1
|
Javaid T, Bhattarai M, Venkataraghavan A, Held M, Faik A. Specific protein interactions between rice members of the GT43 and GT47 families form various central cores of putative xylan synthase complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:856-878. [PMID: 38261531 DOI: 10.1111/tpj.16640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | | | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
2
|
Gu X, Kovacs AS, Myung Y, Ascher DB. Mutations in Glycosyltransferases and Glycosidases: Implications for Associated Diseases. Biomolecules 2024; 14:497. [PMID: 38672513 PMCID: PMC11048727 DOI: 10.3390/biom14040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations.
Collapse
Affiliation(s)
- Xiaotong Gu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aaron S. Kovacs
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yoochan Myung
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
3
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Xu Z, Tian P. Rethinking Biosynthesis of Aclacinomycin A. Molecules 2023; 28:molecules28062761. [PMID: 36985733 PMCID: PMC10054333 DOI: 10.3390/molecules28062761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Aclacinomycin A (ACM-A) is an anthracycline antitumor agent widely used in clinical practice. The current industrial production of ACM-A relies primarily on chemical synthesis and microbial fermentation. However, chemical synthesis involves multiple reactions which give rise to high production costs and environmental pollution. Microbial fermentation is a sustainable strategy, yet the current fermentation yield is too low to satisfy market demand. Hence, strain improvement is highly desirable, and tremendous endeavors have been made to decipher biosynthesis pathways and modify key enzymes. In this review, we comprehensively describe the reported biosynthesis pathways, key enzymes, and, especially, catalytic mechanisms. In addition, we come up with strategies to uncover unknown enzymes and improve the activities of rate-limiting enzymes. Overall, this review aims to provide valuable insights for complete biosynthesis of ACM-A.
Collapse
|
5
|
Neurological insights on two siblings with GM3 synthase deficiency due to novel compound heterozygous ST3GAL5 variants. Brain Dev 2023; 45:270-277. [PMID: 36690566 DOI: 10.1016/j.braindev.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND ST3GAL5 encodes GM3 synthase (ST3 beta-galactoside alpha-2,3-sialyltransferase 5; ST3GAL5), which synthesizes GM3 by transferring sialic acid to lactosylceramide. GM3, a sialic acid-containing glycosphingolipid known as ganglioside, is a precursor to the biosynthesis of various more complex gangliosides that are active in the brain. Biallelic variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD), a rare congenital disorder of glycosylation. GM3SD was first identified in the Amish population in 2004. CASE We report two siblings diagnosed with GM3SD due to novel compound heterozygous ST3GAL5 variants. The novel ST3GAL5 variants, detected by whole-exome sequencing in the patients, were confirmed to be pathogenic by GM3 synthase assay. The clinical courses of these patients, which began in infancy with irritability and growth failure, followed by developmental delay and hearing loss, were consistent with previous case reports of GM3SD. The older sibling underwent deep brain stimulation for severe involuntary movements at the age of 9 years. The younger sibling suffered from acute encephalopathy at the age of 9 months and subsequently developed refractory epilepsy. DISCUSSION Reports of GM3SD outside the Amish population are rare, and whole-exome sequencing may be required to diagnose GM3SD in non-Amish patients. Since an effective treatment for GM3SD has not yet been established, we might select deep brain stimulation as a symptomatic treatment for involuntary movements in GM3SD.
