1
|
Cui X, Kim HJ, Cheng CH, Jenny LA, Lima de Carvalho JR, Chang YJ, Kong Y, Hsu CW, Huang IW, Ragi SD, Lin CS, Li X, Sparrow JR, Tsang SH. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Hum Mol Genet 2022; 31:2438-2451. [PMID: 35195241 PMCID: PMC9307315 DOI: 10.1093/hmg/ddac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.
Collapse
Affiliation(s)
- Xuan Cui
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Laura A Jenny
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Ya-Ju Chang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Yang Kong
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sara D Ragi
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaorong Li
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
| | - Janet R Sparrow
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Yu Y, Li L, Lin S, Hu J. Update of application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders. Stem Cell Res Ther 2022; 13:11. [PMID: 35012635 PMCID: PMC8751324 DOI: 10.1186/s13287-021-02685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration, diabetic retinopathy, retinitis pigmentosa and other retinal disorders are the main causes of visual impairment worldwide. In the past, these retinal diseases, especially dry age-related macular degeneration, proliferative diabetic retinopathy and retinitis pigmentosa, were treated with traditional surgery and drugs. However, the effect was moderate. In recent years, researchers have used embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells and other stem cells to conduct experiments and found that stem cells can inhibit inflammation, regulate immune response, secrete neurotrophic factors, and differentiate into retinal cells to replace and promote restoration of the damaged parts. These stem cells have the potential to treat retinal diseases. Whether it is in animal experiments or clinical trials, the increase in the number of retinal cells, maintenance of function and improvement of visual function all reflect the advanced of stem cells to treat retinal diseases, but its risk preserves the donor's hidden pathogenic genes, immune rejection and tumorigenicity. With the development of exosomes study, researchers have discovered that exosomes come from a wide range of sources and can be secreted by almost all types of cells. Using exosomes with stem cell to treat retinal diseases is more effective than using stem cells alone. This review article summarizes the recent advances in the application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
| |
Collapse
|
3
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Abstract
Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.
Collapse
|
5
|
Zhang E, Ryu J, Levi SR, Oh JK, Hsu CW, Cui X, Lee TT, Wang NK, Lima de Carvalho JR, Tsang SH. PKM2 ablation enhanced retinal function and survival in a preclinical model of retinitis pigmentosa. Mamm Genome 2020; 31:77-85. [PMID: 32342224 DOI: 10.1007/s00335-020-09837-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a neurodegenerative disorder that causes irreversible vision loss in over 1.5 million individuals world-wide. The genetic heterogeneity of RP necessitates a broad therapy that is able to provide treatment in a gene- and mutation- non-specific manner. In this study, we identify the therapeutic benefits of metabolic reprogramming by targeting pyruvate kinase M2 (PKM2) in a Pde6β preclinical model of RP. The genetic contributions of PKM2 inhibition in retinal degeneration were evaluated through histology and electroretinogram (ERG) followed by a statistical analysis using a linear regression model. Notably, PKM2 ablation resulted in thicker retinal layers in Pde6β-mutated mice as compared to the controls, suggesting greater photoreceptor survival. Consistent with these anatomical findings, ERG analyses revealed that the maximum b-wave is on average greater in Pkm2 knockout mice than in mice with intact Pkm2, indicating enhanced photoreceptor function. These rescue phenotypes from Pkm2 ablation in a preclinical model of RP indicate that a metabolome reprogramming may be useful in treating RP.
Collapse
Affiliation(s)
- Ethan Zhang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Joseph Ryu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah R Levi
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Jin Kyun Oh
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- State University of New York At Downstate Medical Center, Brooklyn, NY, USA
| | - Chun Wei Hsu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- The College of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin, China
| | - Ting-Ting Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nan-Kai Wang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|