1
|
Sen MG, Chooi R, McMullen JR. Heart-derived factors and organ cross-talk in settings of health and disease: new knowledge and clinical opportunities for multimorbidity. J Physiol 2025. [PMID: 39888058 DOI: 10.1113/jp287400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines). To date, there have been fewer studies on proteins released from the heart (cardiokines) implicated with organ cross-talk. Early evidence for the secretion of cardiac-specific factors facilitating organ cross-talk came in the form of natriuretic peptides which are secreted via the classical endoplasmic reticulum-Golgi pathway. More recently, studies in cardiomyocyte-specific genetic mouse models have revealed cardiac-initiated organ cross-talk. Cardiomyocyte-specific modulation of microRNAs (miR-208a and miR-23-27-24 cluster) and proteins such as the mediator complex subunit 13 (MED13), G-protein-coupled receptor kinase 2 (GRK2), mutant α-myosin heavy-chain (αMHC), ubiquitin-like modifier-activating enzyme (ATG7), oestrogen receptor alpha (ERα) and fibroblast growth factor 21 (FGF21) have resulted in metabolic and renal phenotypes. These studies have implicated a variety of factors which can be secreted via the classical pathway or via non-classical mechanisms including the release of extracellular vesicles. Cross-talk between the heart and the brain has also been described (e.g. via miR-1 and an emerging concept, interoception: detection of internal neural signals). Here we summarize these studies taking into consideration that factors may be secreted in both settings of health and in disease.
Collapse
Affiliation(s)
- Melodi G Sen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Heart Research Institute, Newtown, New South Wales, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Liu X, Wang Y, Ding L, Hu R, Zhang Y, Zhang W, Pei L, Cao Y, Fang H, Liu K, Sun S, Wu J, Buonanno FS, Ning M, Xu Y, Song B. Atrial Cardiomyopathy Predicts the Functional Outcome and Mortality in Stroke Patients. J Atheroscler Thromb 2024; 31:1416-1426. [PMID: 38644203 PMCID: PMC11456353 DOI: 10.5551/jat.64756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/26/2024] [Indexed: 04/23/2024] Open
Abstract
AIM Atrial cardiomyopathy (ACM) is characterized by atrial dysfunction. This study aims to assess the prognostic significance of ACM in patients with noncardioembolic stroke (NCS). METHODS Patients with NCS within seven days of onset were prospectively enrolled between January 2019 and December 2020. ACM was defined as either an N-terminal pro-brain natriuretic peptide (NT-pro BNP) >250 pg/ml or a P-terminal force in precordial lead V1 (PTFV1) ≥ 5000µV·ms. A poor functional outcome was determined as a score of 3-6 on the modified Rankin Scale (mRS) within a 2-year follow-up period. Logistic regression and Cox regression analyses were employed to examine the relationship between ACM and the long-term prognosis of patients with NCS. RESULTS A total of 1,346 patients were enrolled, of whom 299 (22.2%) patients were diagnosed with ACM. A total of 207(15.4%) patients experienced a poor functional outcome, and 58 (4.3%) patients died. A multivariate logistic regression analysis indicated that ACM was significantly associated with a poor functional outcome in NCS patients [adjusted odds ratio (aOR): 2.01; 95% confidence interval (CI): 1.42-2.87; p<0.001]. Additionally, a multivariate Cox regression analysis showed that an NT-pro BNP >250 pg/ml was significantly associated with an increased risk of all-cause mortality [adjusted hazard ratio (aHR), 2.51; 95% CI: 1.42-4.43; p=0.001]. CONCLUSIONS ACM may serve as a novel predictor of a poor long-term functional outcome in patients with NCS. Elevated NT-pro BNP levels (>250 pg/ml) were found to be associated with a higher risk of all-cause mortality. These findings warrant further validation in multicenter studies.
Collapse
Affiliation(s)
- Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yige Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lulu Pei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Fang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ferdinando S Buonanno
- Department of Cardio-Neurology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mingming Ning
- Department of Cardio-Neurology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zheng H, Zhang X, Li C, Wang D, Shen Y, Lu J, Zhao L, Li X, Gao H. BCAA mediated microbiota-liver-heart crosstalk regulates diabetic cardiomyopathy via FGF21. MICROBIOME 2024; 12:157. [PMID: 39182099 PMCID: PMC11344321 DOI: 10.1186/s40168-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive. RESULTS We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown. CONCLUSIONS Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.
