1
|
Le Y, Geng MM, Dong BQ, Luo LF, Jiang S, Le Poole IC, Lei TC. Increased splicing of CXCR3 isoform B (CXCR3B) by impaired NRF2 signaling leads to melanocyte apoptosis in active vitiligo. Free Radic Biol Med 2024; 225:687-698. [PMID: 39471971 DOI: 10.1016/j.freeradbiomed.2024.10.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Apoptotic melanocytes (MCs) may release neoantigenic epitopes preceding epidermal infiltration by autoreactive CD8+ T cells in early vitiligo. However, the mechanism by which vitiligo MCs are prone to apoptosis under oxidative stress remains elusive. Pro-apoptotic receptor C-X-C motif chemokine receptor 3 isoform B (CXCR3B) is critical for inducing MC apoptosis in the inflammatory microenvironment of lesional vitiligo skin. Here, we show that C-X-C motif chemokine ligand 10 (CXCL10), a functional ligand for CXCR3B, is upregulated in primary dermal fibroblasts and in CD90+ reticular fibroblasts of vitiligo skin. The number of CXCR3B+ MCs was increased in active vitiligo skin compared with healthy skin and stable vitiligo skin. Mechanistically, impaired nuclear factor erythroid 2-related factor 2 (NRF2) signaling in oxidatively stressed MCs leads to the elevated expression of CXCR3B and increased apoptosis. The overexpression of NRF2 prevents MCs from CXCL10-induced apoptosis through upregulation of pro-survival receptor CXCR3 isoform A (CXCR3A). Overall, MCs expressing CXCR3B are more susceptible to apoptosis. Suppressing CXCR3B could be a promising therapeutic approach to extinguish inflammation in vitiligo skin.
Collapse
Affiliation(s)
- Yue Le
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Meng-Meng Geng
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Northwestern University at Chicago, IL 60611, USA
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Berciano MT, Gatius A, Puente-Bedia A, Rufino-Gómez A, Tarabal O, Rodríguez-Rey JC, Calderó J, Lafarga M, Tapia O. SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:12415. [PMID: 39596480 PMCID: PMC11595111 DOI: 10.3390/ijms252212415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation-contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease.
Collapse
Affiliation(s)
- María T. Berciano
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Alaó Gatius
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Alba Puente-Bedia
- Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain;
| | - Alexis Rufino-Gómez
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| | - Olga Tarabal
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - José C. Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Jordi Calderó
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Miguel Lafarga
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, 39011 Santander, Spain
| | - Olga Tapia
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| |
Collapse
|
3
|
Ruengket P, Roytrakul S, Tongthainan D, Boonnak K, Taruyanon K, Sangkharak B, Fungfuang W. Analysis of the serum proteome profile of wild stump-tailed macaques ( Macaca arctoides) seropositive for Zika virus antibodies in Thailand. Front Vet Sci 2024; 11:1463160. [PMID: 39600882 PMCID: PMC11588686 DOI: 10.3389/fvets.2024.1463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Zika virus (ZIKV) is a member of the Flaviviridae virus family and poses a significant global health concern. ZIKV is transmitted by Aedes mosquitoes, and it has been implicated in various neurological conditions associated with fetal brain development. ZIKV has two transmission cycles: a sylvatic cycle in which nonhuman primates are infected via arboreal mosquito bites, and an interhuman (urban) cycle in which the virus is transmitted among primates by Aedes mosquitoes. ZIKV was first discovered in wild macaques, and the danger posed by the virus is increased due to the close proximity between humans and wild animals in modern society. However, data regarding the extent and role of infection in nonhuman primates are limited. Thus, there is an urgent need for improved surveillance, diagnostic methods, and public health interventions to effectively combat ZIKV transmission and its associated health impacts in Southeast Asia. In this study, we used a proteomics and bioinformatics approach to profile serum proteins in wild stump-tailed macaques seropositive for neutralizing antibodies against ZIKV. A total of 9,532 total proteins were identified, and 338 differentially expressed proteins were identified between naïve and seropositive animals. A total of 52 important proteins were used to construct a serum proteomic profile. These 52 important proteins were associated with immune and inflammatory responses (36.54%), neurological damage (23.08%), viral activities (21.15%), the apoptosis signaling pathway (9.61%), and other pathways (9.61%). Our proteomic profile identified proteins that inhibit the apoptosis pathway, intracellular resource competition with the virus, and neurological damage due to ZIKV and the host immune and defense responses.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, The Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Taruyanon
- Wildlife Conservation Division Protected Areas Regional Office 3, Department of National Parks, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Wildlife Conservation Division, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Barbo M, Glavač D, Jezernik G, Ravnik-Glavač M. MicroRNAs as Biomarkers in Spinal Muscular Atrophy. Biomedicines 2024; 12:2428. [PMID: 39594995 PMCID: PMC11592373 DOI: 10.3390/biomedicines12112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disease caused by the loss of the survival motor neuron (SMN) protein, leading to degeneration of anterior motor neurons and resulting in progressive muscle weakness and atrophy. Given that SMA has a single, well-defined genetic cause, gene-targeted therapies have been developed, aiming to increase SMN production in SMA patients. The SMN protein is likely involved in the synthesis of microRNAs (miRNAs), and dysregulated miRNA expression is increasingly associated with the pathophysiology of SMA. Currently, there is a lack of reliable biomarkers to monitor SMA; therefore, the search for novel SMA biomarkers, including miRNAs, is crucial as reliable tools are needed to track disease progression, predict the response to therapy and understand the different clinical outcomes of available treatments. In this review, we compile data on miRNAs associated with SMA pathogenesis and their potential use as biomarkers. Based on current knowledge, the most frequently deregulated miRNAs between SMA patients and controls, as well as pre- and post-treatment in SMA patients, include miR-1-3p, miR-133a-3p, miR-133b, and miR-206. These findings offer promising possibilities for improving patient classification and monitoring disease progression and response to treatment. Additionally, these findings provide insights into the broader molecular mechanisms and networks of SMA that could inform the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Damjan Glavač
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (D.G.); (G.J.)
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (D.G.); (G.J.)
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Bensoussan F, Costa G, Blanchard A, Vaugier I, Baron S, Essid A, Mbieleu B, Bakayoko A, Deconinck N, Bergounioux J, Zini J. Paradoxical metabolic acidosis after vomiting in children with spinal muscular atrophy: A report of 9 patients. Arch Pediatr 2024; 31:451-454. [PMID: 39332945 DOI: 10.1016/j.arcped.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a hereditary neuromuscular disease that progresses toward restrictive respiratory failure due to muscle paralysis. We observed that SMA patients presented with a specific clinical and laboratory profile, consisting of severe metabolic acidosis following an episode of mild vomiting. This is an unusual, little-known, and life-threatening situation for these patients, as hyperventilation induced by metabolic acidosis can lead to exhaustion and to death by mixed acidosis. OBJECTIVE The aim of our study was to describe this paradoxical acidosis after vomiting in SMA patients and to discuss the physiological basis of this condition. METHODS We conducted a retrospective single-center study reviewing the clinical and laboratory data of SMA patients who were hospitalized in the intensive care unit for severe metabolic acidosis after vomiting. RESULTS Our cohort comprised 11 cases. On arrival, the median pH of the patients was 7.23 with a median bicarbonate concentration of 11.7 mmol/L and almost half of them (45 %) had ketone bodies in the blood and/or urine. The median correction time was 24 h for pH and 48 h for bicarbonate concentrations after receiving intravenous hydration with a glucose solution. CONCLUSIONS We suggest that SMA patients are particularly sensitive to ketoacidosis induced by fasting, even after a few episodes of mild vomiting. Moreover, they have a low buffering capacity due to their severe amyotrophy, which favors metabolic acidosis. They must be quickly hydrated through a glucose-containing solution to avoid exhaustion, mixed acidosis, and death.
