1
|
Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol 2024; 34:2247-2255.e5. [PMID: 38714199 PMCID: PMC11111341 DOI: 10.1016/j.cub.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
3
|
Arjmandi-Rad S, Ebrahimnejad M, Zarrindast MR, Vaseghi S. Do Sleep Disturbances have a Dual Effect on Alzheimer's Disease? Cell Mol Neurobiol 2023; 43:711-727. [PMID: 35568778 DOI: 10.1007/s10571-022-01228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, PO Box: 1419815477, Karaj, Iran.
| |
Collapse
|
4
|
Persichilli G, Grifoni J, Pagani M, Bertoli M, Gianni E, L'Abbate T, Cerniglia L, Bevacqua G, Paulon L, Tecchio F. Sensorimotor Interaction Against Trauma. Front Neurosci 2022; 16:913410. [PMID: 35774554 PMCID: PMC9238294 DOI: 10.3389/fnins.2022.913410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giada Persichilli
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
| | - Joy Grifoni
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Marco Pagani
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Teresa L'Abbate
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | | | | | - Franca Tecchio
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- *Correspondence: Franca Tecchio ; orcid.org/0000-0002-1325-5059
| |
Collapse
|
5
|
Wang JY, Heck KL, Born J, Ngo HVV, Diekelmann S. No difference between slow oscillation up- and down-state cueing for memory consolidation during sleep. J Sleep Res 2022; 31:e13562. [PMID: 35166422 DOI: 10.1111/jsr.13562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
The beneficial effects of sleep for memory consolidation are assumed to rely on the reactivation of memories in conjunction with the coordinated interplay of sleep rhythms like slow oscillations and spindles. Specifically, slow oscillations are assumed to provide the temporal frame for spindles to occur in the slow oscillations up-states, enabling a redistribution of reactivated information within hippocampal-neocortical networks for long-term storage. Memory reactivation can also be triggered externally by presenting learning-associated cues (like odours or sounds) during sleep, but it is presently unclear whether there is an optimal time-window for the presentation of such cues in relation to the phase of the slow oscillations. In the present within-subject comparison, participants (n = 16) learnt word-pairs visually presented with auditory cues of the first syllable. These syllables were subsequently used for real-time cueing either in the up- or down-state of endogenous slow oscillations. Contrary to our hypothesis, we found differences in memory performance neither between up- and down-state cueing, nor between word-pairs that were cued versus uncued. In the up-state cueing condition, higher amounts of rapid eye movement sleep were associated with better memory for cued contents, whereas higher amounts of slow-wave sleep were associated with better memory for uncued contents. Evoked response analyses revealed signs of cue processing in both conditions. Interestingly, both up- and down-state cueing evoked a similar spindle response with the induced slow oscillations up-state at ~1000 ms post-cue. We speculate that our cueing procedure triggered generalised reactivation processes that facilitated the consolidation of both cued and uncued memories irrespective of the slow oscillation phase.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Katharina L Heck
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University Tübingen, Tübingen, Germany
| | - Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Whitehurst LN, Subramoniam A, Krystal A, Prather AA. Links between the brain and body during sleep: implications for memory processing. Trends Neurosci 2022; 45:212-223. [PMID: 35074220 DOI: 10.1016/j.tins.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Sleep is intimately related to memory processes. The established view is that the transformation of experiences into long-term memories is linked to sleep-related CNS function. However, there is increasing evidence that the autonomic nervous system (ANS), long recognized to modulate cognition during waking, can impact memory processing during sleep. Here, we review human research that examines the role of autonomic activity and sleep in memory formation. We argue that autonomic activity during sleep may set the stage for the CNS dynamics associated with sleep and memory stability and integration. Further, we consider how the link between ANS activity and polysomnographic markers of sleep may help elucidate both healthy and pathological cognitive aging in humans.
Collapse
Affiliation(s)
| | | | - Andrew Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Aric A Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
8
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hijacking of hippocampal-cortical oscillatory coupling during sleep in temporal lobe epilepsy. Epilepsy Behav 2021; 121:106608. [PMID: 31740330 DOI: 10.1016/j.yebeh.2019.106608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022]
Abstract
Memory impairment is the most common cognitive deficit in patients with temporal lobe epilepsy (TLE). This type of epilepsy is currently regarded as a network disease because of its brain-wide alterations in functional connectivity between temporal and extra-temporal regions. In patients with TLE, network dysfunctions can be observed during ictal states, but are also described interictally during rest or sleep. Here, we examined the available literature supporting the hypothesis that hippocampal-cortical coupling during sleep is hijacked in TLE. First, we look at studies showing that the coordination between hippocampal sharp-wave ripples (100-200 Hz), corticothalamic spindles (9-16 Hz), and cortical delta waves (1-4 Hz) during nonrapid eye movement (NREM) sleep is critical for spatial memory consolidation. Then, we reviewed studies showing that animal models of TLE display precise coordination between hippocampal interictal epileptiform discharges (IEDs) and spindle oscillations in the prefrontal cortex. This aberrant oscillatory coupling seems to surpass the physiological ripple-delta-spindle coordination, which could underlie memory consolidation impairments. We also discuss the role of rapid eye movement (REM) sleep for local synaptic plasticity and memory. Sleep episodes of REM provide windows of opportunity for reactivation of expression of immediate early genes (i.e., zif-268 and Arc). Besides, hippocampal theta oscillations during REM sleep seem to be critical for memory consolidation of novel object place recognition task. However, it is still unclear which extend this particular phase of sleep is affected in TLE. In this context, we show some preliminary results from our group, suggesting that hippocampal theta-gamma phase-amplitude coupling is exacerbated during REM in a model of basolateral amygdala fast kindling. In conclusion, there is an increasing body of evidence suggesting that circuits responsible for memory consolidation during sleep seem to be gradually coopted and degraded in TLE. This article is part of the Special Issue "NEWroscience 2018".