Collapse
Affiliation(s)
- Hong Zheng
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xi Zhang
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Die Wang
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuying Shen
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiahui Lu
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaokun Li
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
6
|
Zhao S, Wang P, Yin F, Wu J, Wang Y, Li P, Zhang Y, Yang J, Guo X, Zhang D, Song P. Cardiovascular toxicity associated with the multitargeted tyrosine kinase inhibitor anlotinib. TUMORI JOURNAL 2023; 109:186-196. [PMID: 35311404 DOI: 10.1177/03008916221084362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anlotinib, a multitargeted tyrosine kinase inhibitor, has been shown to have encouraging activity against many tumors, but its cardiovascular toxicity has not been investigated specifically. We reviewed anlotinib-associated cardiovascular adverse events in patients and explored its cardiotoxicity in vitro. METHODS We retrospectively reviewed all cardiovascular events in 62 patients with unresectable tumors who had taken anlotinib and mainly examined anlotinib's effects on left ventricular ejection fraction (LVEF) and blood pressure. Besides, we investigated its cardiotoxicity in Neonatal Rat Ventricular Myocytes (NRVMs). RESULTS All-grade hypertension was seen in 60 patients (97%), and 25 individuals (40%) developed grade 3 hypertension. Significant univariate associations for predictors of post-treatment hypertension were age (P<0.001), BMI (P=0.003), ECOG PS(P<0.001), diabetes mellitus (P=0.035), dose of anlotinib (P=0.025). Multivariate analysis suggested that age [odds ratio (OR) 1.079, 95% confidence interval (CI): 1.029-1.130, P= 0.001] and BMI [OR 3.448, 95% CI: 1.410-8.433, P= 0.007] were the only significant independent predictors. No grade 3/4 left ventricular systolic dysfunction was reported. One patient (2%) had acute myocardial infarction, leading to cardiac death. In vitro, western blotting results showed that the levels of ANP, BNP, c-Myc and Cleaved Caspase3 were notably increased and cardiomyocyte apoptosis was strikingly increased in anlotinib group, as detected by TUNEL staining and Annexin V-FITC/PI flow cytometry. CONCLUSIONS Our study results showed that anlotinib could induce rat cardiomyocytes apoptosis. Nonetheless, anlotinib-associated cardiovascular toxicity was acceptable and manageable for patients with unresectable tumors.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Peng Wang
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fan Yin
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Junjie Wu
- Department of Blood Transfusion, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Yuying Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Peng Li
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Yang
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xueguang Guo
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Peng Song
- Department of Medical Oncology, the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
8
|
Gu L, Jiang W, Jiang W, Xu Z, Li W, Zhang H. Elevated serum FGF21 levels predict heart failure during hospitalization of STEMI patients after emergency percutaneous coronary intervention. PeerJ 2023; 11:e14855. [PMID: 36778154 PMCID: PMC9910186 DOI: 10.7717/peerj.14855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) has multiple cardioprotective effects including modulation of glucolipid metabolism, anti-inflammation, and anti-oxidative stress, but its association with the heart failure during hospitalization in patients with ST-segment elevation myocardial infarction (STEMI) undergoing emergency percutaneous coronary intervention (PCI) has not been reported. Methods A total of 348 STEMI patients treated with emergency PCI were included from January 2016 to December 2018. Relevant biochemical indicators were measured by central laboratory. Serum FGF21 levels were measured by ELISA. The occurrence of heart failure during hospitalization was recorded. Patients' cardiac function was assessed by echocardiography. Results Serum FGF21 levels were significantly higher in the STEMI group with heart failure than in the group without heart failure (249.95 ± 25.52 vs. 209.98 ± 36.35, P < 0.001). Serum FGF21 levels showed a strong positive correlation with N-terminal precursor B-type natriuretic peptide (NT-proBNP) in STEMI patients (r = 0.749, P < 0.001). FGF21 was found to be an independent risk factor for the development of heart failure during hospitalization in STEMI patients by binary logistic regression analysis. The area under curve (AUC) for FGF21 to predict the development of heart failure during hospitalization in STEMI patients was 0.816 (95% CI [0.770-0.863]) according to the receiver operating characteristic (ROC) curve analysis. Conclusion Elevated serum FGF21 levels have been shown to be a strong predictor of heart failure during hospitalization in patients with STEMI after emergency PCI.