Collapse
|
6
|
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase. PLoS One 2022; 17:e0278713. [PMID: 36512577 PMCID: PMC9746966 DOI: 10.1371/journal.pone.0278713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
LARGE1 is a bifunctional glycosyltransferase responsible for generating a long linear polysaccharide termed matriglycan that links the cytoskeleton and the extracellular matrix and is required for proper muscle function. This matriglycan polymer is made with an alternating pattern of xylose and glucuronic acid monomers. Mutations in the LARGE1 gene have been shown to cause life-threatening dystroglycanopathies through the inhibition of matriglycan synthesis. Despite its major role in muscle maintenance, the structure of the LARGE1 enzyme and how it assembles in the Golgi are unknown. Here we present the structure of LARGE1, obtained by a combination of X-ray crystallography and single-particle cryo-EM. We found that LARGE1 homo-dimerizes in a configuration that is dictated by its coiled-coil stem domain. The structure shows that this enzyme has two canonical GT-A folds within each of its catalytic domains. In the context of its dimeric structure, the two types of catalytic domains are brought into close proximity from opposing monomers to allow efficient shuttling of the substrates between the two domains. Together, with putative retention of matriglycan by electrostatic interactions, this dimeric organization offers a possible mechanism for the ability of LARGE1 to synthesize long matriglycan chains. The structural information further reveals the mechanisms in which disease-causing mutations disrupt the activity of LARGE1. Collectively, these data shed light on how matriglycan is synthesized alongside the functional significance of glycosyltransferase oligomerization.
Collapse
|
7
|
Wilson LFL, Dendooven T, Hardwick SW, Echevarría-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun 2022; 13:3314. [PMID: 35676258 PMCID: PMC9178029 DOI: 10.1038/s41467-022-31048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-D-glucuronosyl and N-acetyl-α-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer β-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
Collapse
Affiliation(s)
- L F L Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - T Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - S W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - A Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - T Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - K B R M Krogh
- Department of Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark
| | - D Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - D T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - K Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, SE-221 00, Lund, Sweden.
| | - P Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
8
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
9
|
Zhang P, Zhang Z, Zhang L, Wang J, Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 2020; 18:1383-1390. [PMID: 32637037 PMCID: PMC7316871 DOI: 10.1016/j.csbj.2020.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The phylogenetic distribution of GT1 family enzymes showed domain-dependent pattern. The domain-dependent characterized GTs showed distinct substrates spectrum. Two regions that discriminate the GT1 enzymes from different domains were identified.
Glycosyltransferases (GTs) are responsible for transferring glycosyl moieties from activated sugar donors to certain acceptors, among which the GT1 family enzymes have been known for their outstanding glycosylation capacities toward diverse natural products, such as glycolipids, flavonoids and macrolides etc. However, there still lacks a systematic collation of this important family members. In this minireview, all the GT1 family sequences were phylogenetically analyzed, and the grouping of GT1 proteins exhibited a taxonomic life domain-dependent pattern, revealing many untapped clades of GTs. The further phylogenetic analysis of the characterized GTs facilitated the classification of substrates coverage of GT1 family enzymes from different life domains, whereby the GTs from bacteria can tolerate a wider spectrum of chemical skeletons as substrates, showing higher promiscuity than those from other domains. Furthermore, the sequence sizes of GTs from different domains were compared to understand their different substrates selectivity. Based on the multiple sequence alignments of 28 representative GT1 enzymes with crystal structures, two critical regions located in the N-terminal of GTs were identified, which were most variable among sequences from different taxonomic domains and essential for substrates binding and/or catalysis. The key roles of these two regions were validated by enumerating the influential residues that interacted with substrates in the representative structures from bacteria and plants. The atlas for GT1 family in terms of phylogeny, substrates selectivity, sequence length, and critical motifs provides the clues for the exploration of unknown GT1s and rational engineering of known enzymes, synthesizing novel promising glycoconjugates for pharmaceutical application.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Lijuan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
10
|
Involvement of the α-helical and Src homology 3 domains in the molecular assembly and enzymatic activity of human α1,6-fucosyltransferase, FUT8. Biochim Biophys Acta Gen Subj 2020; 1864:129596. [PMID: 32147455 DOI: 10.1016/j.bbagen.2020.129596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous structural analyses showed that human α1,6-fucosyltransferase, FUT8 contains a catalytic domain along with two additional domains, N-terminal α-helical domain and C-terminal Src homology 3 domain, but these domains are unique to FUT8 among glycosyltransferases. The role that these domains play in formation of the active form of FUT8 has not been investigated. This study reports on attempts to determine the involvement of these domains in the functions of FUT8. METHODS Based on molecular modeling, the domain mutants were constructed by truncation and site-directed mutagenesis, and were heterologously expressed in Sf21 or COS-1 cells. The mutants were analyzed by SDS-PAGE and assayed for enzymatic activity. In vivo cross-linking experiments by introducing disulfide bonds were also carried out to examine the orientation of the domains in the molecular assembly. RESULTS Mutagenesis and molecular modeling findings suggest that human FUT8 potentially forms homodimer in vivo via intermolecular hydrophobic interactions involving α-helical domains. Truncation or site-directed mutagenesis findings indicated that α-helical and SH3 domains are all required for enzymatic activity. In addition, in vivo cross-linking experiments clearly indicated that the SH3 domain located in close proximity to the α-helical domain in an intermolecular manner. CONCLUSIONS α-Helical and SH3 domains are required for a fully active enzyme, and are also involved in homophilic dimerization, which probably results in the formation of the active form of human FUT8. GENERAL SIGNIFICANCE α-Helical and SH3 domains, which are not commonly found in glycosyltransferases, play roles in the formation of the functional quaternary structure of human FUT8.