Collapse
Affiliation(s)
- Fiona Bensoussan
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France; Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), HUB, Université Libre de Bruxelles, Belgique.
| | - Guillaume Costa
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France; Simone Veil Health Science Center, Université Versailles SQY, Paris-Saclay, France
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Centre d'Investigations Cliniques 1418, Paris, France
| | - Isabelle Vaugier
- Simone Veil Health Science Center, Université Versailles SQY, Paris-Saclay, France
| | - Stéphanie Baron
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Centre d'Investigations Cliniques 1418, Paris, France
| | - Aben Essid
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France
| | - Blaise Mbieleu
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France
| | - Awa Bakayoko
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France; Simone Veil Health Science Center, Université Versailles SQY, Paris-Saclay, France
| | - Nicolas Deconinck
- Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), HUB, Université Libre de Bruxelles, Belgique
| | - Jean Bergounioux
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France; Simone Veil Health Science Center, Université Versailles SQY, Paris-Saclay, France
| | - Justine Zini
- Pediatric Neurology & Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France; Simone Veil Health Science Center, Université Versailles SQY, Paris-Saclay, France
| |
Collapse
|
6
|
Long J, Cui D, Yu C, Meng W. Evaluating the clinical efficacy of a long-read sequencing-based approach for carrier screening of spinal muscular atrophy. Hum Genomics 2024; 18:110. [PMID: 39343938 PMCID: PMC11440943 DOI: 10.1186/s40246-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Spinal muscular atrophy (SMA) is the second most common fatal genetic disease in infancy. It is caused by deletion or intragenic pathogenic variants of the causative gene SMN1, which degenerates anterior horn motor neurons and leads to progressive myasthenia and muscle atrophy. Early treatment improves motor function and prognosis in patients with SMA, but drugs are expensive and do not cure the disease. Therefore, carrier screening seems to be the most effective way to prevent SMA birth defects. In this study, we genetically analyzed 1400 samples using multiplex ligation-dependent probe amplification (MLPA) and quantitative polymerase chain reaction (qPCR), and compared the consistency of the results. We randomly selected 44 samples with consistent MLPA and qPCR results for comprehensive SMA analysis (CASMA) using a long-read sequencing (LRS)-based approach. CASMA results showed 100% consistency, visually and intuitively explained the inconsistency between exons 7 and 8 copy numbers detected by MLPA in 13 samples. A total of 16 samples showed inconsistent MLPA and qPCR results for SMN1 exon 7. CASMA was performed on all samples and the results were consistent with those of resampling for MLPA and qPCR detection. CASMA also detected an additional intragenic variant c.-39A>G in a sample with two copies of SMN1 (RT02). Finally, we detected 23 SMA carriers, with an estimated carrier rate of 1/61 in this cohort. In addition, CASMA identified the "2 + 0" carrier status of SMN1 and SMN2 in a family by analyzing the genotypes of only three samples (parents and one sibling). CASMA has great advantages over MLPA and qPCR assays, and could become a powerful technical support for large-scale screening of SMA.
Collapse
Affiliation(s)
- Ju Long
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Care Hospital, Qinzhou, Guangxi Province, 535099, China.
| | - Di Cui
- Berry Genomics Corporation, Beijing, 102200, China
| | - Chunhui Yu
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Care Hospital, Qinzhou, Guangxi Province, 535099, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing, 102200, China
| |
Collapse
|
7
|
Polverini E, Squeri P, Gherardi V. Effect of E134K pathogenic mutation of SMN protein on SMN-SmD1 interaction, with implication in spinal muscular atrophy: A molecular dynamics study. Int J Biol Macromol 2024; 275:133663. [PMID: 38969036 DOI: 10.1016/j.ijbiomac.2024.133663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Spinal muscular atrophy (SMA) is a disease that results from mutations in the Survival of Motor Neuron (SMN) gene 1, leading to muscle atrophy due to motor neurons degeneration. SMN plays a crucial role in the assembly of spliceosomal small nuclear ribonucleoprotein complexes via binding to the arginine-glycine rich C-terminal tails of Sm proteins recognized by SMN Tudor domain. E134K Tudor mutation, cause of the more severe type I SMA, compromises the SMN-Sm interaction without a perturbation of the domain fold. By molecular dynamics simulations, we investigated the mechanism of Tudor-SmD1 interaction, and the effects on it of E134K mutation. It was observed that E134 is crucial to catch the positive dimethylated arginines (DMRs) of the SmD1 tail that, wrapping around the acidic Tudor surface, enters a central DMR into an aromatic cage. The flexible cage residue Y130 must be blocked from the wrapped tail to assure a stable binding. The charge inversion in E134K mutation causes the loss of a critical anchor point, disfavoring the tail wrapping and leaving Y130 free to swing, leading to DMR detachments and exposition of the C-terminal region of the tail. This could suggest new hypotheses regarding a possible autoimmune response by anti-Sm autoantibodies.
Collapse
Affiliation(s)
- Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Pietro Squeri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Valeria Gherardi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Haque US, Yokota T. Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges. Genes (Basel) 2024; 15:999. [PMID: 39202360 PMCID: PMC11353366 DOI: 10.3390/genes15080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA's broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
9
|
Hatanaka F, Suzuki K, Shojima K, Yu J, Takahashi Y, Sakamoto A, Prieto J, Shokhirev M, Nuñez Delicado E, Rodriguez Esteban C, Izpisua Belmonte JC. Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing. Nat Commun 2024; 15:6191. [PMID: 39048567 PMCID: PMC11269569 DOI: 10.1038/s41467-024-50095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor neurons, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have shown promise in improving motor function and survival, achieving a definitive and long-term correction of SMA's endogenous mutations and phenotypes remains highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, enabling unidirectional DNA knock-in in both dividing and non-dividing cells in vivo. In this study, we demonstrated its utility by correcting an SMA mutation in mice. When combined with Smn1 cDNA supplementation, it exhibited long-term therapeutic benefits in SMA mice. Our observations may provide new avenues for the long-term and efficient treatment of inherited diseases.
Collapse
Affiliation(s)
- Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka, 565-0871, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of General Internal Medicine, Hyogo Medical University School of Medicine, Hyogo, 663-8131, Japan
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Akihisa Sakamoto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Estrella Nuñez Delicado
- Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107, Guadalupe, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Altos Labs, Inc., 5510 Morehouse Dr., Ste. 300, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Akhkiamova M, Polyakov A, Marakhonov A, Voronin S, Saifullina E, Vafina Z, Michalchuk K, Braslavskaya S, Chukhrova A, Ryadninskaya N, Kutsev S, Shchagina O. Rare Variants of the SMN1 Gene Detected during Neonatal Screening. Genes (Basel) 2024; 15:956. [PMID: 39062735 PMCID: PMC11275604 DOI: 10.3390/genes15070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
During the expanded neonatal screening program conducted in 2023, we analyzed samples obtained from 1,227,130 out of 1,256,187 newborns in the Russian Federation in order to detect 5q spinal muscular atrophy (5q SMA). Within the 253-sample risk group formed based on the results of the first screening stage, 5 samples showed a discrepancy between the examination results obtained via various screening methods and quantitative MLPA (used as reference). The discrepancy between the results was caused by the presence of either a c.835-18C>T intronic variant or a c.842G>C p.(Arg281Thr) missense variant in the SMN1 gene, both of which are located in the region complementary to the sequences of annealing probes for ligation and real-time PCR. Three newborns had the c.835-18C>T variant in a compound heterozygous state with a deletion of exons 7-8 of the SMN1 gene, one newborn with two copies of the SMN1 gene had the same variant in a heterozygous state, and one newborn had both variants-c.835-18C>T and c.842G>C p.(Arg281Thr)-in a compound heterozygous state. Additional examination was carried out for these variants, involving segregation analysis in families, carriage analysis in population cohorts, and RNA analysis. Based on the obtained results, according to the ACMG criteria, the c.835-18C>T intronic variant should be classified as likely benign, and the c.842G>C p.(Arg281Thr) missense substitution as a variant of uncertain clinical significance. All five probands are under dynamic monitoring. No 5q SMA symptoms were detected in these newborns neonatally or during a 1-year follow-up period.