Collapse
|
9
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Peters MC, Di Martino S, Boelens T, Qin J, van Mil A, Doevendans PA, Chamuleau SAJ, Sluijter JPG, Neef K. Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Mol Ther Methods Clin Dev 2022; 25:3-16. [PMID: 35317048 PMCID: PMC8917270 DOI: 10.1016/j.omtm.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The human heart has limited regenerative capacity. Therefore, patients often progress to heart failure after ischemic injury, despite advances in reperfusion therapies generally decreasing mortality. Depending on its glycosylation state, Follistatin-like 1 (FSTL1) has been shown to increase cardiomyocyte (CM) proliferation, decrease CM apoptosis, and prevent cardiac rupture in animal models of ischemic heart disease. To explore its therapeutic potential, we used a human in vitro model of cardiac ischemic injury with human induced pluripotent stem cell-derived CMs (iPSC-CMs) and assessed regenerative effects of two differently glycosylated variants of human FSTL1. Furthermore, we investigated the FSTL1-mediated interplay between human cardiac fibroblasts (cFBs) and iPSC-CMs in hypoxia. Both FSTL1 variants increased viability, while only hypo-glycosylated FSTL1 increased CM proliferation post-hypoxia. Human fetal cardiac fibroblasts (fcFBs) expressed and secreted FSTL1 under normoxic conditions, while FSTL1 secretion increased by iPSC-cFBs upon hypoxia but decreased in iPSC-CMs. Co-culture of iPSC-CMs and cFBs increased FSTL1 secretion compared with cFB mono-culture. Taken together, we confirm that FSTL1 induces iPSC-CM proliferation in a human cardiac in vitro hypoxia damage model. Furthermore, we show hypoxia-related FSTL1 secretion by human cFBs and indications for FSTL1-mediated intercellular communication between cardiac cell types in response to hypoxic conditions.
Collapse
Affiliation(s)
- Marijn C Peters
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sofia Di Martino
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Thomas Boelens
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jiabin Qin
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Alain van Mil
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands.,Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, the Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Klaus Neef
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
11
|
Sendur SN, Hazirolan T, Aydin B, Lay I, Alikasifoglu M, Erbas T. Specific FSTL1 polymorphism may determine the risk of cardiomyopathy in patients with acromegaly. Acta Cardiol 2022; 77:350-359. [PMID: 34233581 DOI: 10.1080/00015385.2021.1948206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have investigated the role of a cardiomyokine, follistatin-like 1 (FSTL1), and its single nucleotide polymorphism on acromegalic cardiomyopathy. METHODS The study was performed as a cross-sectional case research in a Tertiary Referral Centre. Forty-six patients with acromegaly (29 F-17 M, mean age: 50.3 ± 12.1 years) were included. FSTL1 levels were measured and the rs1259293 region of the FSTL1 gene was subjected to polymorphism analysis. 1.5 Tesla MRI was used to obtain cardiac images. RESULTS There were 15 active (6 F-9M) and 31 (22 F-9M) controlled patients. Active patients had a higher left ventricular mass (LVM) and left ventricular mass index (LVMi). GH levels were positively correlated with left ventricular end-diastolic volume index (LVEDVi), stroke volume index (SVi), cardiac index (Ci), LVM and LVMi; r = 0.35, 0.38, 0.34, 0.39 and 0.39, respectively. IGF-1 index was positively correlated with LVEDVi, left ventricular end-systolic volume index (LVESVi), SVi, Ci, LVM and LVMi; r = 0.36, 0.34, 0.32, 0.31, 0.42 and 0.42, respectively. Twenty out of 46 patients with acromegaly (43.5%) had myocardial fibrosis. FSTL1 levels were neither correlated with disease activity nor with any functional and structural cardiac parameter. Multivariate linear regression analysis revealed no association between FSTL1 and any study parameters. The rs1259293 variant genotype CC was significantly associated with low left ventricular mass. CONCLUSIONS Serum FSTL1 levels are not associated with functional and structural measures of myocardium in patients with acromegaly. However, the risk of left ventricular hypertrophy is reduced in CC genotyped individuals of FSTL1.
