function of curcumol by directly targeting NQO2, highlighting the potential of using curcumol as an NQO2 inhibitor for clinical treatment of TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Ye Zhou
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wan‐Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Jun‐Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wei‐Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Run‐Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Sheng‐Ling Huang
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zheng‐Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
11
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
12
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
13
|
Liang R, Yao Y, Wang G, Yue E, Yang G, Qi X, Wang Y, Zhao L, Zheng T, Zhang Y, Wenge Wang E. Repositioning Quinacrine Toward Treatment of Ovarian Cancer by Rational Combination With TRAIL. Front Oncol 2020; 10:1118. [PMID: 32766144 PMCID: PMC7379129 DOI: 10.3389/fonc.2020.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Quinacrine has been identified as a potent DR5-inducing agent that sensitizes cancer cells to TRAIL-induced apoptosis. In the current study, we found that quinacrine increased DR5 mRNA levels significantly in ovarian cancer cell lines regardless of p53 status. Further study showed the half-life of DR5 in quinacrine-treated cells was significantly prolonged, indicating that DR5 protein degradation was inhibited by quinacrine. We tested if the combination of TRAIL and quinacrine could be effective in ovarian cancer treatment in vitro and in ovarian cancer xenograft mouse models. We found that quinacrine enhanced TRAIL sensitivity or reversed TRAIL resistance in all the ovarian cancer cell lines tested. Mice treated with quinacrine and TRAIL remained disease-free for up to 20 weeks, however, mice treated with TRAIL or quinacrine alone and in control group died within ~8 weeks after treatment. Intraperitoneal delivery of quinacrine and TRAIL is rational and practical with extraordinary synergistic anti-cancer effects in preclinical models of ovarian cancer. Clinical investigation of combining quinacrine with TRAIL for ovarian cancer treatment is warranted.
Collapse
Affiliation(s)
- Rui Liang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Department of Pharmacy, Suzhou Vocational Health College, Suzhou, China
| | - Yuanfei Yao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Guangyu Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Er Yue
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Guangchao Yang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Xiuying Qi
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Yang Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Ling Zhao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Tongsen Zheng
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yanqiao Zhang
- Cancer Hospital, Harbin Medical University, Harbin, China
| | - Edward Wenge Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
14
|
Kojima Y, Nishina T, Nakano H, Okumura K, Takeda K. Inhibition of Importin β1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells. Mol Cancer Ther 2020; 19:1123-1133. [PMID: 32156787 DOI: 10.1158/1535-7163.mct-19-0597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5-induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway. Cell Death Discov 2019; 5:153. [PMID: 31839995 PMCID: PMC6904486 DOI: 10.1038/s41420-019-0228-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Disulfide bond-disrupting agents (DDAs) are a new chemical class of agents recently shown to have activity against breast tumors in animal models. Blockade of tumor growth is associated with downregulation of EGFR, HER2, and HER3 and reduced Akt phosphorylation, as well as the induction of endoplasmic reticulum stress. However, it is not known how DDAs trigger cancer cell death without affecting nontransformed cells. As demonstrated here, DDAs are the first compounds identified that upregulate the TRAIL receptor DR5 through transcriptional and post-transcriptional mechanisms to activate the extrinsic cell death pathway. At the protein level, DDAs alter DR5 disulfide bonding to increase steady-state DR5 levels and oligomerization, leading to downstream caspase 8 and 3 activation. DDAs and TRAIL synergize to kill cancer cells and are cytotoxic to HER2+ cancer cells with acquired resistance to the EGFR/HER2 tyrosine kinase inhibitor Lapatinib. Investigation of the mechanisms responsible for DDA selectivity for cancer cells reveals that DDA-induced upregulation of DR5 is enhanced in the context of EGFR overexpression. DDA-induced cytotoxicity is strongly amplified by MYC overexpression. This is consistent with the known potentiation of TRAIL-mediated cell death by MYC. Together, the results demonstrate selective DDA lethality against oncogene-transformed cells, DDA-mediated DR5 upregulation, and protein stabilization, and that DDAs have activity against drug-resistant cancer cells. Our results indicate that DDAs are unique in causing DR5 accumulation and oligomerization and inducing downstream caspase activation and cancer cell death through mechanisms involving altered DR5 disulfide bonding. DDAs thus represent a new therapeutic approach to cancer therapy.