Collapse
Affiliation(s)
- Maria Akhkiamova
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Aleksander Polyakov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Andrey Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Sergey Voronin
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Elena Saifullina
- Bashkir State Medical University, Lenin Str., 3, 450008 Ufa, Russia;
| | - Zulfiia Vafina
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, Orenburgskiy Tract Str., 138, 420064 Kazan, Russia;
| | - Kristina Michalchuk
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Svetlana Braslavskaya
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Alena Chukhrova
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Nina Ryadninskaya
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| | - Olga Shchagina
- Research Centre for Medical Genetics, Moskvorechie Str., 1, 115522 Moscow, Russia; (A.P.); (A.M.); (S.V.); (K.M.); (S.B.); (A.C.); (N.R.); (S.K.); (O.S.)
| |
Collapse
|
11
|
Błauciak M, Ubysz J, Pokryszko-Dragan A, Koszewicz M. The Impact of Comorbidities and Motor Impairment on the Quality of Life of Patients with Spinal Muscular Atrophy: A Case-Control Study. J Clin Med 2024; 13:4184. [PMID: 39064224 PMCID: PMC11277901 DOI: 10.3390/jcm13144184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction: Spinal muscular atrophy (SMA) is a genetically determined disease primarily leading to muscle weakness, but now, it is considered a systemic disease with changes in various tissues and organs. In our study, we aimed to compare quality of life (QoL) outcomes in patients with SMA in relation to the degree of motor limitation and comorbidities, mainly internal medicine diseases. Methods: We included 35 adult patients with SMA and 36 healthy volunteers. Thorough medical histories were taken focusing on comorbidities, and neurological examinations incorporating assessments using functional motor scales were performed. QoL was assessed based on the World Health Organization Quality of Life Brief Version (WHOQOL-BREF) questionnaire. Results: SMA patients and controls were comparable in terms of scores in the questionnaire's main domains. SMA patients presented significantly higher levels of satisfaction with their medical care than controls. Patients with more advanced SMA had significantly better scores on certain questions, e.g., those related to health satisfaction or leisure activities. A total of 71.4% of SMA patients had comorbidities, ranging from one to three in individual patients. SMA patients with comorbidities did not show worse QoL. Negative correlations were found between the number of comorbidities in SMA patients and individual questions on the WHOQOL-BREF questionnaire. Conclusions: Patients with SMA were satisfied with their medical care. Better scores on some questions in more advanced SMA may have been due to better adaptation to disease-related limitations. The presence of single comorbidities did not affect QoL, but a higher number of comorbidities negatively correlated with QoL.
Collapse
Affiliation(s)
- Małgorzata Błauciak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.B.); (J.U.); (A.P.-D.)
| | - Jakub Ubysz
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.B.); (J.U.); (A.P.-D.)
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.B.); (J.U.); (A.P.-D.)
| | - Magdalena Koszewicz
- Clinical Neurophysiology Laboratory, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
12
|
Heimdörfer D, Vorleuter A, Eschlböck A, Spathopoulou A, Suarez-Cubero M, Farhan H, Reiterer V, Spanjaard M, Schaaf CP, Huber LA, Kremser L, Sarg B, Edenhofer F, Geley S, de Araujo MEG, Huettenhofer A. Truncated variants of MAGEL2 are involved in the etiologies of the Schaaf-Yang and Prader-Willi syndromes. Am J Hum Genet 2024; 111:1383-1404. [PMID: 38908375 PMCID: PMC11267527 DOI: 10.1016/j.ajhg.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.
Collapse
Affiliation(s)
- David Heimdörfer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alexander Vorleuter
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alexander Eschlböck
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Angeliki Spathopoulou
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Marta Suarez-Cubero
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Hesso Farhan
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Veronika Reiterer
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Melanie Spanjaard
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Frank Edenhofer
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Alexander Huettenhofer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Li Y, Nie H, Xiang P, Shen W, Yan M, Yan C, Su S, Qian L, Liang Y, Tang W, Yang Z, Li Y, Chen Y. Disrupted individual-level morphological brain network in spinal muscular atrophy types 2 and 3. CNS Neurosci Ther 2024; 30:e14804. [PMID: 38887183 PMCID: PMC11183166 DOI: 10.1111/cns.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Spinal muscular atrophy (SMA) is one of the most common monogenic neuromuscular diseases, and the pathogenesis mechanisms, especially the brain network topological properties, remain unknown. This study aimed to use individual-level morphological brain network analysis to explore the brain neural network mechanisms in SMA. METHODS Individual-level gray matter (GM) networks were constructed by estimating the interregional similarity of GM volume distribution using both Kullback-Leibler divergence-based similarity (KLDs) and Jesen-Shannon divergence-based similarity (JSDs) measurements based on Automated Anatomical Labeling 116 and Hammersmith 83 atlases for 38 individuals with SMA types 2 and 3 and 38 age- and sex-matched healthy controls (HCs). The topological properties were analyzed by the graph theory approach and compared between groups by a nonparametric permutation test. Additionally, correlation analysis was used to assess the associations between altered topological metrics and clinical characteristics. RESULTS Compared with HCs, although global network topology remained preserved in individuals with SMA, brain regions with altered nodal properties mainly involved the right olfactory gyrus, right insula, bilateral parahippocampal gyrus, right amygdala, right thalamus, left superior temporal gyrus, left cerebellar lobule IV-V, bilateral cerebellar lobule VI, right cerebellar lobule VII, and vermis VII and IX. Further correlation analysis showed that the nodal degree of the right cerebellar lobule VII was positively correlated with the disease duration, and the right amygdala was negatively correlated with the Hammersmith Functional Motor Scale Expanded (HFMSE) scores. CONCLUSIONS Our findings demonstrated that topological reorganization may prioritize global properties over nodal properties, and disrupted topological properties in the cortical-limbic-cerebellum circuit in SMA may help to further understand the network pathogenesis underlying SMA.
Collapse
Affiliation(s)
- Yufen Li
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huirong Nie
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Pei Xiang
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wanqing Shen
- Department of Interventional OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Mengzhen Yan
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Cui Yan
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shu Su
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Long Qian
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Yujian Liang
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wen Tang
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyun Yang
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yijuan Li
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yingqian Chen
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
Harding ER, Kanner CH, Pasternak A, Glanzman AM, Dunaway Young S, Rao AK, McDermott MP, Zolkipli-Cunningham Z, Day JW, Finkel RS, Darras BT, De Vivo DC, Montes J. Beyond Contractures in Spinal Muscular Atrophy: Identifying Lower-Limb Joint Hypermobility. J Clin Med 2024; 13:2634. [PMID: 38731167 PMCID: PMC11084694 DOI: 10.3390/jcm13092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The natural history of spinal muscular atrophy (SMA) is well understood, with progressive muscle weakness resulting in declines in function. The development of contractures is common and negatively impacts function. Clinically, joint hypermobility (JH) is observed but is poorly described, and its relationship with function is unknown. Methods: Lower-limb ROM (range of motion) assessments of extension and flexion at the hip, knee, and ankle were performed. ROMs exceeding the published norms were included in the analysis. The functional assessments performed included the six-minute walk test (6 MWT) and the Hammersmith Functional Motor Scale-Expanded (HFMSE). Results: Of the 143 participants, 86% (n = 123) had at least one ROM measure that was hypermobile, and 22% (n = 32) had three or more. The HFMSE scores were inversely correlated with hip extension JH (r = -0.60, p = 0.21; n = 6) and positively correlated with knee flexion JH (r = 0.24, p = 0.02, n = 89). There was a moderate, inverse relationship between the 6 MWT distance and ankle plantar flexion JH (r = -0.73, p = 0.002; n = 15). Conclusions: JH was identified in nearly all participants in at least one joint in this study. Hip extension, knee flexion and ankle plantar flexion JH was associated with function. A further understanding of the trajectory of lower-limb joint ROM is needed to improve future rehabilitation strategies.
Collapse
Affiliation(s)
- Elizabeth R. Harding
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA (A.K.R.); (J.M.)
| | - Cara H. Kanner
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA (A.K.R.); (J.M.)
| | - Amy Pasternak
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (B.T.D.)
- Department of Physical and Occupational Therapy Services, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Allan M. Glanzman
- Department of Physical Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Sally Dunaway Young
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94304, USA; (S.D.Y.); (J.W.D.)
| | - Ashwini K. Rao
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA (A.K.R.); (J.M.)