Collapse
Affiliation(s)
- Suleyman Nahit Sendur
- Department of Endocrinology & Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tuncay Hazirolan
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Busra Aydin
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tomris Erbas
- Department of Endocrinology & Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Liu F, Luo X, Chen X, Lu Z, Wei D, Yang Z. Clinical value of NT-proBNP measurements in assessing patients in the pediatric intensive care unit. Transl Pediatr 2021; 10:1355-1360. [PMID: 34189094 PMCID: PMC8192984 DOI: 10.21037/tp-21-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND N-terminal brain natriuretic peptide precursor (NT-proBNP) and brain natriuretic peptide (BNP) are mainly produced and secreted in the heart. In 2008, the European Heart Association recommended that serum BNP/NT-proBNP levels should be included in one of the diagnostic criteria of heart failure. Serum NT-proBNP is more stable than BNP, and the detection results are less affected by objective factors, so it is widely used. At present, NT-proBNP has long been beyond the scope of heart failure markers, and has a wide range of clinical value in the evaluation and prediction of some serious diseases. This study prospectively studied the predictive value of serum NT-proBNP in pediatric intensive care unit (PICU). METHODS This was a prospective study involving 375 children in the PICU. The patients were divided into three groups: non-risk, low-risk, and high-risk groups. Serum NT-proBNP levels and the 28-day mortality rate were analyzed. RESULTS The serum NT-proBNP levels and the mortality of the high-risk group was significantly higher than those of the low- and non-risk groups (P<0.01 in both cases). Receiver operating characteristic curve (ROC curve) analysis showed that the area under the curve was 0.705 (P<0.001, sensitivity =0.643, specificity =0.692). Death multivariate binary logistic regression analysis indicated that NT-proBNP was not an independent factor for 28-day mortality. CONCLUSIONS Serum NT-proBNP was significantly correlated with the severity of illness for critically ill patients in PICU. Although high levels of NT-proBNP indicated greater severity, this was not an independent risk factor affecting the prognosis of patients.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoli Luo
- Department of Pediatric Critical Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenhao Lu
- Department of Pediatrics, Nanning First People's Hospital, Nanning, China
| | - Dan Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
14
|
Hepatocardiac or Cardiohepatic Interaction: From Traditional Chinese Medicine to Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655335. [PMID: 33777158 PMCID: PMC7981187 DOI: 10.1155/2021/6655335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
There is a close relationship between the liver and heart based on "zang-xiang theory," "five-element theory," and "five-zang/five-viscus/five-organ correlation theory" in the theoretical system of Traditional Chinese Medicine (TCM). Moreover, with the development of molecular biology, genetics, immunology, and others, the Modern Medicine indicates the existence of the essential interorgan communication between the liver and heart (the heart and liver). Anatomically and physiologically, the liver and heart are connected with each other primarily via "blood circulation." Pathologically, liver diseases can affect the heart; for example, patients with end-stage liver disease (liver failure/cirrhosis) may develop into "cirrhotic cardiomyopathy," and nonalcoholic fatty liver disease (NAFLD) may promote the development of cardiovascular diseases via multiple molecular mechanisms. In contrast, heart diseases can affect the liver, heart failure may lead to cardiogenic hypoxic hepatitis and cardiac cirrhosis, and atrial fibrillation (AF) markedly alters the hepatic gene expression profile and induces AF-related hypercoagulation. The heart can also influence liver metabolism via certain nonsecretory cardiac gene-mediated multiple signals. Moreover, organokines are essential mediators of organ crosstalk, e.g., cardiomyokines link the heart to the liver, while hepatokines link the liver to the heart. Therefore, both TCM and Western Medicine, and both the basic research studies and the clinical practices, all indicate that there exist essential "heart-liver axes" and "liver-heart axes." To investigate the organ interactions between the liver and heart (the heart and liver) will help us broaden and deepen our understanding of the pathogenesis of both liver and heart diseases, thus improving the strategies of prevention and treatment in the future.
Collapse
|
15
|
Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death Dis 2020; 11:783. [PMID: 32951004 PMCID: PMC7502079 DOI: 10.1038/s41419-020-03005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Heart is a multi-cellular organ made up of various cell types interacting with each other. Cardiomyocytes may benefit or suffer from crosstalk with noncardiomyocytes in response to diverse kinds of cardiac stresses. Proteasome dysfunction is a common cardiac stress which causes cardiac proteotoxicity and contributes to cardiac diseases such as heart failure and myocardial infarction. The role of crosstalk between cardiomyocytes and noncardiomyocytes in defense of cardiac proteotoxicity remains unknown. Here, we report a cardiomyocyte-specific survival upon proteasome inhibition in a heterogeneous culture consisting of cardiomyocytes and other three major cardiac cell types. Conversely, cardiomyocyte apoptosis is remarkably induced by proteasome inhibition in a homogeneous culture consisting of a majority of cardiomyocytes, demonstrating an indispensable role of noncardiomyocytes in the prevention of cardiomyocyte apoptosis resulting from proteasome inhibition. We further show that cardiomyocytes express brain natriuretic peptide (BNP) as an extracellular molecule in response to proteasome inhibition. Blockade of BNP receptor on noncardiomyocytes significantly exacerbated the cardiomyocyte apoptosis, indicating a paracrine function of cardiomyocyte-released extracellular BNP in activation of a protective feedback from noncardiomyocytes. Finally, we demonstrate that proteasome inhibition-activated transcriptional up-regulation of BNP in cardiomyocytes was associated with the dissociation of repressor element 1 silencing transcription factor (REST)/ histone deacetylase 1 (HDAC1) repressor complex from BNP gene promoter. Consistently, the induction of BNP could be further augmented by the treatment of HDAC inhibitors. We conclude that the crosstalk between cardiomyocytes and noncardiomyocytes plays a crucial role in the protection of cardiomyocytes from proteotoxicity stress, and identify cardiomyocyte-released BNP as a novel paracrine signaling molecule mediating this crosstalk. These findings provide new insights into the key regulators and cardioprotective mechanism in proteasome dysfunction-related cardiac diseases.