Collapse
|
16
|
Cha Z, Cheng J, Xiang H, Qin J, He Y, Peng Z, Jia J, Yu H. Celastrol enhances TRAIL-induced apoptosis in human glioblastoma via the death receptor pathway. Cancer Chemother Pharmacol 2019; 84:719-728. [PMID: 31281953 DOI: 10.1007/s00280-019-03900-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma is the most common, malignant and devastating type of primary brain tumor. Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is characterized by its lethality to precancerous and cancerous cells. However, many kinds of tumor cells, including most glioma cells, tend to evade TRAIL-induced apoptosis. Celastrol is a pleiotropic compound from a traditional Chinese medicine that has proven to be useful as a sensitizer for TRAIL treatment. However, the underlying mechanism and role of celastrol in the sensitization of glioma cells remain to be elucidated. METHODS The viability of glioma cell lines was examined by the CCK-8 assay. The expression of DR5 was detected by reverse transcriptase quantitative real-time PCR. The protein expression of DR5, cleaved caspase-8, cleaved caspase-3 and PARP were measured by western blot. The apoptosis rates and the sub-G1 population were detected by flow cytometry. The cellular morphological changes were assessed by TUNEL apoptosis and Hoechst 33258 staining assays. The knockdown of DR5 expression was conducted by siRNA. RESULTS In this study, we observed that celastrol treatment inhibited cell viability in a dose-dependent manner, while glioma and normal human astroglial cell lines were resistant to TRAIL treatment. We also observed that the antiproliferative effects of TRAIL in combination with a noncytotoxic concentration of celastrol were significantly greater than those of celastrol or TRAIL alone. In addition, cell death induced by the combination treatment was apoptotic and occurred through the death receptor pathway via activation of caspase-8, caspase-3, and PARP. Furthermore, celastrol upregulated death receptor 5 (DR5) at the mRNA and protein levels, and siRNA-mediated DR5 knockdown reduced the killing effect of the combination drug treatment on glioma cells and reduced the activation of caspase-3, caspase-8 and PARP. CONCLUSIONS Taken together, the results of our study demonstrate that celastrol sensitizes glioma cells to TRAIL via the death receptor pathway and that DR5 plays an important role in the effects of this cotreatment. The results indicate that this cotreatment is a promising tumor-killing therapeutic strategy with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhe Cha
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jianzhang Cheng
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Hui Xiang
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jingjing Qin
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yujia He
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiping Peng
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhua Jia
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huarong Yu
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
17
|
Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update 2019; 24:497-515. [PMID: 29697794 DOI: 10.1093/humupd/dmy014] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. OBJECTIVE AND RATIONALE In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. SEARCH METHODS Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. OUTCOMES This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. WIDER IMPLICATIONS There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.
Collapse
Affiliation(s)
- Kavita Panir
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, Adelaide, South Australia, Australia.,Department of Obstetrics and Gynaecology, Women's and Children's Hospital Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
19
|
Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP. Molecules 2018; 23:molecules23113030. [PMID: 30463333 PMCID: PMC6278439 DOI: 10.3390/molecules23113030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.
Collapse
|
20
|
Park SH, Kim JL, Jeong S, Kim BR, Na YJ, Jo MJ, Yun HK, Jeong YA, Kim DY, Kim BG, You S, Oh SC, Lee DH. Codium fragile F2 sensitize colorectal cancer cells to TRAIL-induced apoptosis via c-FLIP ubiquitination. Biochem Biophys Res Commun 2018; 508:1-8. [PMID: 30409427 DOI: 10.1016/j.bbrc.2018.10.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.
