1
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of a dimeric full-length ABC transporter. Nat Commun 2024; 15:9946. [PMID: 39550367 PMCID: PMC11569179 DOI: 10.1038/s41467-024-54147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Activities of ATP binding cassette (ABC) proteins are regulated by multiple mechanisms, including protein interactions, phosphorylation, proteolytic processing, and/or oligomerization of the ABC protein itself. Here we present the structure of yeast cadmium factor 1 (Ycf1p) in its mature form following cleavage by Pep4p protease. Ycf1p, a C subfamily ABC protein (ABCC), is homologue of human multidrug resistance protein 1. Remarkably, a portion of cleaved Ycf1p forms a well-ordered dimer, alongside monomeric particles also present in solution. While numerous other ABC proteins have been proposed to dimerize, no high-resolution structures have been reported. Both phosphorylation of the regulatory (R) region and ATPase activity are lower in the Ycf1p dimer compared to the monomer, indicating that dimerization affects Ycf1p function. The interface between Ycf1p protomers features protein-protein interactions and contains bound lipids, suggesting that lipids stabilize the dimer. The Ycf1p dimer structure may inform the dimerization interfaces of other ABCC dimers.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Borgo C, D’Amore C, Capurro V, Tomati V, Pedemonte N, Bosello Travain V, Salvi M. SUMOylation Inhibition Enhances Protein Transcription under CMV Promoter: A Lesson from a Study with the F508del-CFTR Mutant. Int J Mol Sci 2024; 25:2302. [PMID: 38396982 PMCID: PMC10889535 DOI: 10.3390/ijms25042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | | | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| |
Collapse
|
4
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
5
|
Differential CFTR-Interactome Proximity Labeling Procedures Identify Enrichment in Multiple SLC Transporters. Int J Mol Sci 2022; 23:ijms23168937. [PMID: 36012204 PMCID: PMC9408702 DOI: 10.3390/ijms23168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.
Collapse
|
6
|
Ghigo A, Murabito A, Sala V, Pisano AR, Bertolini S, Gianotti A, Caci E, Montresor A, Premchandar A, Pirozzi F, Ren K, Sala AD, Mergiotti M, Richter W, de Poel E, Matthey M, Caldrer S, Cardone RA, Civiletti F, Costamagna A, Quinney NL, Butnarasu C, Visentin S, Ruggiero MR, Baroni S, Crich SG, Ramel D, Laffargue M, Tocchetti CG, Levi R, Conti M, Lu XY, Melotti P, Sorio C, De Rose V, Facchinetti F, Fanelli V, Wenzel D, Fleischmann BK, Mall MA, Beekman J, Laudanna C, Gentzsch M, Lukacs GL, Pedemonte N, Hirsch E. A PI3Kγ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Sci Transl Med 2022; 14:eabl6328. [PMID: 35353541 PMCID: PMC9869178 DOI: 10.1126/scitranslmed.abl6328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as β2-adrenergic receptor (β2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by β2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a β2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Anna Rita Pisano
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Ambra Gianotti
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Alessio Montresor
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | | | - Flora Pirozzi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy
| | - Kai Ren
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Marco Mergiotti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, University of South Alabama College of Medicine; AL 36688 Mobile, Alabama, USA
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany
| | - Sara Caldrer
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari; 70126 Bari, Italy
| | - Federica Civiletti
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Andrea Costamagna
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Nancy L. Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy,Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University; 80131 Naples, Italy,Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University; 80131 Naples, Italy
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Marco Conti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco; CA 94143 San Francisco, California, USA
| | - Xiao-Yun Lu
- School of life Science & Technology, Xi'an Jiaotong University; 710049 Xi'an Shaanxi, P.R.China
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona; 37126 Verona, Italy
| | - Claudio Sorio
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | | | - Vito Fanelli
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin; 10117 Berlin, Germany,German Center for Lung Research (DZL), associated partner; 10117 Berlin, Germany
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Carlo Laudanna
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA,Department of Pediatric Pulmonology, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Gergely L. Lukacs
- Department of Physiology, McGill University; H3G 1Y6 Montréal, Quebec, Canada
| | | | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| |
Collapse
|
7
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
9
|
Della Sala A, Prono G, Hirsch E, Ghigo A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity Regulation. Front Physiol 2021; 12:690247. [PMID: 34211404 PMCID: PMC8240754 DOI: 10.3389/fphys.2021.690247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride transport and overall tissue homeostasis. CFTR constitutes a unique member of the ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory (R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common lethal autosomal genetic disease in the Caucasian population. In recent years, major efforts have led to the development of CFTR modulators, small molecules targeting the underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. Recent evidence has highlighted that this class of drugs could also impact on the phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is to summarize the current knowledge on the regulation of the CFTR by PKA-mediated phosphorylation and to provide insights into the different factors that modulate this essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators and PKA interact to rescue dysfunctional channels.