Collapse
|
16
|
Häseli S, Deubel S, Jung T, Grune T, Ott C. Cardiomyocyte Contractility and Autophagy in a Premature Senescence Model of Cardiac Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8141307. [PMID: 32377307 PMCID: PMC7180990 DOI: 10.1155/2020/8141307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Globally, cardiovascular diseases are the leading cause of death in the aging population. While the clinical pathology of the aging heart is thoroughly characterized, underlying molecular mechanisms are still insufficiently clarified. The aim of the present study was to establish an in vitro model system of cardiomyocyte premature senescence, culturing heart muscle cells derived from neonatal C57Bl/6J mice for 21 days. Premature senescence of neonatal cardiac myocytes was induced by prolonged culture time in an oxygen-rich postnatal environment. Age-related changes in cellular function were determined by senescence-associated β-galactosidase activity, increasing presence of cell cycle regulators, such as p16, p53, and p21, accumulation of protein aggregates, and restricted proteolysis in terms of decreasing (macro-)autophagy. Furthermore, the culture system was functionally characterized for alterations in cell morphology and contractility. An increase in cellular size associated with induced expression of atrial natriuretic peptides demonstrated a stress-induced hypertrophic phenotype in neonatal cardiomyocytes. Using the recently developed analytical software tool Myocyter, we were able to show a spatiotemporal constraint in spontaneous contraction behavior during cultivation. Within the present study, the 21-day culture of neonatal cardiomyocytes was defined as a functional model system of premature cardiac senescence to study age-related changes in cardiomyocyte contractility and autophagy.
Collapse
Affiliation(s)
- Steffen Häseli
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal 14558, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin 13357, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal 14558, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal 14558, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin 13357, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal 14558, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin 13357, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg 85764, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
- University of Potsdam, Institute of Nutrition, Nuthetal 14588, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal 14558, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin 13357, Germany
| |
Collapse
|
17
|
Li J, Xu C, Liu Y, Li Y, Du S, Zhang R, Sun Y, Zhang R, Wang Y, Xue H, Ni S, Asiya M, Xue G, Li Y, Shi L, Li D, Pan Z, Zhang Y, Wang Z, Cai B, Wang N, Yang B. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol 2020; 115:9. [PMID: 31900593 DOI: 10.1007/s00395-019-0768-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yining Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuanshi Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sijia Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruijie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuehang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ronghao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongru Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Sha Ni
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mavlikhanova Asiya
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Desheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin, 150081, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
18
|
Peters MMC, Meijs TA, Gathier W, Doevendans PAM, Sluijter JPG, Chamuleau SAJ, Neef K. Follistatin-like 1 in Cardiovascular Disease and Inflammation. Mini Rev Med Chem 2019; 19:1379-1389. [PMID: 30864520 DOI: 10.2174/1389557519666190312161551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Follistatin-like 1 (FSTL1), a secreted glycoprotein, has been shown to participate in regulating developmental processes and to be involved in states of disease and injury. Spatiotemporal regulation and posttranslational modifications contribute to its specific functions and make it an intriguing candidate to study disease mechanisms and potentially develop new therapies. With cardiovascular diseases as the primary cause of death worldwide, clarification of mechanisms underlying cardiac regeneration and revascularization remains essential. Recent findings on FSTL1 in both acute coronary syndrome and heart failure emphasize its potential as a target for cardiac regenerative therapy. With this review, we aim to shed light on the role of FSTL1 specifically in cardiovascular disease and inflammation.
