1
|
Cerutti C, Shi JR, Vanacker JM. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. Int J Mol Sci 2023; 24:ijms24054265. [PMID: 36901694 PMCID: PMC10002233 DOI: 10.3390/ijms24054265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Estrogen-related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several cell types and they display various functions in normal and pathological contexts. Amongst others, they are notably involved in bone homeostasis, energy metabolism and cancer progression. In contrast to other nuclear receptors, the activities of the ERRs are apparently not controlled by a natural ligand but they rely on other means such as the availability of transcriptional co-regulators. Here we focus on ERRα and review the variety of co-regulators that have been identified by various means for this receptor and their reported target genes. ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes. This exemplifies the combinatorial specificity of transcriptional regulation that induces discrete cellular phenotypes depending on the selected coregulator. We finally propose an integrated view of the ERRα transcriptional network.
Collapse
|
2
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
3
|
Tang J, Liu T, Wen X, Zhou Z, Yan J, Gao J, Zuo J. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med 2021; 27:5. [PMID: 33446092 PMCID: PMC7809777 DOI: 10.1186/s10020-021-00270-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease that is associated with articular cartilage destruction, subchondral bone alterations, synovitis, and even joint deformity and the loss of joint function. Although current basic research on the pathogenesis of OA has made remarkable progress, our understanding of this disease still needs to be further improved. Recent studies have shown that the estrogen-related receptor (ERR) family members ERRα and ERRγ may play significant roles in the pathogenesis of OA. In this review, we refer to the latest research on ERRs and the pathogenesis of OA, elucidate the structure and physiopathological functions of the ERR orphan nuclear receptor family, and systematically examine the relationship between ERRs and OA at the molecular level. Moreover, we also discuss and predict the capacity of ERRs as potential targets in the clinical treatment of OA.
Collapse
Affiliation(s)
- Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Tong Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xinggui Wen
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jingtong Yan
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianpeng Gao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
4
|
Crevet L, Vanacker JM. Regulation of the expression of the estrogen related receptors (ERRs). Cell Mol Life Sci 2020; 77:4573-4579. [PMID: 32448995 PMCID: PMC11104921 DOI: 10.1007/s00018-020-03549-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/23/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Estrogen related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several tissues and cells and they display various physiological and pathological functions, controlling, amongst others and depending on the receptor, bone homeostasis, energy metabolism, embryonic stem cell pluripotency, and cancer progression. In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus rely on other means such as post-translational modification or availability of transcriptional co-regulators. In addition, regulation of their mere expression under given physiological or pathological conditions is a particularly important level of control. Here we discuss the mechanisms involved in the regulation of ERRs expression and the reported means to impact on it using pharmacological approaches.
Collapse
Affiliation(s)
- Lucile Crevet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
5
|
Deng Z, Li W, Xu J, Yu M, Li D, Tan Q, Wang D, Chen L, Wang L. ClC-3 chloride channels are involved in estradiol regulation of bone formation by MC3T3-E1 osteoblasts. J Cell Biochem 2019; 120:8366-8375. [PMID: 30506861 DOI: 10.1002/jcb.28121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Evidence has been reported by us and others supporting the important roles of chloride channels in a number of osteoblast cell functions. The ClC-3 chloride channel is activated by estradiol binding to estrogen receptor alpha on the cell membranes of osteoblasts. However, the functions of these chloride channels in estrogen regulation of osteoblast metabolism remain unclear. In the present study, the roles of chloride channels in estrogen regulation of osteoblasts were investigated in the osteoblastic cell line MC3T3-E1. Estrogen 17β-estradiol enhanced collagen I protein expression, alkaline phosphatase activity, and mineralization were inhibited, by chloride channel blockers. Estradiol promoted ClC-3 chloride channel protein expression. Silencing of ClC-3 chloride channel expression prevented the elevation of osteodifferentiation in osteoblasts, which were regulated by estrogen. These data suggest that estrogen can regulate bone formation by activating ClC-3 chloride channels and the activation of ClC-3 chloride channels can enhance the osteodifferentiation in osteoblasts.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China.,Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Wencui Li
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Jianying Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Meishen Yu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Duan Li
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Qiuchan Tan