Collapse
|
11
|
Wiertelak W, Sosicka P, Olczak M, Maszczak-Seneczko D. Analysis of homologous and heterologous interactions between UDP-galactose transporter and beta-1,4-galactosyltransferase 1 using NanoBiT. Anal Biochem 2020; 593:113599. [PMID: 32004544 DOI: 10.1016/j.ab.2020.113599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Split luciferase complementation assay is one of the approaches enabling identification and analysis of protein-protein interactions in vivo. The NanoBiT technology is the most recent improvement of this strategy. Nucleotide sugar transporters and glycosyltransferases of the Golgi apparatus are the key players in glycosylation. Here we demonstrate the applicability of the NanoBiT system for studying homooligomerization of these proteins. We also report and discuss a novel heterologous interaction between UDP-galactose transporter and beta-1,4-galactosyltransferase 1.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland.
| |
Collapse
|
12
|
Khoder-Agha F, Harrus D, Brysbaert G, Lensink MF, Harduin-Lepers A, Glumoff T, Kellokumpu S. Assembly of B4GALT1/ST6GAL1 heteromers in the Golgi membranes involves lateral interactions via highly charged surface domains. J Biol Chem 2019; 294:14383-14393. [PMID: 31395657 DOI: 10.1074/jbc.ra119.009539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
β-1,4-Galactosyltransferase 1 (B4GALT1) and ST6 β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) catalyze the successive addition of terminal β-1,4-linked galactose and α-2,6-linked sialic acid to N-glycans. Their exclusive interaction in the Golgi compartment is a prerequisite for their full catalytic activity, whereas a lack of this interaction is associated with cancers and hypoxia. To date, no structural information exists that shows how glycosyltransferases functionally assemble with each other. Using molecular docking simulations to predict interaction surfaces, along with mutagenesis screens and high-throughput FRET analyses in live cells to validate these predictions, we show here that B4GALT1 and ST6GAL1 interact via highly charged noncatalytic surfaces, leaving the active sites exposed and accessible for donor and acceptor substrate binding. Moreover, we found that the assembly of ST6GAL1 homomers in the endoplasmic reticulum before ST6GAL1 activation in the Golgi utilizes the same noncatalytic surface, whereas B4GALT1 uses its active-site surface for assembly, which silences its catalytic activity. Last, we show that the homomeric and heteromeric B4GALT1/ST6GAL1 complexes can assemble laterally in the Golgi membranes without forming cross-cisternal contacts between enzyme molecules residing in the opposite membranes of each Golgi cisterna. Our results provide detailed mechanistic insights into the regulation of glycosyltransferase interactions, the transitions between B4GALT1 and ST6GAL1 homo- and heteromers in the Golgi, and cooperative B4GALT1/ST6GAL1 function in N-glycan synthesis.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Guillaume Brysbaert
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marc F Lensink
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| |
Collapse
|
13
|
Khoder-Agha F, Sosicka P, Escriva Conde M, Hassinen A, Glumoff T, Olczak M, Kellokumpu S. N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme-multi-transporter assemblies in golgi membranes in vivo. Cell Mol Life Sci 2019; 76:1821-1832. [PMID: 30737517 PMCID: PMC6453868 DOI: 10.1007/s00018-019-03032-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
Abstract