Collapse
Affiliation(s)
- Angela Della Sala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| |
Collapse
|
10
|
Massip-Copiz MM, Valdivieso ÁG, Clauzure M, Mori C, Asensio CJA, Aguilar MÁ, Santa-Coloma TA. Epidermal growth factor receptor activity upregulates lactate dehydrogenase A expression, lactate dehydrogenase activity, and lactate secretion in cultured IB3-1 cystic fibrosis lung epithelial cells. Biochem Cell Biol 2021; 99:476-487. [PMID: 33481676 DOI: 10.1139/bcb-2020-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It has been postulated that reduced HCO3- transport through CFTR may lead to a decreased airway surface liquid pH. In contrast, others have reported no changes in the extracellular pH (pHe). We have recently reported that in carcinoma Caco-2/pRS26 cells (transfected with short hairpin RNA for CFTR) or CF lung epithelial IB3-1 cells, the mutation in CFTR decreased mitochondrial complex I activity and increased lactic acid production, owing to an autocrine IL-1β loop. The secreted lactate accounted for the reduced pHe, because oxamate fully restored the pHe. These effects were attributed to the IL-1β autocrine loop and the downstream signaling kinases c-Src and JNK. Here we show that the pHe of IB3-1 cells can be restored to normal values (∼7.4) by incubation with the epidermal growth factor receptor (EGFR, HER1, ErbB1) inhibitors AG1478 and PD168393. PD168393 fully restored the pHe values of IB3-1 cells, suggesting that the reduced pHe is mainly due to increased EGFR activity and lactate. Also, in IB3-1 cells, lactate dehydrogenase A mRNA, protein expression, and activity are downregulated when EGFR is inhibited. Thus, a constitutive EGFR activation seems to be responsible for the reduced pHe in IB3-1 cells.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - María Á Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
11
|
Domínguez CJ, Tocchetti GN, Rigalli JP, Mottino AD. Acute regulation of apical ABC transporters in the gut. Potential influence on drug bioavailability. Pharmacol Res 2020; 163:105251. [PMID: 33065282 DOI: 10.1016/j.phrs.2020.105251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The extensive intestinal surface offers an advantage regarding nutrient, ion and water absorptive capacity but also brings along a high exposition to xenobiotics, including drugs of therapeutic use and food contaminants. After absorption of these compounds by the enterocytes, apical ABC transporters play a key role in secreting them back to the intestinal lumen, hence acting as a transcellular barrier. Rapid and reversible modulation of their activity is a subject of increasing interest for pharmacologists. On the one hand, a decrease in transporter activity may result in increased absorption of therapeutic agents given orally. On the other hand, an increase in transporter activity would decrease their absorption and therapeutic efficacy. Although of less relevance, apical ABC transporters also contribute to disposition of drugs systemically administered. This review article summarizes the present knowledge on the mechanisms aimed to rapidly regulate the activity of the main apical ABC transporters of the gut: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). Regulation of these mechanisms by drugs, drug delivery systems, drug excipients and nutritional components are particularly considered. This information could provide the basis for controlled regulation of bioavailability of therapeutic agents and at the same time would help to prevent potential drug-drug interactions.
Collapse
Affiliation(s)
- Camila Juliana Domínguez
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina.
| |
Collapse
|
12
|
Fenton RA, Murali SK, Kaji I, Akiba Y, Kaunitz JD, Kristensen TB, Poulsen SB, Dominguez Rieg JA, Rieg T. Adenylyl Cyclase 6 Expression Is Essential for Cholera Toxin-Induced Diarrhea. J Infect Dis 2020; 220:1719-1728. [PMID: 30624615 DOI: 10.1093/infdis/jiz013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cholera toxin (CT)-induced diarrhea is mediated by cyclic adenosine monophosphate (cAMP)-mediated active Cl- secretion via the cystic fibrosis transmembrane conductance regulator (CFTR). Although the constitutive activation of adenylyl cyclase (AC) in response to CT is due to adenosine diphosphate ribosylation of the small G protein α-subunit activating CFTR with consequent secretory diarrhea, the AC isoform(s) involved remain unknown. METHODS We generated intestinal epithelial cell-specific adenylyl cyclase 6 (AC6) knockout mice to study its role in CT-induced diarrhea. RESULTS AC6 messenger RNA levels were the highest of all 9 membrane-bound AC isoforms in mouse intestinal epithelial cells. Intestinal epithelial-specific AC6 knockout mice (AC6loxloxVillinCre) had undetectable AC6 levels in small intestinal and colonic epithelial cells. No significant differences in fluid and food intake, plasma electrolytes, intestinal/colon anatomy and morphology, or fecal water content were observed between genotypes. Nevertheless, CT-induced fluid accumulation in vivo was completely absent in AC6loxloxVillinCre mice, associated with a lack of forskolin- and CT-induced changes in the short-circuit current (ISC) of the intestinal mucosa, impaired cAMP generation in acutely isolated small intestinal epithelial cells, and significantly impaired apical CFTR levels in response to forskolin. CONCLUSIONS AC6 is a novel target for the treatment of CT-induced diarrhea.