Collapse
Affiliation(s)
- Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Dae Yeong Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Bu Gyeom Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea
| | - Sang Cheul Oh
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| | - Dae-Hee Lee
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| |
Collapse
|
21
|
You C, Zhang S, Sun Y, Zhang S, Tang G, Tang F, Liu X, Xiao Y, Zhang J, Gong Y, Xie C. β-catenin decreases acquired TRAIL resistance in non-small-cell lung cancer cells by regulating the redistribution of death receptors. Int J Oncol 2018; 53:2258-2268. [PMID: 30132512 DOI: 10.3892/ijo.2018.4529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/25/2018] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) exhibits antitumor activity in various types of tumor cell and tumor‑bearing animals. However, acquired TRAIL resistance is a common issue that restricts its clinical application. Previous studies have revealed that β‑catenin is associated with TRAIL resistance in melanoma and colorectal tumors. In the present study, an acquired‑resistance non‑small‑cell lung cancer (NSCLC) cell line (H460‑TR) was established from parental TRAIL‑sensitive H460 cells using a gradient ascent model (8‑256 ng/ml TRAIL). Cellular FADD‑like interleukin‑1β converting enzyme inhibitory protein and Mcl‑1 were upregulated and the cell surface distribution of death receptor (DR)4 and DR5 was downregulated in H460‑TR cells compared with the parental H460 cells. The results of reverse transcription‑quantitative polymerase chain reaction and western blot analysis indicated that H460 cells expressed increased levels of β‑catenin and were more sensitive to TRAIL compared with H460‑TR cells. β‑catenin‑knockdown in H460 cells decreased their sensitivity to TRAIL, while upregulation of β‑catenin expression in H460‑TR cells increased their sensitivity to TRAIL, increased the cell surface distribution of DRs and activated caspase‑3/8. Taken together, the results of the present study suggest that β‑catenin impairs acquired TRAIL resistance in NSCLC cells by promoting the redistribution of DR4 and DR5 to the cytomembrane, and inducing TRAIL‑mediated cell apoptosis via caspase‑3/8 activation.
Collapse
Affiliation(s)
- Chengcheng You
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Shiyu Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC, USA
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
22
|
miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP). Cancer Lett 2018; 428:55-68. [DOI: 10.1016/j.canlet.2018.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
|
23
|
Seo J, Lee EW, Shin J, Seong D, Nam YW, Jeong M, Lee SH, Lee C, Song J. K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene 2018; 37:4994-5006. [PMID: 29795330 DOI: 10.1038/s41388-018-0323-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Manhyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seon-Hyeong Lee
- Cancer Cell & Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
24
|
You C, Sun Y, Zhang S, Tang G, Zhang N, Li C, Tian X, Ma S, Luo Y, Sun W, Wang F, Liu X, Xiao Y, Gong Y, Zhang J, Xie C. Trichosanthin enhances sensitivity of non-small cell lung cancer (NSCLC) TRAIL-resistance cells. Int J Biol Sci 2018; 14:217-227. [PMID: 29483839 PMCID: PMC5821042 DOI: 10.7150/ijbs.22811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/31/2018] [Indexed: 01/27/2023] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has a specific antitumour activity against many malignant tumours. However, more than half of lung cancer cells are resistant to TRAIL-relevant drugs. Trichosanthin (TCS) is a traditional Chinese medicine with strong inhibitive effects on various malignancies. Nevertheless, its function on TRAIL resistance has not been revealed in non-small cell lung cancer (NSCLC). To examine the molecular mechanisms of TCS-induced TRAIL sensitivity, we administrated TCS to TRAIL-resistance NSCLC cells, and found that the combination treatment of TCS and TRAIL inhibited cancer cell proliferation and invasion, and induced cell apoptosis and S-phase arrest. This combined therapeutic method regulated the expression levels of extrinsic apoptosis-associated proteins Caspase 3/8 and PARP; intrinsic apoptosis-associated proteins BCL-2 and BAX; invasion-associated proteins E-cadherin, N-cadherin, Vimentin, ICAM-1, MMP-2 and MMP-9; and cell cycle-associated proteins P27, CCNE1 and CDK2. Up-expression and redistribution of death receptors (DRs) on the cell surface were also observed in combined treatment. In conclusion, our results indicated that TCS rendered NSCLC cells sensitivity to TRAIL via upregulating and redistributing DR4 and DR5, inducing apoptosis, and regulating invasion and cell cycle related proteins. Our results provided a potential therapeutic method to enhance TRAIL-sensitivity.
