1
|
Soni D, Khan H, Chauhan S, Kaur A, Dhankhar S, Garg N, Singh TG. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int Immunopharmacol 2024; 142:113142. [PMID: 39298812 DOI: 10.1016/j.intimp.2024.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The ions Ca2+ and Mg2+, which are both present in the body, have been demonstrated to be crucial in the control of a variety of neuronal processes. Transient melastatin-7 (TRPM7) channel plays an important role in controlling Ca2+ and Mg2+ homeostasis, which is crucial for biological processes. The review will also examine how changes in TRPM7 function or expression can lead to neurodegeneration.Even though eight different TRPM channels have been found so far, the channel properties, activation mechanisms, and physiological responses exhibited by these channels can vary greatly from one another. Only TRPM6 and TRPM7 out of the eight TRPM channels were found to have a high permeability to both Ca2+ and Mg2+. In contrast to TRPM6 channels, which are not highly expressed in neuronal cells, TRPM7 channels are widely distributed throughout the nervous system, so they will be the sole focus of this article. It is possible that, in the future, for the treatment of neurodegenerative disorder new therapeutic drug targets will be developed as a direct result of research into the specific roles played by TRPM7 channels in several different neurodegenerative conditions as well as the factors that are responsible for TRPM7 channel regulation.
Collapse
Affiliation(s)
- Diksha Soni
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
4
|
Jin M, Xie M, Dong L, Xue F, Li W, Jiang L, Li J, Zhang M, Song H, Lu Q, Yu Q. Exploration of Positive and Negative Schizophrenia Symptom Heterogeneity and Establishment of Symptom-Related miRNA-mRNA Regulatory Network: Based on Transcriptome Sequencing Data. Mol Neurobiol 2024; 61:5992-6012. [PMID: 38267752 DOI: 10.1007/s12035-024-03942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Schizophrenia (SCZ) symptoms can be classified as positive and negative ones, each of which has distinct traits and possibly differences in gene expression and regulation. The co-expression networks linked to PANSS (Positive and Negative Syndrome Scale) scores were identified by weighted gene co-expression network analysis (WGCNA) using the expression profiles of miRNA and mRNA in the peripheral blood of first-episode SCZ patients. The heterogeneity between positive and negative symptoms was demonstrated using gene functional enrichment, gene-medication interaction, and immune cell composition analysis. Then, target gene prediction and correlation analysis of miRNA and mRNA constructed a symptom-related miRNA-mRNA regulatory network, screened regulatory pairs, and predicted binding sites. A total of six mRNA co-expression modules, two miRNA co-expression modules, and ten hub genes were screened to be significantly associated with positive symptoms; five mRNA co-expression modules and eight hub genes were correlated with negative symptoms. Positive symptom-related modules were significantly enriched in axon guidance, actin skeleton regulation, and sphingolipid signaling pathway, while negative symptom-related modules were significantly enriched in adaptive immune response, leukocyte migration, dopaminergic synapses, etc. The development of positive symptoms may have been influenced by potential regulatory pairings such as miR-98-5p-EIF3J, miR-98-5p-SOCS4, let-7b-5p-CLUH, miR-454-3p-GTF2H1, and let-7b-5p-SNX17. Additionally, immune cells were substantially connected with several hub genes for symptoms. Positive and negative symptoms in SCZ individuals were heterogeneous to some extent. miRNAs such as let-7b-5p and miR-98-5p might contribute to the incidence of positive symptoms by targeting mRNAs, while the immune system's role in developing negative symptoms may be more nuanced.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Lin Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Lintong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Junnan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Haideng Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Qingxing Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
Park CS, Lee JY, Seo KJ, Kim IY, Ju BG, Yune TY. TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats. Mol Neurobiol 2024; 61:662-677. [PMID: 37653221 DOI: 10.1007/s12035-023-03617-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
After spinal cord injury (SCI), secondary injuries including blood cells infiltration followed by the production of inflammatory mediators are led by blood-spinal cord barrier (BSCB) breakdown. Therefore, preventing BSCB damage could alleviate the secondary injury progresses after SCI. Recently, we reported that transient receptor potential melastatin 7 channel (TRPM7) expression is increased in vascular endothelial cells after injury and thereby mediates BSCB disruption. However, the mechanism by which TRPM7 regulates BSCB disruption has not been examined yet. In current research, we show that TRPM7 mediates BSCB disruption via mammalian target of rapamycin (mTOR) pathway after SCI in rats. After contusion injury at T9 level of spinal cord, mTOR pathway was activated in the endothelial cells of blood vessels and TRPM7 was involved in the activation of mTOR pathway. BSCB disruption, MMP-2/9 activation, and blood cell infiltration after injury were alleviated by rapamycin, a mTOR signaling inhibitor. Rapamycin also conserved the level of tight junction proteins, which were decreased after SCI. Furthermore, mTOR pathway regulated the expression and activation of histone H3K27 demethylase JMJD3, known as a key epigenetic regulator mediating BSCB damage after SCI. In addition, rapamycin inhibited JMJD3 expression, the loss of tight junction molecules, and MMP-2/9 expression in bEnd.3, a brain endothelial cell line, after oxygen-glucose deprivation/reoxygenation. Thus, our results suggest that TRPM7 contributes to the BSCB disruption by regulating JMJD3 expression through the mTOR pathway after SCI.