Collapse
Affiliation(s)
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Denmark.,University of South Florida, Tampa
| | - Izumi Kaji
- Greater Los Angeles VA Healthcare System, California.,Department of Medicine, University of California, Los Angeles
| | - Yasutada Akiba
- Greater Los Angeles VA Healthcare System, California.,Department of Medicine, University of California, Los Angeles
| | - Jonathan D Kaunitz
- Greater Los Angeles VA Healthcare System, California.,Department of Medicine, University of California, Los Angeles
| | | | | | | | | |
Collapse
|
13
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
14
|
Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, Spinella MC, Oikonomou V, Renga G, Tosco A, Rossin F, Guido S, Silano M, Garaci E, Chao YK, Grimm C, Luciani A, Romani L, Piacentini M, Raia V, Kroemer G, Maiuri L. A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J 2018; 38:embj.2018100101. [PMID: 30498130 PMCID: PMC6331719 DOI: 10.15252/embj.2018100101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8‐restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the α‐gliadin‐derived LGQQQPFPPQQPY peptide (P31–43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell‐autonomous or environmental stress. P31–43 binds to, and reduces ATPase activity of, the nucleotide‐binding domain‐1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF‐κB nuclear translocation and IL‐15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX‐770 attenuates gliadin‐induced inflammation and promotes a tolerogenic response in gluten‐sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease.
Collapse
Affiliation(s)
- Valeria R Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Speranza Esposito
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Romina Monzani
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Mara C Spinella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonella Tosco
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, Federico II University Naples, Naples, Italy
| | - Marco Silano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enrico Garaci
- University San Raffaele and 21 IRCCS San Raffaele, Rome, Italy
| | - Yu-Kai Chao
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, Germany
| | | | - Luigina Romani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe11 labellisée Ligue Nationale Contrele Cancer, Paris, France .,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy .,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
15
|
Negoda A, Cowley EA, El Hiani Y, Linsdell P. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell Mol Life Sci 2018; 75:3027-3038. [PMID: 29441426 PMCID: PMC11105745 DOI: 10.1007/s00018-018-2777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
16
|
Puglia M, Landi C, Gagliardi A, Breslin L, Armini A, Brunetti J, Pini A, Bianchi L, Bini L. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease. J Proteomics 2018; 170:28-42. [DOI: 10.1016/j.jprot.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 01/04/2023]
|
17
|
Esteves CZ, de Aguiar Dias L, de Oliveira Lima E, de Oliveira DN, Rodrigues Melo CFO, Delafiori J, Souza Gomez CC, Ribeiro JD, Ribeiro AF, Levy CE, Catharino RR. Skin Biomarkers for Cystic Fibrosis: A Potential Non-Invasive Approach for Patient Screening. Front Pediatr 2017; 5:290. [PMID: 29376041 PMCID: PMC5767587 DOI: 10.3389/fped.2017.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a disabling genetic disease with an increased prevalence in European heritage populations. Currently, the most used technique for collection of CF samples and diagnosis is provided through uncomfortable tests, with uncertain results, mostly based on chloride concentration in sweat. Since CF mutation induces many metabolic changes in patients, exploring these alterations might be an alternative to visualize potential biomarkers that could be used as interesting tools for further diagnostic upgrade, prioritizing simplicity, low cost, and quickness. METHODS This contribution describes an accurate strategy to provide potential biomarkers related to CF, which may be understood as a potential tool for new diagnostic approaches and/or for monitoring disease evolution. Therefore, the present proposal consists of using skin imprints on silica plates as a way of sample collection, followed by direct-infusion high-resolution mass spectrometry and multivariate data analysis, intending to identify metabolic changes in skin composition of CF patients. RESULTS Metabolomics analysis allowed identifying chemical markers that can be traced back to CF in patients' skin imprints, differently from control subjects. Seven chemical markers from several molecular classes were elected, represented by bile acids, a glutaric acid derivative, thyrotropin-releasing hormone, an inflammatory mediator, a phosphatidic acid, and diacylglycerol isomers, all reflecting metabolic disturbances that occur due to of CF. CONCLUSION The comfortable method of sample collection combined with the identified set of biomarkers represent potential tools that open the range of possibilities to manage CF and follow the disease evolution. This exploratory approach points to new perspectives about the development of diagnostic assay using biomarkers and the management CF.
Collapse
Affiliation(s)
- Cibele Zanardi Esteves
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Letícia de Aguiar Dias
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | | | - Jeany Delafiori
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| |
Collapse
|