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA;
| | | | - John W. Day
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94304, USA; (S.D.Y.); (J.W.D.)
| | - Richard S. Finkel
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Basil T. Darras
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (B.T.D.)
| | - Darryl C. De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA (A.K.R.); (J.M.)
| |
Collapse
|
15
|
Hemandhar Kumar S, Tapken I, Kuhn D, Claus P, Jung K. bootGSEA: a bootstrap and rank aggregation pipeline for multi-study and multi-omics enrichment analyses. FRONTIERS IN BIOINFORMATICS 2024; 4:1380928. [PMID: 38633435 PMCID: PMC11021641 DOI: 10.3389/fbinf.2024.1380928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Gene set enrichment analysis (GSEA) subsequent to differential expression analysis is a standard step in transcriptomics and proteomics data analysis. Although many tools for this step are available, the results are often difficult to reproduce because set annotations can change in the databases, that is, new features can be added or existing features can be removed. Finally, such changes in set compositions can have an impact on biological interpretation. Methods: We present bootGSEA, a novel computational pipeline, to study the robustness of GSEA. By repeating GSEA based on bootstrap samples, the variability and robustness of results can be studied. In our pipeline, not all genes or proteins are involved in the different bootstrap replicates of the analyses. Finally, we aggregate the ranks from the bootstrap replicates to obtain a score per gene set that shows whether it gains or loses evidence compared to the ranking of the standard GSEA. Rank aggregation is also used to combine GSEA results from different omics levels or from multiple independent studies at the same omics level. Results: By applying our approach to six independent cancer transcriptomics datasets, we showed that bootstrap GSEA can aid in the selection of more robust enriched gene sets. Additionally, we applied our approach to paired transcriptomics and proteomics data obtained from a mouse model of spinal muscular atrophy (SMA), a neurodegenerative and neurodevelopmental disease associated with multi-system involvement. After obtaining a robust ranking at both omics levels, both ranking lists were combined to aggregate the findings from the transcriptomics and proteomics results. Furthermore, we constructed the new R-package "bootGSEA," which implements the proposed methods and provides graphical views of the findings. Bootstrap-based GSEA was able in the example datasets to identify gene or protein sets that were less robust when the set composition changed during bootstrap analysis. Discussion: The rank aggregation step was useful for combining bootstrap results and making them comparable to the original findings on the single-omics level or for combining findings from multiple different omics levels.
Collapse
Affiliation(s)
- Shamini Hemandhar Kumar
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
- Clinic for Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
16
|
Cottam NC, Harrington MA, Schork PM, Sun J. No significant sex differences in incidence or phenotype for the SMNΔ7 mouse model of spinal muscular atrophy. Neuromuscul Disord 2024; 37:13-22. [PMID: 38493520 PMCID: PMC11031329 DOI: 10.1016/j.nmd.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.
Collapse
Affiliation(s)
- Nicholas C Cottam
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Pamela M Schork
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Jianli Sun
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
17
|
Gonzalez D, Vásquez-Doorman C, Luna A, Allende ML. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. Int J Mol Sci 2024; 25:1962. [PMID: 38396640 PMCID: PMC10888324 DOI: 10.3390/ijms25041962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by degeneration of lower motor neurons (LMNs), causing muscle weakness, atrophy, and paralysis. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and can be classified into four subgroups, depending on its severity. Even though the genetic component of SMA is well known, the precise mechanisms underlying its pathophysiology remain elusive. Thus far, there are three FDA-approved drugs for treating SMA. While these treatments have shown promising results, their costs are extremely high and unaffordable for most patients. Thus, more efforts are needed in order to identify novel therapeutic targets. In this context, zebrafish (Danio rerio) stands out as an ideal animal model for investigating neurodegenerative diseases like SMA. Its well-defined motor neuron circuits and straightforward neuromuscular structure offer distinct advantages. The zebrafish's suitability arises from its low-cost genetic manipulation and optical transparency exhibited during larval stages, which facilitates in vivo microscopy. This review explores advancements in SMA research over the past two decades, beginning with the creation of the first zebrafish model. Our review focuses on the findings using different SMA zebrafish models generated to date, including potential therapeutic targets such as U snRNPs, Etv5b, PLS3, CORO1C, Pgrn, Cpg15, Uba1, Necdin, and Pgk1, among others. Lastly, we conclude our review by emphasizing the future perspectives in the field, namely exploiting zebrafish capacity for high-throughput screening. Zebrafish, with its unique attributes, proves to be an ideal model for studying motor neuron diseases and unraveling the complexity of neuromuscular defects.
Collapse
Affiliation(s)
- David Gonzalez
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Constanza Vásquez-Doorman
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Adolfo Luna
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago 8370854, RM, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, RM, Chile
| |
Collapse
|
18
|
Sun Y, Ma S, Xiao J, Wu J, Wu Y, Shi X, Li S, Feng L, Chen S. Preconception or prenatal acceptance of SMN1 gene carrier screening and carrier rate of spinal muscular atrophy: a retrospective study in 18,818 reproductive age women in Wuhan area of China. J Assist Reprod Genet 2024; 41:127-133. [PMID: 37991656 PMCID: PMC10789693 DOI: 10.1007/s10815-023-02991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is an autosomal recessive disorder mainly affecting the neuromuscular system, which seriously threatens the life and health of patients. But few studies have reported the acceptance rate of SMA gene screening and SMA carrier rate in China. The present study aimed to clarify the two issues in China through a retrospective analysis of 18,818 reproductive age women in Wuhan area of China. METHODS The copy number (CN) of exons 7 and 8 in survival motor neuron 1 (SMN1) gene was detected by real-time quantitative PCR, and the results were verified by multiplex ligation-dependent probe amplification. RESULTS Carrier screening was offered to 44,953 women of childbearing age in our medical center from March, 2018, to February, 2022, of whom 18,818 were enrolled in the program. A total of 336 women were identified as carriers (1.73%; 326/18,808; without fertility history of the children with SMA). Among 18,818 reproductive age women, 286 spouses (85.12%; 286/336) were successfully recalled for screening. The results showed 17 couples at high risk of having children with SMA, of whom prenatal diagnosis was implemented in 11, and 6 fetuses were identified with SMA. All the 5 pregnant women bearing the 6 SMA fetuses chose to terminate the pregnancy by artificial abortion. CONCLUSION Reproductive age women and their spouses in Wuhan area showed a positive attitude toward general screening for SMA carriers. Given the high early mortality of children with SMA, screening for SMA carriers in women of reproductive age is necessary and feasible.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Songyan Ma
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, Hubei, China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianli Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shufang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Pascual-Morena C, Martínez-Vizcaíno V, Cavero-Redondo I, Martínez-García I, Moreno-Herráiz N, Álvarez-Bueno C, Saz-Lara A. Efficacy of risdiplam in spinal muscular atrophy: A systematic review and meta-analysis. Pharmacotherapy 2024; 44:97-105. [PMID: 37574770 DOI: 10.1002/phar.2866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
This systematic review and meta-analysis aimed to assess the efficacy and safety of risdiplam on motor and respiratory function in spinal muscular atrophy (SMA). We systematically searched Medline, Scopus, Web of Science, and the Cochrane Library from inception to March 2023. We included pre-post studies that determined the effect of risdiplam on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND), the 32-item Motor Function Measure (MFM32), the Revised Upper Limb Module (RULM), the Hammersmith Functional Motor Scale - Expanded (HFMSE), respiratory function, and the proportion of risdiplam-related adverse events in a population with SMA (phenotypes 1 and 2/3). Meta-analyses were also performed where possible. Eleven studies were included. After 12 months of treatment, 57% of participants with SMA1 achieved a CHOP-INTEND score ≥ 40 points, and more than half were able to feed orally and had head control. In SMA2/3, MFM32, RULM, and HFMSE increased by 2.09 (1.17, 3.01), 1.73 (1.25, 2.20), and 1.00 (0.40, 1.59) points, respectively. Efficacy on respiratory function in SMA2/3 was inconsistent. Finally, 16% of participants experienced adverse events, but serious adverse events could not be quantified due to a lack of cases. The limited available evidence suggests that risdiplam is an effective and safe drug for the treatment of SMA. In addition, long-term clinical benefit may be partly determined by the stage of disease at which treatment is initiated.
Collapse
Affiliation(s)
- Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Iván Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Irene Martínez-García
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
| | - Nerea Moreno-Herráiz
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
- Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla - La Mancha, Cuenca, Spain
| |
Collapse
|
20
|
Doyle JJ, Parker JA. Genetic Interactions of Progranulin Across the ALS-FTD Spectrum and Beyond. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000304. [PMID: 38188422 PMCID: PMC10767572 DOI: 10.17912/micropub.biology.000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/08/2021] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Progranulin (PGRN) is a growth factor in which mutations are one of the leading causes of frontotemporal dementia (FTD), and has been implicated in an assortment of neurodegenerative diseases. Conversely, higher levels of the protein have shown potential as a general neuronal protective factor. While examining its neuroprotective applications on a broader scale would be unfeasible in mammalian models, we turned to the nematode C. elegans to map the interactions of PGRN across multiple genetic models of neurodegenerative diseases. Our results indicate that while the overexpression of PGRN appears to be protective across all models tested, the loss of PGRN exacerbated the disease phenotypes of all but three of the models tested. Given the ease of genetic analysis in nematodes, we propose this model organism as an efficient tool to build a comprehensive map of PGRN's genetic interactions.