Collapse
Affiliation(s)
- Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Yi Kim
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
6
|
Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Cannabigerolic Acid (CBGA) Inhibits the TRPM7 Ion Channel Through its Kinase Domain. FUNCTION 2023; 5:zqad069. [PMID: 38162115 PMCID: PMC10757070 DOI: 10.1093/function/zqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Clay Wakano
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Xie Z, Abumaria N. Effect of truncation on TRPM7 channel activity. Channels (Austin) 2023; 17:2200874. [PMID: 37040321 PMCID: PMC10761173 DOI: 10.1080/19336950.2023.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Transient receptor potential melastatin-like 7 (TRPM7) is a key player in various physiological and pathological processes. TRPM7 channel activity is regulated by different factors. The effects of cleavage of different domains on channel activity remain unknown. Here, we constructed several TRPM7 clones and explored the effects of truncating the mouse TRPM7 at different locations on the ion channel activity in two cell lines. We compared the clones' activity with the full-length TRPM7 and the native TRPM7 in transfected and untransfected cells. We also expressed fluorescently tagged truncated clones to examine their protein stability and membrane targeting. We found that truncating the kinase domain induced reduction in TRPM7 channel activity. Further truncations beyond the kinase (serine/threonine rich domain and/or coiled-coil domain) did not result in further reductions in channel activity. Two truncated clones lacking the TRP domain or the melastatin homology domain had a completely nonfunctional channel apparently due to disruption of protein stability. We identified the shortest structure of TRPM7 with measurable channel activity. We found that the truncated TRPM7 containing only S5 and S6 domains retained some channel activity. Adding the TRP domain to the S5-S6 resulted in a significant increase in channel activity. Finally, our analysis showed that TRPM7 outward currents are more sensitive to truncations than inward currents. Our data provide insights on the effects of truncating TRPM7 at different locations on the channel functions, highlighting the importance of different domains in impacting channel activity, protein stability, and/or membrane targeting.
Collapse
Affiliation(s)
- Zhuqing Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Wang ZB, Zhang X, Xiao F, Liu ZQ, Liao QJ, Wu N, Wang J. Roles of TRPM7 in ovarian cancer. Biochem Pharmacol 2023; 217:115857. [PMID: 37839677 DOI: 10.1016/j.bcp.2023.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer stands as the prevailing gynecologic malignancy, afflicting over 313,959 individuals annually worldwide, accompanied by more than 207,252 fatalities. Perturbations in calcium signaling contribute significantly to the pathogenesis of numerous cancers, including ovarian cancer, wherein alterations in calcium transporter expression have been reported. Overexpression of TRPM7, a prominent calcium transporter, has been linked to adverse prognostic outcomes in various cancer types. The focus of this comprehensive review centers around delineating the oncogenic role of TRPM7 in cancer development and exploring its therapeutic potential as a target in combating this disease. Notably, TRPM7 fosters cancer invasion, metastasis, and uncontrolled cell proliferation, thereby perpetuating the expansion and reinforcement of these malignant entities. Furthermore, this review takes ovarian cancer as an example and summarizes the "dual-mode" regulatory role of TRPM7 in cancer. Within the domain of ovarian cancer, TRPM7 assumes the role of a harsh tyrant, firmly controlling the calcium ion signaling pathway and metabolic reprogramming pathways.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Fen Xiao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, PR China.
| |
Collapse
|
9
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
10
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
11
|
Chang J, Chen C, Li W, Abumaria N. TRPM7 Kinase Domain is Part of the Rac1-SSH2-cofilin Complex Regulating F-actin in the Mouse Nervous System. Neurosci Bull 2023; 39:989-993. [PMID: 36920646 PMCID: PMC10264340 DOI: 10.1007/s12264-023-01045-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/19/2022] [Indexed: 03/16/2023] Open
Affiliation(s)
- Junzhuang Chang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Laboratory Animal Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 24:ijms24010223. [PMID: 36613667 PMCID: PMC9820677 DOI: 10.3390/ijms24010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.