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Daping Wang
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,International School, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhao H, Lin C, Hu K, Wen X, Yuan H. Discovery of novel estrogen-related receptor α inverse agonists by virtual screening and biological evaluation. J Biomol Struct Dyn 2019; 37:1641-1648. [PMID: 29633916 DOI: 10.1080/07391102.2018.1462736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Hui Zhao
- a Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009 , China
| | - Chao Lin
- a Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009 , China
| | - Kaiwen Hu
- a Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009 , China
| | - Xiaoan Wen
- a Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009 , China
| | - Haoliang Yuan
- a Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009 , China
| |
Collapse
|
7
|
Kim H, Kim BK, Ohk B, Yoon H, Kang WY, Cho S, Seong SJ, Lee HW, Yoon Y. Estrogen‐related receptor γ negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J Cell Physiol 2018; 234:1659-1670. [DOI: 10.1002/jcp.27035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hyun‐Ju Kim
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Bo Kyung Kim
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Boram Ohk
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Hye‐Jin Yoon
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Woo Youl Kang
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Seungil Cho
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Sook Jin Seong
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Hae Won Lee
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Young‐Ran Yoon
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| |
Collapse
|
8
|
Muschitz C, Kocijan R, Baierl A, Dormann R, Feichtinger X, Haschka J, Szivak M, Muschitz GK, Schanda J, Pietschmann P, Resch H, Dimai HP. Preceding and subsequent high- and low-trauma fracture patterns-a 13-year epidemiological study in females and males in Austria. Osteoporos Int 2017; 28:1609-1618. [PMID: 28138718 DOI: 10.1007/s00198-017-3925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED This study investigated the implication of a preceding high-trauma fracture on subsequent high- and low-trauma fractures at different skeletal sites in postmenopausal women and similarly aged men at an age range of 54 to 70 years. A preceding high-trauma fracture increases the risk of future low-trauma non-vertebral fractures including hip. INTRODUCTION Little is known about the impact of the skeletal fracture site in conjunction with the severity of a past fracture (high- or low-trauma preceding fracture) and its effect on future fracture risk. METHODS Patients with de novo high- and low-trauma fractures admitted to seven large trauma centers across Austria between 2000 and 2012 were stratified into sex and different age groups. Kaplan-Meier estimates, Cox proportional hazards regression models (HR), and likelihood calculations estimated effects of age, sex, and the anatomic region on the probability of a subsequent fracture in the same patient. RESULTS Included in the study were 433,499 female and male patients at an age range of 0 to 100 years with 575,772 de novo high- and low-trauma fractures. In the age range of 54-70 years, subsequent fractures were observed in 16% of females and 12.1% of males. A preceding high-trauma fracture was associated with 12.9% of subsequent fractures, thereof 6.5% of high- and 6.4% of low-trauma in origin, usually at the hip, humerus, or pelvis. The highest effect sizes were observed for femur, humerus, and thorax fractures with hazard ratios (HR) of 1.26, 1.18, and 1.14. After splitting into high-trauma preceding and subsequent low-trauma fractures, the femoral neck (HR = 1.59), the female sex (HR = 2.02), and age (HR = 1.03) were discriminators for increased future fracture risk. CONCLUSIONS Preceding high-trauma fractures increase the risk of future low-trauma non-vertebral fractures including hip. For each patient with a fracture, regardless of the severity of the trauma, osteoporosis should be taken into clinical consideration.
Collapse
Affiliation(s)
- C Muschitz
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria.
| | - R Kocijan
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
| | - A Baierl
- Department of Statistics and Operations Research, The University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - R Dormann
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
| | - X Feichtinger
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
- AUVA Trauma Center Meidling, Kundratstrasse 37, 1120, Vienna, Austria
| | - J Haschka
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
| | - M Szivak
- Austrian Trauma Insurance Agency (AUVA), Adalbert-Stifter-Strasse 65, 1200, Vienna, Austria
| | - G K Muschitz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - J Schanda
- AUVA Trauma Center Meidling, Kundratstrasse 37, 1120, Vienna, Austria
| | - P Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, The Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - H Resch
- St. Vincent Hospital Vienna, Medical Department II-Metabolic Bone Diseases Unit, VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, 1060, Vienna, Austria
- Karl Landsteiner Institute for Gastroenterology and Rheumatology, Stumpergasse 13, 1060, Vienna, Austria
- Bone Diseases Unit-Medical Faculty, Sigmund Freud University, Freudplatz 1, 1020, Vienna, Austria
| | - H P Dimai
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| |
Collapse
|