Collapse
Affiliation(s)
- James J. Doyle
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications, RI-MUHC, Montreal, McGill, Canada
| | - J Alex Parker
- CRCHUM and Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Valsecchi V, Errico F, Bassareo V, Marino C, Nuzzo T, Brancaccio P, Laudati G, Casamassa A, Grimaldi M, D'Amico A, Carta M, Bertini E, Pignataro G, D'Ursi AM, Usiello A. SMN deficiency perturbs monoamine neurotransmitter metabolism in spinal muscular atrophy. Commun Biol 2023; 6:1155. [PMID: 37957344 PMCID: PMC10643621 DOI: 10.1038/s42003-023-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055, Portici, Italy
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| |
Collapse
|
22
|
Qian X, Li J, Bian S, Zhu D, Guo Q, Bian F, Jiang G. SMN haploinsufficiency promotes ischemia/ reperfusion-induced AKI-to-CKD transition by endoplasmic reticulum stress activation. FASEB J 2023; 37:e23276. [PMID: 37878291 DOI: 10.1096/fj.202300754r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes that represent a global public health challenge. Here, we identified a specific role of survival of motor neuron (SMN) in ischemia/reperfusion (I/R)-induced kidney injury and progression of CKD. SMN was an essential protein in all cell type and was reported to play important roles in multiple fundamental cellular homeostatic pathways. However, the function of SMN in experimental models of I/R-induced kidney fibrosis has not extensively studied. Genetic ablation of SMN or small interfering RNA-base knockdown of SMN expression aggravated the tubular injury and interstitial fibrosis. Administration of scAAV9-CB-SMN or epithelial cell overexpression of SMN reduced I/R-induced kidney dysfunction and attenuated AKI-to-CKD transition, indicating that SMN is vital for the preservation and recovery of tubular phenotype. Our data showed that the endoplasmic reticulum stress (ERS) induced by I/R was persistent and became progressively more severe in the kidney without SMN. On the contrary, overexpression of SMN prevented against I/R-induced ERS and tubular cell damage. In summary, our data collectively substantiate a critical role of SMN in regulating the ERS activation and phenotype of AKI-to-CKD transition that may contribute to renal pathology during injury and repair.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Jingyang Li
- Department of Pediatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Bian
- Student/Intern, Emory University, Atlanta, Georgia, USA
| | - Dongdong Zhu
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Qin Guo
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fan Bian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
23
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
24
|
Votsi C, Koutsou P, Ververis A, Georghiou A, Nicolaou P, Tanteles G, Christodoulou K. Spinal muscular atrophy type I associated with a novel SMN1 splicing variant that disrupts the expression of the functional transcript. Front Neurol 2023; 14:1241195. [PMID: 37799281 PMCID: PMC10548546 DOI: 10.3389/fneur.2023.1241195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA. Methods MLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis. Results The novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed. Discussion We verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.
Collapse
Affiliation(s)
- Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pantelitsa Koutsou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonis Ververis
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anthi Georghiou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Tanteles
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
25
|
Thimm A, Brakemeier S, Dag M, Munoz Rosales J, Stolte B, Kleinschnitz C, Stettner M, Hagenacker T. Corneal confocal microscopy reveals small nerve fibre loss correlating with motor function in adult spinal muscular atrophy. Eur J Neurol 2023; 30:2821-2827. [PMID: 37159488 DOI: 10.1111/ene.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND 5q Spinal muscular atrophy (SMA) is a progressive, inherited, and severely disabling - yet treatable - motor neuron disease. Although treatment options have evolved in recent years, biomarkers for treatment monitoring and prognosis prediction remain elusive. Here, we investigated the utility of corneal confocal microscopy (CCM), a non-invasive imaging technique to quantify small corneal nerve fibres in vivo, as a diagnostic tool in adult SMA. METHODS In this cross-sectional study, 19 patients with SMA type 3 and 19 healthy controls underwent CCM to measure corneal nerve fibre density (CNFD), corneal nerve fibre length (CNFL), and corneal nerve branch density (CNBD), as well as corneal immune cell infiltration. Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM) scores and a 6-Minute Walk Test (6MWT) were conducted to explore any correlation between CCM findings and motor function. RESULTS Corneal nerve fibre parameters were decreased in SMA patients versus healthy controls (CNFD: p = 0.030; CNFL: p = 0.013; CNBD: p = 0.020) in the absence of relevant immune cell infiltration. CNFD and CNFL correlated with HFMSE scores (CNFD: r = 0.492, p = 0.038; CNFL: r = 0.484, p = 0.042) and distance covered in the 6MWT (CNFD: r = 0.502, p = 0.042; CNFL: r = 0.553, p = 0.023). CONCLUSIONS Corneal confocal microscopy CCM reveals sensory neurodegeneration in SMA, thereby supporting a multisystem view of the disorder. Subclinical small nerve fibre damage correlated with motor function. Thus, CCM may be ideally suited for treatment monitoring and prognosis.
Collapse
Affiliation(s)
- Andreas Thimm
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Merve Dag
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Juan Munoz Rosales
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| |
Collapse
|
26
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
27
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
29
|
Babić M, Banović M, Berečić I, Banić T, Babić Leko M, Ulamec M, Junaković A, Kopić J, Sertić J, Barišić N, Šimić G. Molecular Biomarkers for the Diagnosis, Prognosis, and Pharmacodynamics of Spinal Muscular Atrophy. J Clin Med 2023; 12:5060. [PMID: 37568462 PMCID: PMC10419842 DOI: 10.3390/jcm12155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive degenerative illness that affects 1 in every 6 to 11,000 live births. This autosomal recessive disorder is caused by homozygous deletion or mutation of the SMN1 gene (survival motor neuron). As a backup, the SMN1 gene has the SMN2 gene, which produces only 10% of the functional SMN protein. Nusinersen and risdiplam, the first FDA-approved medications, act as SMN2 pre-mRNA splicing modifiers and enhance the quantity of SMN protein produced by this gene. The emergence of new therapies for SMA has increased the demand for good prognostic and pharmacodynamic (response) biomarkers in SMA. This article discusses current molecular diagnostic, prognostic, and pharmacodynamic biomarkers that could be assessed in SMA patients' body fluids. Although various proteomic, genetic, and epigenetic biomarkers have been explored in SMA patients, more research is needed to uncover new prognostic and pharmacodynamic biomarkers (or a combination of biomarkers).
Collapse
Affiliation(s)
- Marija Babić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tea Banić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Department of Pathology, University Clinical Hospital Sestre Milosrdnice Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jadranka Sertić
- Department of Medical Chemistry and Biochemistry, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Niri F, Nicholls J, Baptista Wyatt K, Walker C, Price T, Kelln R, Hume S, Parboosingh J, Lilley M, Kolski H, Ridsdale R, Muranyi A, Mah JK, Bulman DE. Alberta Spinal Muscular Atrophy Newborn Screening-Results from Year 1 Pilot Project. Int J Neonatal Screen 2023; 9:42. [PMID: 37606479 PMCID: PMC10443376 DOI: 10.3390/ijns9030042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by biallelic pathogenic/likely pathogenic variants of the survival motor neuron 1 (SMN1) gene. Early diagnosis via newborn screening (NBS) and pre-symptomatic treatment are essential to optimize health outcomes for affected individuals. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay using dried blood spot (DBS) samples for the detection of homozygous absence of exon 7 of the SMN1 gene. Newborns who screened positive were seen urgently for clinical evaluation. Confirmatory testing by multiplex ligation-dependent probe amplification (MLPA) revealed SMN1 and SMN2 gene copy numbers. Six newborns had abnormal screen results among 47,005 newborns screened during the first year and five were subsequently confirmed to have SMA. Four of the infants received SMN1 gene replacement therapy under 30 days of age. One infant received an SMN2 splicing modulator due to high maternally transferred AAV9 neutralizing antibodies (NAb), followed by gene therapy at 3 months of age when the NAb returned negative in the infant. Early data show that all five infants made excellent developmental progress. Based on one year of data, the incidence of SMA in Alberta was estimated to be 1 per 9401 live births.