Collapse
Affiliation(s)
- Marijn M C Peters
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Timion A Meijs
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Wouter Gathier
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Pieter A M Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Klaus Neef
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
Lugnier C, Meyer A, Charloux A, Andrès E, Gény B, Talha S. The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. J Clin Med 2019; 8:jcm8101746. [PMID: 31640161 PMCID: PMC6832599 DOI: 10.3390/jcm8101746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Besides pumping, the heart participates in hydro-sodium homeostasis and systemic blood pressure regulation through its endocrine function mainly represented by the large family of natriuretic peptides (NPs), including essentially atrial natriuretic (ANP) and brain natriuretic peptides (BNP). Under normal conditions, these peptides are synthesized in response to atrial cardiomyocyte stretch, increase natriuresis, diuresis, and vascular permeability through binding of the second intracellular messenger’s guanosine 3′,5′-cyclic monophosphate (cGMP) to specific receptors. During heart failure (HF), the beneficial effects of the enhanced cardiac hormones secretion are reduced, in connection with renal resistance to NP. In addition, there is a BNP paradox characterized by a physiological inefficiency of the BNP forms assayed by current methods. In this context, it appears interesting to improve the efficiency of the cardiac natriuretic system by inhibiting cyclic nucleotide phosphodiesterases, responsible for the degradation of cGMP. Recent data support such a therapeutic approach which can improve the quality of life and the prognosis of patients with HF.
Collapse
Affiliation(s)
- Claire Lugnier
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
| | - Alain Meyer
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Anne Charloux
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Emmanuel Andrès
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Internal Medicine and Metabolic Diseases, Medical Clinic B, Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Bernard Gény
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Samy Talha
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| |
Collapse
|
20
|
Aikawa T, Shimada K, Miyauchi K, Miyazaki T, Sai E, Ouchi S, Kadoguchi T, Kunimoto M, Joki Y, Dohi T, Okazaki S, Isoda K, Ohashi K, Murohara T, Ouchi N, Daida H. Associations among circulating levels of follistatin-like 1, clinical parameters, and cardiovascular events in patients undergoing elective percutaneous coronary intervention with drug-eluting stents. PLoS One 2019; 14:e0216297. [PMID: 31034503 PMCID: PMC6488088 DOI: 10.1371/journal.pone.0216297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Follistatin-like 1 (FSTL1) is a glycoprotein secreted by skeletal muscle cells and cardiac myocytes. Previous studies showed that serum FSTL1 concentrations were increased in acute coronary syndrome and chronic heart failure. The aim of this study was to assess the associations among plasma FSTL1 concentration, clinical parameters, and whether FSTL1 concentration could predict cardiovascular events in patients with elective percutaneous coronary intervention (PCI). METHODS AND RESULTS A consecutive series of 410 patients who underwent elective PCI with drug-eluting stents (DES) were enrolled between August 2004 and December 2006 at Juntendo University hospital. We measured plasma FSTL1 levels prior to elective PCI and assessed the association among FSTL1 levels, clinical parameters, and occurrence of major adverse cardiac or cerebrovascular events (MACCE) defined as cardiac death, nonfatal myocardial infarction, unstable angina, stroke, and hospitalization for heart failure. FSTL1 concentration was positively correlated with high-sensitivity C-reactive protein (hsCRP), serum creatinine, and N-terminal pro b-type natriuretic peptide (all P < 0.01). After excluding patients with creatinine clearance < 60 mL/min and hsCRP ≥ 0.2 mg/dL, the remaining 214 were followed for a median of 5.1 years. Twenty (9.3%) patients experienced MACCE. Receiver operating characteristics curve analysis estimated an FSTL1 cutoff of 41.1 ng/mL to predict MACCE occurrence. Kaplan-Meier analysis found a higher MACCE rate in patients with high (≥ 41.1 ng/mL) than with low (< 41.1 ng/mL) FSTL1 (P < 0.01). Multivariate Cox hazard analysis found that high FSTL1 was an independent predictor of MACCE (hazard ratio 4.54, 95% confidence interval: 1.45-20.07, P < 0.01). CONCLUSION High plasma FSTL1 may be a predictor of cardiovascular events in patients who underwent elective PCI with DES, especially with preserved renal function and low hsCRP.
Collapse
Affiliation(s)
- Tatsuro Aikawa
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eiryu Sai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Ouchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuhiro Kunimoto
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Joki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinya Okazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|