Collapse
|
10
|
Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation. Sci Rep 2021; 11:13078. [PMID: 34158548 PMCID: PMC8219679 DOI: 10.1038/s41598-021-91659-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Hippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.
Collapse
|
11
|
REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020; 11:4819. [PMID: 32968048 PMCID: PMC7511313 DOI: 10.1038/s41467-020-18592-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction. Sleep plays an important role in learning and memory. Here the authors show that experience dependent elimination of spines is attenuated by REM sleep deprivation.
Collapse
|
12
|
|
13
|
Pereira SIR, Lewis PA. The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression. Neurochem Res 2019; 45:221-231. [PMID: 31782101 DOI: 10.1007/s11064-019-02914-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) mediates the plasticity-related changes that associate with memory processing during sleep. Sleep deprivation and chronic stress are associated with propensity to depression, anxiety, and insomnia. We propose a model by which explain alterations in the CNS and serum expression of BDNF associated with chronic sleep deprivation, depression, and insomnia. Mild sleep deprivation activates the cerebral cortex and brainstem to generate the physiologic drive for non-rapid eye movement (NREM) and rapid eye movement (REM) sleep drive respectively, associated with BDNF upregulation in these regions. This physiological response loses effectiveness with longer episodes or during chronic of total or selective REM sleep loss, which are associated with impaired hippocampal BDNF expression, impaired memory and cognition. Chronic sleep deprivation and insomnia can act as an external stressors and result in depression, characterized by hippocampal BDNF downregulation along with disrupted frontal cortical BDNF expression, as well as reduced levels and impaired diurnal alterations in serum BDNF expression. Acute REM sleep deprivation breaks the cycle by restoration of hippocampal, and possibly restoration of cortical and serum expression of BDNF. The BDNF Val66Met polymorphism alters susceptibility to depression, anxiety, and insomnia by altering availability and expression of BDNF in brain and blood. The proposed model is testable and implies that low levels and low variability in serum BDNF are associated with poor response to anti-depressive medications, electroconvulsive therapy, and REM sleep deprivation, in patients with depression. Our mode is also backed up by the existing clinical evidence but is yet to be investigated.
Collapse
|
15
|
Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019; 22:1598-1610. [PMID: 31451802 DOI: 10.1038/s41593-019-0467-3] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Vetere G, Borreca A, Pignataro A, Conforto G, Giustizieri M, Marinelli S, Ammassari-Teule M. Coincident Pre- and Post-Synaptic Cortical Remodelling Disengages Episodic Memory from Its Original Context. Mol Neurobiol 2019; 56:8513-8523. [PMID: 31267371 DOI: 10.1007/s12035-019-01652-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/15/2019] [Indexed: 11/28/2022]
Abstract
The view that the neocortex is remotely recruited for long-term episodic memory recall is challenged by data showing that an intense transcriptional and synaptic activity is detected in this region immediately after training. By measuring markers of synaptic activity at recent and remote time points from contextual fear conditioning (CFC), we could show that pre-synaptic changes are selectively detected 1 day post-training when the memory is anchored to the training context. Differently, pre- and post-synaptic changes are detected 14 days post-training when the memory generalizes to other contexts. Confirming that coincident pre- and post-synaptic remodelling mediates the disengagement of memory from its original context, DREADDs-mediated enhancement of cortical neuron activity during CFC training anticipates expression of a schematic memory and observation of bilateral synaptic remodelling. Together, our data show that the plastic properties of cortical synapses vary over time and specialise in relation to the quality of memory.
Collapse
Affiliation(s)
- Gisella Vetere
- Department of Experimental Neuroscience, Laboratory of Psychobiology, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy.,Laboratoire Plasticité du Cerveau, ESPCI-Ecole Supérieure de Physique et Chimie Industrielle, Paris, France
| | - Antonella Borreca
- Department of Experimental Neuroscience, Laboratory of Psychobiology, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Rome, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Milan, Italy
| | - Annabella Pignataro
- Department of Experimental Neuroscience, Laboratory of Psychobiology, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Rome, Italy
| | - Giulia Conforto
- Department of Experimental Neuroscience, Laboratory of Psychobiology, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | - Martine Ammassari-Teule
- Department of Experimental Neuroscience, Laboratory of Psychobiology, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy. .,Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Rome, Italy.
| |
Collapse
|
17
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
18
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|