Collapse
Affiliation(s)
- Farshad Niri
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jessie Nicholls
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kelly Baptista Wyatt
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Christine Walker
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
| | - Tiffany Price
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Rhonda Kelln
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stacey Hume
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC V6H 3N1, Canada
| | - Jillian Parboosingh
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Margaret Lilley
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hanna Kolski
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Ross Ridsdale
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Andrew Muranyi
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jean K. Mah
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Dennis E. Bulman
- Alberta Newborn Screening Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
31
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
32
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Nakevska Z, Yokota T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur J Cell Biol 2023; 102:151326. [PMID: 37295266 DOI: 10.1016/j.ejcb.2023.151326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal muscular atrophy (SMA), the most common genetic cause of infantile death, is caused by a mutation in the survival of motor neuron 1 gene (SMN1), leading to the death of motor neurons and progressive muscle weakness. SMN1 normally produces an essential protein called SMN. Although humans possess a paralogous gene called SMN2, ∼90% of the SMN it produces is non-functional. This is due to a mutation in SMN2 that causes the skipping of a required exon during splicing of the pre-mRNA. The first treatment for SMA, nusinersen (brand name Spinraza), was approved by the FDA in 2016 and by the EMU in 2017. Nusinersen is an antisense oligonucleotide-based therapy that alters the splicing of SMN2 to make functional full-length SMN protein. Despite the recent advancements in antisense oligonucleotide therapy and SMA treatment development, nusinersen is faced with a multitude of challenges, such as intracellular and systemic delivery. In recent years, the use of peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) in antisense therapy has gained interest. These are antisense oligonucleotides conjugated to cell-penetrating peptides such as Pips and DG9, and they have the potential to address the challenges associated with delivery. This review focuses on the historic milestones, development, current challenges, and future perspectives of antisense therapy for SMA.
Collapse
Affiliation(s)
- Zorica Nakevska
- Department of Biological Sciences, Faculty of Science, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada.
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton AB T6G 2H7, Canada.
| |
Collapse
|
34
|
Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, Kim SS, Fuentes-Moliz A, Wang X, Feng Z, Sera F, Takeda T, Homma S, Ko CP, Tabares L, Ebert AD, Rich MM, Monani UR. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023; 111:1423-1439.e4. [PMID: 36863345 PMCID: PMC10164130 DOI: 10.1016/j.neuron.2023.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Narendra N Jha
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Tomoyuki Awano
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Charlotte Caine
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Kishore Gollapalli
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, New York, NY, USA
| | - Andrea Fuentes-Moliz
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fusako Sera
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taishi Takeda
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Umrao R Monani
- Department of Neurology, New York, NY, USA; Department of Pathology & Cell Biology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA; Colleen Giblin Research Laboratory, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
35
|
Schmitt LI, David C, Steffen R, Hezel S, Roos A, Schara-Schmidt U, Kleinschnitz C, Leo M, Hagenacker T. Spinal astrocyte dysfunction drives motor neuron loss in late-onset spinal muscular atrophy. Acta Neuropathol 2023; 145:611-635. [PMID: 36930296 PMCID: PMC10119066 DOI: 10.1007/s00401-023-02554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder caused by a loss of the survival of motor neuron 1 (SMN1) gene, resulting in a loss of spinal motor neurons (MNs), leading to muscle weakness and wasting. The pathogenesis of MN loss in SMA and the selective vulnerability in different cellular populations are not fully understood. To investigate the role of spinal astrocytes in the pathogenesis of late-onset SMA, we used a mouse model in addition to in vitro approaches. Immunostaining, Western blot analysis, small interfering ribonucleic acid (siRNA) transfections, functional assays, enzyme-linked immunosorbent assay (ELISA), behavioral tests, and electrophysiological measurements were performed. Early activation of spinal astrocytes and a reduction of the excitatory amino acid transporter 1 (EAAT1) on postnatal day (P) 20 preceded the loss of spinal MNs in SMA mice occurring on P42. EAAT1 reduction resulted in elevated glutamate levels in the spinal cord of SMA mice at P20 and P42. SMA-like astrocytes generated by siRNA and an ex vivo model of glutamate excitotoxicity involving organotypic spinal cord slice cultures revealed the critical role of glutamate homeostasis in the degeneration of MNs. The pre-emptive administration of arundic acid (AA), as an inhibitor of astrocyte activation, to SMA mice prior to the loss of motor neurons (P28) resulted in elevated EAAT1 protein levels compared to vehicle-treated SMA mice and prevented the increase of glutamate in the spinal cord and the loss of spinal MNs. Furthermore, AA preserved motor functions during behavioral experiments, the electrophysiological properties, and muscle alteration of SMA mice. In a translational approach, we transfected healthy human fibroblasts with SMN1 siRNA, resulting in reduced EAAT1 expression and reduced uptake but increased glutamate release. These findings were verified by detecting elevated glutamate levels and reduced levels of EAAT1 in cerebrospinal fluid of untreated SMA type 2 and 3 patients. In addition, glutamate was elevated in serum samples, while EAAT1 was not detectable. Our data give evidence for the crucial role of spinal astrocytes in the pathogenesis of late-onset SMA, a potential driving force for MN loss by glutamate excitotoxicity caused by EAAT1 reduction as an early pathophysiological event. Furthermore, our study introduces EAAT1 as a potential therapeutic target for additional SMN-independent therapy strategies to complement SMN-enhancing drugs.
Collapse
Affiliation(s)
- Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Christina David
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rebecca Steffen
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Stefanie Hezel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Roos
- Department of Pediatrics 1, Division of Neuropediatrics, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatrics 1, Division of Neuropediatrics, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
36
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
37
|
Nancy M, Andrea OC, Tarannum B, Maryam O. Brain Magnetic Resonance Imaging (MRI) in Spinal Muscular Atrophy: A Scoping Review. J Neuromuscul Dis 2023:JND221567. [PMID: 37125560 DOI: 10.3233/jnd-221567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND 5q Spinal Muscular Atrophy (SMA) is a prototypical lower motor neuron disorder. However, the characteristic early motor impairment raises the question on the scope of brain involvement with implications for further investigations on the brain as a potential therapeutic target. OBJECTIVE To review changes across the SMA clinical spectrum reported on brain magnetic resonance imaging (MRI). METHODS We conducted a scoping review of existing literature on PubMed and EMBASE. Two reviewers searched and retrieved relevant articles on magnetic resonance brain imaging in individuals with SMA censoring to April 2022. Full-text articles published in peer-reviewed journals or abstracts accepted to conferences in English and French were included. RESULTS Twelve articles were identified describing a total of 39 patients [age range: 11 days to 41 years old, type 0 (n = 5), type 1 (n = 4), type 2 (n = 2), type 3 (n = 22), type 4 (n = 6)]. All reported structural changes and did not explore other MRI modalities. In individuals with infantile onset SMA, cortical and subcortical brain abnormalities in white matter, basal ganglia, thalamus, hippocampus, and high intensity areas around lateral ventricles and thalami were reported over time. In individuals with later-onset SMA, reduced cerebellar and lobular volume were observed as well as increased grey matter density in motor areas. CONCLUSIONS Limited data on brain imaging in SMA highlights both cortical and subcortical involvement in SMA, supporting the hypothesis that changes are not restricted to lower motor neuron pathways. Further studies are needed to determine the extent and prevalence of structural and functional brain changes across SMA types.
Collapse
Affiliation(s)
- Mugisha Nancy
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Oliveira-Carneiro Andrea
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Behlim Tarannum
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Oskoui Maryam
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Departments of Pediatrics and Neurology Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380:eadg6518. [PMID: 36996170 PMCID: PMC10270003 DOI: 10.1126/science.adg6518] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
Collapse
Affiliation(s)
- Mandana Arbab
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kaitlyn M. Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anton J. Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michelle F. Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan M. Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Max W. Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center and RNA Therapeutics Institute, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Arthur H. M. Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Ogbonmide T, Rathore R, Rangrej SB, Hutchinson S, Lewis M, Ojilere S, Carvalho V, Kelly I. Gene Therapy for Spinal Muscular Atrophy (SMA): A Review of Current Challenges and Safety Considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus 2023; 15:e36197. [PMID: 37065340 PMCID: PMC10104684 DOI: 10.7759/cureus.36197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a genetic disease that causes weakness and wasting in the voluntary muscles of infants and children. SMA has been the leading inherited cause of infant death. More specifically, SMA is caused by the absence of the SMN1 gene. In May 2019, the Food and Drug Administration (FDA) approved onasemnogene abeparvovec, SMN1 gene replacement therapy, for all children with SMA younger than two years of age, without end-stage weakness. The objective of the study is to review the safety and efficacy of a novel gene therapy, onasemnogene abeparvovec (Zolgensma), for SMA and assess current challenges for gene therapy. For this, we have conducted a literature search on PubMed, MEDLINE, and Ovid (2019 to 2022) in the English language using the terms SMA, onasemnogene, and gene therapy. The search included articles, websites, and published papers from reputable health organizations, hospitals, and global organizations dedicated to bringing awareness to Spinal Muscular Atrophy. We found the first gene therapy for SMA to be onasemnogene, directly providing the survival motor neuron 1 (SMN1) gene to produce the survival motor neuron (SMN) protein. Onasemnogene is approved by the Food and Drug Administration and has the added benefit of being a one-time dose. On the downside, a major side effect of this treatment is hepatotoxicity. There is substantial evidence that the efficacy of therapy is increased when administered early to children under three months of age. Therefore, we concluded that onasemnogene appears to be an efficacious therapy for younger pediatric patients with SMA type 1. Drug cost and potential hepatotoxicity are major concerns. Long-term benefits and risks have not been determined, but it is more cost-effective and requires less time of treatment compared to the other used drug, nusinersen. Therefore, the combined safety, cost, and effectiveness of onasemnogene abeparvovec make it a reliable treatment option for treating SMA Type 1.