Collapse
|
13
|
Huang Z, Wang H, Wang D, Zhao X, Liu W, Zhong X, He D, Mu B, Lu M. Identification of core genes in prefrontal cortex and hippocampus of Alzheimer's disease based on mRNA‐miRNA network. J Cell Mol Med 2022; 26:5779-5793. [DOI: 10.1111/jcmm.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/19/2021] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zhi‐Hang Huang
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hai Wang
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Dong‐Mei Wang
- School of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiu‐Yun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience Soochow University Suzhou China
| | - Wen‐Wen Liu
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xin Zhong
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Dong‐Mei He
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ben‐Rong Mu
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Mei‐Hong Lu
- Chongqing Key Laboratory of Sichuan‐Chongqing Co‐construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
14
|
Khanahmad H, Mirbod SM, Karimi F, Kharazinejad E, Owjfard M, Najaflu M, Tavangar M. Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury. Mol Biol Rep 2022; 49:11071-11079. [PMID: 36104583 DOI: 10.1007/s11033-022-07836-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.TRPM channels include eight isoforms (TRPM1-TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of medical science, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran, Isfahan University of Medical sciences, Isfahan, Iran
| | - Seyedeh Mahnaz Mirbod
- Resident of Cardiology, Department of cardiology, Isfahan University of Medical Science, Isfahan, Iran
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran., Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Karimi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
- Behbahan Faculty of Medical Sciences, No.8, Shahid Zibaei Blvd. Behbahan city, Behbahan, Khozestan province, Iran.
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran., Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Ebrahim Kharazinejad
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomy, Abadan University of Medical Sciences, Abadan, Iran, Abadan University of Medical Sciences, Abadan , Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran, Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Nahalka J. 1-L Transcription in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:3533-3551. [PMID: 36005139 PMCID: PMC9406503 DOI: 10.3390/cimb44080243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a very complex disease and better explanations and models are needed to understand how neurons are affected and microglia are activated. A new model of Alzheimer's disease is presented here, the β-amyloid peptide is considered an important RNA recognition/binding peptide. 1-L transcription revealed compatible sequences with AAUAAA (PAS signal) and UUUC (class III ARE rich in U) in the Aβ peptide, supporting the peptide-RNA regulatory model. When a hypothetical model of fibril selection with the prionic character of amyloid assemblies is added to the peptide-RNA regulatory model, the downregulation of the PI3K-Akt pathway and the upregulation of the PLC-IP3 pathway are well explained. The model explains why neurons are less protected from inflammation and why microglia are activated; why mitochondria are destabilized; why the autophagic flux is destabilized; and why the post-transcriptional attenuation of the axonal signal "noise" is interrupted. For example, the model suggests that Aβ peptide may post-transcriptionally control ELAVL2 (ELAV-like RNA binding protein 2) and DCP2 (decapping mRNA protein 2), which are known to regulate RNA processing, transport, and stability.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
16
|
Chu C, Zhang Y, Liu Q, Pang Y, Niu Y, Zhang R. Identification of ceRNA network to explain the mechanism of cognitive dysfunctions induced by PS NPs in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113785. [PMID: 35753268 DOI: 10.1016/j.ecoenv.2022.113785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Plastics breaking down of larger plastics into smaller ones (microplastics and nanoplastic) as potential threats to the ecosystem. Previous studies demonstrate that the central nervous system (CNS) is a vulnerable target of nanoplastics. However, the potentially epigenetic biomarkers of nanoplastic neurotoxicity in rodent models are still unknown. The present research aimed to determine the role of competing endogenous RNA (ceRNA) in the process of polystyrene nanoplastics (PS NPs) exposure-induced nerve injury. The study was designed to investigate whether 25 nm PS NPs could cause learning dysfunction and to elucidate the underlying mechanisms in mice. A total of 40 mice were divided into 4 groups and were exposed to PS NPs (0, 10, 25, 50 mg/kg). Chronic toxicity was introduced in mice by administration of oral gavage for 6 months. The evaluation included assessment of their behavior, pathological investigation and determination of the levels of reactive oxygen species (ROS) and DNA damage. RNA-Seq was performed to detect the expression levels of circRNAs, miRNAs and mRNAs in PFC samples of mice treated with 0 and 50 mg/kg PS NPs. The results indicated that exposure of mice to PS NPs caused a dose-dependent cognitive decline. ROS levels and DNA damage were increased in the PFC following exposure of the mice to PS NPs. A total of 987 mRNAs, 29 miRNAs and 67 circRNAs demonstrated significant differences between the 0 and 50 mg/kg PS NPs groups. Functional enrichment analyses indicated that PS NPs may induce major injury in the synaptic function. A total of 96 mRNAs, which were associated with synaptic dysfunction were identified. A competing endogenous RNA (ceRNA) network containing 27 circRNAs, 19 miRNAs and 35 synaptic dysfunction-related mRNAs was constructed. The present study provided insight into the molecular events associated with nanoplastic toxicity and induction of cognitive dysfunction.