Collapse
Affiliation(s)
- Chengcheng You
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, China Three Gorges University Medical College, Yichang, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiyu Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunyang Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Liu X, Arai MA, Ishibashi KTAM. Isolation of Resistomycin from a Terrestrial Actinomycete with TRAIL Resistance-overcoming Activity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in most cancer cells, but not in normal cells, and, thus, has attracted intense interest as a promising antitumor agent. Activity-guided fractionation of the culture broth of the actinomycete CKK1172 strain led to the isolation of the antibiotic resistomycin (1) using human gastric adenocarcinoma AGS cells. Compound 1 exhibited TRAIL resistance-overcoming activity at 2 μM with 38% more inhibition than a treatment with 1 alone (without TRAIL) in TRAIL-resistant AGS cells.
Collapse
Affiliation(s)
- Xuefeidan Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | | |
Collapse
|
26
|
Bharti AC, Rajan P, Jadli M, Pande D, Singh T, Bhat A. Berberine as an Adjuvant and Sensitizer to Current Chemotherapy. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:221-240. [DOI: 10.1016/b978-0-12-812373-7.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Keresztes A, Streicher JM. Synergistic interaction of the cannabinoid and death receptor systems - a potential target for future cancer therapies? FEBS Lett 2017; 591:3235-3251. [PMID: 28948607 DOI: 10.1002/1873-3468.12863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Cannabinoid receptors have been shown to interact with other receptors, including tumor necrosis factor receptor superfamily (TNFRS) members, to induce cancer cell death. When cannabinoids and death-inducing ligands (including TNF-related apoptosis-inducing ligand) are administered together, they have been shown to synergize and demonstrate enhanced antitumor activity in vitro. Certain cannabinoid ligands have been shown to sensitize cancer cells and synergistically interact with members of the TNFRS, thus suggesting that the combination of cannabinoids with death receptor (DR) ligands induces additive or synergistic tumor cell death. This review summarizes recent findings on the interaction of the cannabinoid and DR systems and suggests possible clinical co-application of cannabinoids and DR ligands in the treatment of various malignancies.
Collapse
Affiliation(s)
- Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Inducement of apoptosis by cucurbitacin E, a tetracyclic triterpenes, through death receptor 5 in human cervical cancer cell lines. Cell Death Discov 2017; 3:17014. [PMID: 28487767 PMCID: PMC5402524 DOI: 10.1038/cddiscovery.2017.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the most common malignancy in women, for which conization or hysterectomy are the main therapy. Curcubitacin E (Cu E) is a natural compound-based drug which from the Guadi (climbing stem of Cucumic melo L). Previously shown to be an anti-tumor as well as a potent chemopreventive agent against several types of tumors. The present study, investigated anti-proliferation and apoptosis induced by Cu E in cervical cancer cell lines (HeLa and Ca Ski). The results indicate that the cytotoxicity is associated with accumulation in apoptosis but not necrosis. Cu E produced apoptosis as well as the up-regulation the expression of death receptor 5 (DR5). In addition, the DR5 gene activation in apoptosis, both effects increased proportionally with the dose of Cu E; however, mitosis delay was also dependant on the amount of Cu E treatment in the cancer cells. These results indicate that Cu E may delay cancer cell growth by apoptosis via upregulation of DR5 gene expression.
Collapse
|