Collapse
|
40
|
Merjane J, Chung R, Patani R, Lisowski L. Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno-associated viral vectors. Med Res Rev 2023. [PMID: 36786126 DOI: 10.1002/med.21937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.
Collapse
Affiliation(s)
- Jessica Merjane
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
41
|
Gabanella F, Onori A, Pisani C, Fiore M, Ferraguti G, Colizza A, de Vincentiis M, Ceccanti M, Inghilleri M, Corbi N, Passananti C, Di Certo MG. SMN Deficiency Destabilizes ABCA1 Expression in Human Fibroblasts: Novel Insights in Pathophysiology of Spinal Muscular Atrophy. Int J Mol Sci 2023; 24:ijms24032916. [PMID: 36769246 PMCID: PMC9917534 DOI: 10.3390/ijms24032916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The deficiency of survival motor neuron protein (SMN) causes spinal muscular atrophy (SMA), a rare neuromuscular disease that affects different organs. SMN is a key player in RNA metabolism regulation. An intriguing aspect of SMN function is its relationship with plasma membrane-associated proteins. Here, we provide a first demonstration that SMN affects the ATP-binding cassette transporter A1, (ABCA1), a membrane protein critically involved in cholesterol homeostasis. In human fibroblasts, we showed that SMN associates to ABCA1 mRNA, and impacts its subcellular distribution. Consistent with the central role of ABCA1 in the efflux of free cholesterol from cells, we observed a cholesterol accumulation in SMN-depleted human fibroblasts. These results were also confirmed in SMA type I patient-derived fibroblasts. These findings not only validate the intimate connection between SMN and plasma membrane-associated proteins, but also highlight a contribution of dysregulated cholesterol efflux in SMA pathophysiology.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (F.G.); (M.G.D.C.)
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Ceccanti
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Maurizio Inghilleri
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (F.G.); (M.G.D.C.)
| |
Collapse
|
42
|
Pascual-Morena C, Cavero-Redondo I, Lucerón-Lucas-Torres M, Martínez-García I, Rodríguez-Gutiérrez E, Martínez-Vizcaíno V. Onasemnogene Abeparvovec in Type 1 Spinal Muscular Atrophy: A Systematic Review and Meta-Analysis. Hum Gene Ther 2023; 34:129-138. [PMID: 36136906 DOI: 10.1089/hum.2022.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
One of the latest approved therapies for spinal muscular atrophy (SMA) is onasemnogene abeparvovec, which transduces motor neurons with the survival of motor neuron gene. The aim of this meta-analysis was to estimate the effect of onasemnogene abeparvovec on motor function in participants with type 1 SMA. Medline, Web of Science, Scopus, and Cochrane Library were searched for studies published from inception to August 2022. Pre-post clinical trials and observational studies determining the effect of onasemnogene abeparvovec on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) score or motor milestones (i.e., head control, sit unassisted, feed orally, not use permanent ventilatory support, crawl, stand alone, and walk alone) in participants with type 1 SMA were included. Continuous outcomes (i.e., CHOP-INTEND score) were expressed as pre-post mean difference and 95% confidence interval (CI), while the proportion of participants who achieved >40, >50, and >58/60 points on the CHOP-INTEND and the achievement of the motor milestones were expressed as proportions and 95% CI. A random effects meta-analysis was conducted on each outcome, and the baseline CHOP-INTEND score was considered a covariate. Eleven studies were included in the systematic review, and four were included in the meta-analyses. Onasemnogene abeparvovec improved CHOP-INTEND scores by 11.06 (9.47 to 12.65) and 14.14 (12.42 to 15.86) points at 3 and 6 months postinfusion, respectively. Moreover, 87%, 51%, and 12% achieved CHOP-INTEND scores of >40, >50, and >58/60 points, respectively. However, this proportion increased to 100% in presymptomatic participants with greater baseline CHOP-INTEND. Motor milestones were also improved, especially in presymptomatic participants. Our systematic review not only showed a marked improvement in motor function in type 1 SMA but also showed that treatment in the presymptomatic stage improves the development of these children toward an evolution close to normal for their age.
Collapse
Affiliation(s)
| | - Iván Cavero-Redondo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | | | | | | | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
43
|
D’Silva AM, Kariyawasam D, Venkat P, Mayoh C, Farrar MA. Identification of Novel CSF-Derived miRNAs in Treated Paediatric Onset Spinal Muscular Atrophy: An Exploratory Study. Pharmaceutics 2023; 15:pharmaceutics15010170. [PMID: 36678797 PMCID: PMC9865256 DOI: 10.3390/pharmaceutics15010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) have created an urgent need to identify clinically meaningful biomarkers that provide insight into disease progression and therapeutic response. microRNAs (miRNA) have been shown to be involved in the pathogenesis of SMA and have the potential to provide insight within the field of SMA. miRNA-sequencing was utilized to identify differential miRNA expression in the cerebrospinal fluid (CSF) in six children with SMA treated with nusinersen in this exploratory study. Fourteen differentially expressed miRNAs were significantly altered in CSF from baseline to follow-up during treatment with nusinersen. The greatest magnitude of change was noted in miR-7-5p, miR-15a-5p, miR-15b-3p/5p, miR-126-5p, miR-128-2-5p and miR-130a-3p which encompassed a spectrum of functions predominantly in neurogenesis, neuronal differentiation and growth. The dominant signaling pathways identified in this study were the mammalian target of rapamycin and the mitogen-activated protein kinase signaling pathways. This study identified multiple miRNAs that were involved in the complex interplay between neurodevelopment and neurodegeneration.
Collapse
Affiliation(s)
- Arlene M. D’Silva
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-2-9382-5517
| | - Didu Kariyawasam
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pooja Venkat
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chelsea Mayoh
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
44
|
Glascock J, Darras BT, Crawford TO, Sumner CJ, Kolb SJ, DiDonato C, Elsheikh B, Howell K, Farwell W, Valente M, Petrillo M, Tingey J, Jarecki J. Identifying Biomarkers of Spinal Muscular Atrophy for Further Development. J Neuromuscul Dis 2023; 10:937-954. [PMID: 37458045 PMCID: PMC10578234 DOI: 10.3233/jnd-230054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by bi-allelic, recessive mutations of the survival motor neuron 1 (SMN1) gene and reduced expression levels of the survival motor neuron (SMN) protein. Degeneration of alpha motor neurons in the spinal cord causes progressive skeletal muscle weakness. The wide range of disease severities, variable rates of decline, and heterogenous clinical responses to approved disease-modifying treatment remain poorly understood and limit the ability to optimize treatment for patients. Validation of a reliable biomarker(s) with the potential to support early diagnosis, inform disease prognosis and therapeutic suitability, and/or confirm response to treatment(s) represents a significant unmet need in SMA. OBJECTIVES The SMA Multidisciplinary Biomarkers Working Group, comprising 11 experts in a variety of relevant fields, sought to determine the most promising candidate biomarker currently available, determine key knowledge gaps, and recommend next steps toward validating that biomarker for SMA. METHODS The Working Group engaged in a modified Delphi process to answer questions about candidate SMA biomarkers. Members participated in six rounds of reiterative surveys that were designed to build upon previous discussions. RESULTS The Working Group reached a consensus that neurofilament (NF) is the candidate biomarker best poised for further development. Several important knowledge gaps were identified, and the next steps toward filling these gaps were proposed. CONCLUSIONS NF is a promising SMA biomarker with the potential for prognostic, predictive, and pharmacodynamic capabilities. The Working Group has identified needed information to continue efforts toward the validation of NF as a biomarker for SMA.