Collapse
Affiliation(s)
- Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, 200040, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Deportment Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
17
|
Doboszewska U, Sawicki J, Sajnóg A, Szopa A, Serefko A, Socała K, Pieróg M, Nieoczym D, Mlyniec K, Nowak G, Barałkiewicz D, Sowa I, Wlaź P. Alterations of Serum Magnesium Concentration in Animal Models of Seizures and Epilepsy—The Effects of Treatment with a GPR39 Agonist and Knockout of the Gpr39 Gene. Cells 2022; 11:cells11131987. [PMID: 35805072 PMCID: PMC9265460 DOI: 10.3390/cells11131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Several ligands have been proposed for the GPR39 receptor, including the element zinc. The relationship between GPR39 and magnesium homeostasis has not yet been examined, nor has such a relationship in the context of seizures/epilepsy. We used samples from mice that were treated with an agonist of the GPR39 receptor (TC-G 1008) and underwent acute seizures (maximal electroshock (MES)- or 6-hertz-induced seizures) or a chronic, pentylenetetrazole (PTZ)-induced kindling model of epilepsy. MES seizures and PTZ kindling, unlike 6 Hz seizures, increased serum magnesium concentration. In turn, Gpr39-KO mice that underwent PTZ kindling displayed decreased concentrations of this element in serum, compared to WT mice subjected to this procedure. However, the levels of expression of TRPM7 and SlC41A1 proteins—which are responsible for magnesium transport into and out of cells, respectively—did not differ in the hippocampus between Gpr39-KO and WT mice. Furthermore, laser ablation inductively coupled plasma mass spectrometry applied to hippocampal slices did not reveal differences in magnesium levels between the groups. These data show the relationship between magnesium homeostasis and certain types of acute or chronic seizures (MES seizures or PTZ kindling, respectively), but do not explicitly support the role of GPR39 in mediating magnesium balance in the hippocampus in the latter model. However, decreased expression of TRPM7 and increased expression of SLC41A1—which were observed in the hippocampi of Gpr39-KO mice treated with TC-G 1008, in comparison to WT mice that received the same treatment—implicitly support the link between GPR39 and hippocampal magnesium homeostasis.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
- Correspondence: or ; Tel.: +48-81-537-50-10; Fax: +48-81-537-59-01
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL 61-614 Poznan, Poland; (A.S.); (D.B.)
| | - Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| | - Danuta Barałkiewicz
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL 61-614 Poznan, Poland; (A.S.); (D.B.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| |
Collapse
|
18
|
Ji D, Luo ZW, Ovcjak A, Alanazi R, Bao MH, Feng ZP, Sun HS. Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacol Sin 2022; 43:759-770. [PMID: 34108651 PMCID: PMC8975829 DOI: 10.1038/s41401-021-00679-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mei-Hua Bao
- Science Research Center, Changsha Medical University, Changsha, 410219, China
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Neuroprotective Effects of TRPM7 Deletion in Parvalbumin GABAergic vs. Glutamatergic Neurons following Ischemia. Cells 2022; 11:cells11071178. [PMID: 35406741 PMCID: PMC8997982 DOI: 10.3390/cells11071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress induced by brain ischemia upregulates transient receptor potential melastatin-like-7 (TRPM7) expression and currents, which could contribute to neurotoxicity and cell death. Accordingly, suppression of TRPM7 reduces neuronal death, tissue damage and motor deficits. However, the neuroprotective effects of TRPM7 suppression in different cell types have not been investigated. Here, we found that induction of ischemia resulted in loss of parvalbumin (PV) gamma-aminobutyric acid (GABAergic) neurons more than Ca2+/calmodulin-kinase II (CaMKII) glutamatergic neurons in the mouse cortex. Furthermore, brain ischemia increased TRPM7 expression in PV neurons more than that in CaMKII neurons. We generated two lines of conditional knockout mice of TRPM7 in GABAergic PV neurons (PV-TRPM7−/−) and in glutamatergic neurons (CaMKII-TRPM7−/−). Following exposure to brain ischemia, we found that deleting TRPM7 reduced the infarct volume in both lines of transgenic mice. However, the volume in PV-TRPM7−/− mice was more significantly lower than that in the control group. Neuronal survival of both GABAergic and glutamatergic neurons was increased in PV-TRPM7−/− mice; meanwhile, only glutamatergic neurons were protected in CaMKII-TRPM7−/−. At the behavioral level, only PV-TRPM7−/− mice exhibited significant reductions in neurological and motor deficits. Inflammatory mediators such as GFAP, Iba1 and TNF-α were suppressed in PV-TRPM7−/− more than in CaMKII-TRPM7−/−. Mechanistically, p53 and cleaved caspase-3 were reduced in both groups, but the reduction in PV-TRPM7−/− mice was more than that in CaMKII-TRPM7−/− following ischemia. Upstream from these signaling molecules, the Akt anti-oxidative stress signaling was activated only in PV-TRPM7−/− mice. Therefore, deleting TRPM7 in GABAergic PV neurons might have stronger neuroprotective effects against ischemia pathologies than doing so in glutamatergic neurons.
Collapse
|
20
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
21
|
Bousova K, Zouharova M, Herman P, Vetyskova V, Jiraskova K, Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1. Heliyon 2021; 7:e08490. [PMID: 34917797 PMCID: PMC8645431 DOI: 10.1016/j.heliyon.2021.e08490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Collapse
Affiliation(s)
- Kristyna Bousova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Corresponding author.
| | - Monika Zouharova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Patobiochemistry, Second Faculty of Medicine, Charles University, 150 06 Prague 5, V Uvalu 84, Czech Republic
| | - Petr Herman
- Department Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Veronika Vetyskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
22
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
23
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Sankova MV, Kytko OV, Meylanova RD, Vasil’ev YL, Nelipa MV. Possible prospects for using modern magnesium preparations for increasing stress resistance during COVID-19 pandemic. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.59407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The relevance of the issue of increasing stress resistance is due to a significant deterioration in the mental health of the population caused by the special conditions of the disease control and prevention during the COVID-19 pandemic. Recently, the decisive role in the severity of clinico-physiological manifestations of maladjustment to stress is assigned to magnesium ions.
The aim of the work was to study the magnesium importance in the body coping mechanisms under stress for the pathogenetic substantiation of the magnesium correction in an unfavorable situation of disease control and prevention during the COVID-19 pandemic.
Materials and methods: The theoretical basis of this scientific and analytical review was an analysis of modern Russian and foreign literature data posted on the electronic portals MEDLINE, PubMed-NCBI, Scientific Electronic Library eLIBRARY.RU, Google Academy, and CyberLeninka.
Results and discussion: It was shown that the total magnesium level in the body plays the indicator role of the body functional reserves. Acute and chronic stresses significantly increase the magnesium consumption and cause a decrease in its body content. Magnesium deficiency is one of the main pathogenetic mechanisms of reducing stress resistance and adaptive body reserves. Arising during the COVID-19 pandemic, increased nervous and emotional tension, the lack of emotional comfort and balance can lead to the onset or deterioration of magnesium deficiency, which manifests itself in mental burnout and depletion of adaptive capacities. The inability to synthesize magnesium in the body necessitates including foodstuffs high in magnesium in the population diet during this period. The appointment of magnesium preparations is pathogenetically justified with moderate and severe magnesium deficiency. This therapy should take into account the major concomitant diseases, severity of magnesium deficiency, and a patient’s age.
Conclusion: magnesium correction, carried out during the COVID-19 pandemic, will contribute to increasing stress resistance, preventing mental diseases and improving the population’s life quality.
Collapse
|
25
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|