Branching and processing of N-glycans in the medial-Golgi rely both on the transport of the donor UDP-N-acetylglucosamine (UDP-GlcNAc) to the Golgi lumen by the SLC35A3 nucleotide sugar transporter (NST) as well as on the addition of the GlcNAc residue to terminal mannoses in nascent N-glycans by several linkage-specific N-acetyl-glucosaminyltransferases (MGAT1-MGAT5). Previous data indicate that the MGATs and NSTs both form higher order assemblies in the Golgi membranes. Here, we investigate their specific and mutual interactions using high-throughput FRET- and BiFC-based interaction screens. We show that MGAT1, MGAT2, MGAT3, MGAT4B (but not MGAT5) and Golgi alpha-mannosidase IIX (MAN2A2) form several distinct molecular assemblies with each other and that the MAN2A2 acts as a central hub for the interactions. Similar assemblies were also detected between the NSTs SLC35A2, SLC35A3, and SLC35A4. Using in vivo BiFC-based FRET interaction screens, we also identified novel ternary complexes between the MGATs themselves or between the MGATs and the NSTs. These findings suggest that the MGATs and the NSTs self-assemble into multi-enzyme/multi-transporter complexes in the Golgi membranes in vivo to facilitate efficient synthesis of complex N-glycans.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
| | - Paulina Sosicka
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maria Escriva Conde
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
- Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
- Institute of Molecular Medicine, Helsinki, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland.
| |
Collapse
|
14
|
Kumari M, Anji A. Urea can inhibit efficient reduction and alkylation of protein dimers in solution demonstrated by the beta subunit of alpha glucosidase II. Anal Biochem 2019; 566:20-22. [PMID: 30312619 DOI: 10.1016/j.ab.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 11/26/2022]
Abstract
Protein reduction and alkylation is routinely used for analysis of protein dimers and protein complexes in cell fractions using two dimensional gel electrophoresis and mass spectrometry. To resolve the heterogeneity of a high molecular weight protein band that is highlighted by an antibody to the beta subunit of alpha glucosidase II (GIIβ), we performed reduction and alkylation of cytosolic proteins extracted from mouse brain. The presence of urea in the reduction/alkylation buffer inhibited the chemical processes. It is thus recommended that protein reduction/alkylation be performed both in the presence and absence of urea for the separation of mono-/hetero-mers.
Collapse
Affiliation(s)
- Meena Kumari
- Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 231Coles Hall, Manhattan, KS, 66506, USA.
| | - Antje Anji
- Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 231Coles Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Harrus D, Khoder-Agha F, Peltoniemi M, Hassinen A, Ruddock L, Kellokumpu S, Glumoff T. The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS One 2018; 13:e0205571. [PMID: 30352055 PMCID: PMC6198961 DOI: 10.1371/journal.pone.0205571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022] Open
Abstract
Most glycosyltransferases, including B4GalT1 (EC 2.4.1.38), are known to assemble into enzyme homomers and functionally relevant heteromers in vivo. However, it remains unclear why and how these enzymes interact at the molecular/atomic level. Here, we solved the crystal structure of the wild-type human B4GalT1 homodimer. We also show that B4GalT1 exists in a dynamic equilibrium between monomer and dimer, since a purified monomer reappears as a mixture of both and as we obtained crystal forms of the monomer and dimer assemblies in the same crystallization conditions. These two crystal forms revealed the unliganded B4GalT1 in both the open and the closed conformation of the Trp loop and the lid regions, responsible for donor and acceptor substrate binding, respectively. The present structures also show the lid region in full in an open conformation, as well as a new conformation for the GlcNAc acceptor loop (residues 272–288). The physiological relevance of the homodimer in the crystal was validated by targeted mutagenesis studies coupled with FRET assays. These showed that changing key catalytic amino acids impaired homomer formation in vivo. The wild-type human B4GalT1 structure also explains why the variant proteins used for crystallization in earlier studies failed to reveal the homodimers described in this study.
Collapse
Affiliation(s)
- Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Miika Peltoniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
- * E-mail:
| |
Collapse
|
16
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|