Collapse
Affiliation(s)
| | - Basil T. Darras
- Boston Children’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Thomas O. Crawford
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Charlotte J. Sumner
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, Jackson, WY, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tedesco B, Ferrari V, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Mina F, Piccolella M, Cristofani R, Crippa V, Rusmini P, Galbiati M, Poletti A. The role of autophagy-lysosomal pathway in motor neuron diseases. Biochem Soc Trans 2022; 50:1489-1503. [PMID: 36111809 PMCID: PMC9704526 DOI: 10.1042/bst20220778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/22/2023]
Abstract
Motor neuron diseases (MNDs) include a broad group of diseases in which neurodegeneration mainly affects upper and/or lower motor neurons (MNs). Although the involvement of specific MNs, symptoms, age of onset, and progression differ in MNDs, the main pathogenic mechanism common to most MNDs is represented by proteostasis alteration and proteotoxicity. This pathomechanism may be directly related to mutations in genes encoding proteins involved in the protein quality control system, particularly the autophagy-lysosomal pathway (ALP). Alternatively, proteostasis alteration can be caused by aberrant proteins that tend to misfold and to aggregate, two related processes that, over time, cannot be properly handled by the ALP. Here, we summarize the main ALP features, focusing on different routes utilized to deliver substrates to the lysosome and how the various ALP pathways intersect with the intracellular trafficking of membranes and vesicles. Next, we provide an overview of the mutated genes that have been found associated with MNDs, how these gene products are involved in different steps of ALP and related processes. Finally, we discuss how autophagy can be considered a valid therapeutic target for MNDs treatment focusing on traditional autophagy modulators and on emerging approaches to overcome their limitations.
Collapse
Affiliation(s)
- Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The development of new therapies has brought spinal muscular atrophy (SMA) into the spotlight. However, this was preceded by a long journey - from the first clinical description to the discovery of the genetic cause to molecular mechanisms of RNA and DNA technology. RECENT FINDINGS Since 2016, the antisense oligonucleotide nusinersen has been (FDA) approved for the treatment of SMA, followed by the gene replacement therapy onasemnogene abeparvovec-xioi in 2019 and the small-molecule risdiplam in 2020. These drugs, all targeting upregulation of the SMN protein not only showed remarkable effects in clinical trials but also in real-world settings. SMA has been implemented in newborn screening in many countries around the world. SMN-independent strategies targeting skeletal muscle, for example, may play another therapeutic approach in the future. SUMMARY This review aims to summarize the major clinical and basic science achievements in the field of SMA.
Collapse
Affiliation(s)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
48
|
Brown SJ, Kline RA, Synowsky SA, Shirran SL, Holt I, Sillence KA, Claus P, Wirth B, Wishart TM, Fuller HR. The Proteome Signatures of Fibroblasts from Patients with Severe, Intermediate and Mild Spinal Muscular Atrophy Show Limited Overlap. Cells 2022; 11:cells11172624. [PMID: 36078032 PMCID: PMC9454632 DOI: 10.3390/cells11172624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Most research to characterise the molecular consequences of spinal muscular atrophy (SMA) has focused on SMA I. Here, proteomic profiling of skin fibroblasts from severe (SMA I), intermediate (SMA II), and mild (SMA III) patients, alongside age-matched controls, was conducted using SWATH mass spectrometry analysis. Differentially expressed proteomic profiles showed limited overlap across each SMA type, and variability was greatest within SMA II fibroblasts, which was not explained by SMN2 copy number. Despite limited proteomic overlap, enriched canonical pathways common to two of three SMA severities with at least one differentially expressed protein from the third included mTOR signalling, regulation of eIF2 and eIF4 signalling, and protein ubiquitination. Network expression clustering analysis identified protein profiles that may discriminate or correlate with SMA severity. From these clusters, the differential expression of PYGB (SMA I), RAB3B (SMA II), and IMP1 and STAT1 (SMA III) was verified by Western blot. All SMA fibroblasts were transfected with an SMN-enhanced construct, but only RAB3B expression in SMA II fibroblasts demonstrated an SMN-dependent response. The diverse proteomic profiles and pathways identified here pave the way for studies to determine their utility as biomarkers for patient stratification or monitoring treatment efficacy and for the identification of severity-specific treatments.
Collapse
Affiliation(s)
- Sharon J. Brown
- School of Pharmacy and Bioengineering (PhaB), Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Rachel A. Kline
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Euan MacDonald Centre, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Silvia A. Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L. Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | | | - Peter Claus
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, 30625 Hannover, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas M. Wishart
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Euan MacDonald Centre, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Heidi R. Fuller
- School of Pharmacy and Bioengineering (PhaB), Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- Correspondence: ; Tel.: +44-(0)1-782-734546
| |
Collapse
|
49
|
Bonanno S, Cavalcante P, Salvi E, Giagnorio E, Malacarne C, Cattaneo M, Andreetta F, Venerando A, Pensato V, Gellera C, Zanin R, Arnoldi MT, Dosi C, Mantegazza R, Masson R, Maggi L, Marcuzzo S. Identification of a cytokine profile in serum and cerebrospinal fluid of pediatric and adult spinal muscular atrophy patients and its modulation upon nusinersen treatment. Front Cell Neurosci 2022; 16:982760. [PMID: 36035258 PMCID: PMC9406526 DOI: 10.3389/fncel.2022.982760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectivesMultisystem involvement in spinal muscular atrophy (SMA) is gaining prominence since different therapeutic options are emerging, making the way for new SMA phenotypes and consequent challenges in clinical care. Defective immune organs have been found in preclinical models of SMA, suggesting an involvement of the immune system in the disease. However, the immune state in SMA patients has not been investigated so far. Here, we aimed to evaluate the innate and adaptive immunity pattern in SMA type 1 to type 3 patients, before and after nusinersen treatment.MethodsTwenty one pediatric SMA type 1, 2, and 3 patients and 12 adult SMA type 2 and 3 patients were included in this single-center retrospective study. A Bio-Plex Pro-Human Cytokine 13-plex Immunoassay was used to measure cytokines in serum and cerebrospinal fluid (CSF) of the study cohort before and after 6 months of therapy with nusinersen.ResultsWe detected a significant increase in IL-1β, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-22, IL-23, IL-31, and IL-33, in serum of pediatric and adult SMA patients at baseline, compared to pediatric reference ranges and to adult healthy controls. Pediatric patients showed also a significant increase in TNF-α and IL-17F levels at baseline. IL-4, IFN-γ, Il-22, IL-23, and IL-33 decreased in serum of pediatric SMA patients after 6 months of therapy when compared to baseline. A significant decrease in IL-4, IL-6, INF-γ, and IL-17A was detected in serum of adult SMA patients after treatment. CSF of both pediatric and adult SMA patients displayed detectable levels of all cytokines with no significant differences after 6 months of treatment with nusinersen. Notably, a higher baseline expression of IL-23 in serum correlated with a worse motor function outcome after treatment in pediatric patients. Moreover, after 6 months of treatment, patients presenting a higher IL-10 concentration in serum showed a better Hammersmith Functional Motor Scale Expanded (HFMSE) score.DiscussionPediatric and adult SMA patients show an inflammatory signature in serum that is reduced upon SMN2 modulating treatment, and the presence of inflammatory mediators in CSF. Our findings enhance SMA knowledge with potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Silvia Bonanno,
| | - Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Paola Cavalcante,
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Marco Cattaneo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Venerando
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Teresa Arnoldi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Dosi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
50
|
Detering NT, Zambon A, Hensel N, Kothary R, Swoboda K, Gillingwater TH, Baranello G. 264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th - 21st 2021. Neuromuscul Disord 2022; 32:697-705. [PMID: 35794048 DOI: 10.1016/j.nmd.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, 30625, Hannover, Germany; Center for Systems Neuroscience (ZSN), 30559, Hannover, Germany
| | - Alberto Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital, London, UK; Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Niko Hensel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6; Department of Cellular and Molecular Medicine, Faculty of Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5
| | - Kathryn Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, UK, EH8 9AG
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital, London, UK.
| |
Collapse
|