1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Lv Y, Yang X, Sun X, Lv L, Zhang Z, Li C, Gao J, Li H, Wen Z, Zhu H. ALDH2 plays a role in spermatogenesis and male fertility by regulating oxidative stress in mice. Exp Cell Res 2024; 444:114397. [PMID: 39732450 DOI: 10.1016/j.yexcr.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear. In the present study, we generated Aldh2 knockout (Aldh2-/-) mice by using CRISPR/Cas9 technology. Aldh2 gene knockout decreased the fertility of male mice. Compared to the control group mice, Aldh2-/- mice showed a significant decrease in the thickness of the seminiferous tubules and the number of germ cells. Further investigation revealed that the meiosis of spermatocytes and acrosome formation in sperm were disrupted in Aldh2-/- mice, leading to oligoasthenoteratozoospermia in male mice. However, the caput epididymis and cauda epididymis in Aldh2-/- mice showed identical proportions of morphologically abnormal sperm. Mechanistically, 4-hydroxynonenal, 3-nitro-L-tyrosine, and malondialdehyde levels were significantly elevated in both the testis and epididymis of Aldh2-/- mice, thus indicating increased oxidative stress in the reproductive system. Collectively, our findings demonstrate that Aldh2 plays a critical role in spermatogenesis by regulating oxidative stress in mice.
Collapse
Affiliation(s)
- Ying Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xing Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiaoli Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Linxiao Lv
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Zexin Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Chenyang Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zongzhuang Wen
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
| |
Collapse
|
3
|
Helczman M, Tomka M, Arvay J, Tvrda E, Andreji J, Fik M, Snirc M, Jambor T, Massanyi P, Kovacik A. Selected micro- and macro-element associations with oxidative status markers in common carp ( Cyprinus carpio) blood serum and ejaculate: a correlation study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:999-1014. [PMID: 39344187 DOI: 10.1080/15287394.2024.2406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to (1) determine complex interactions between macro- and micro-elements present in blood serum and ejaculate of common carp (Cyprinus carpio), and (2) examine the association between alterations in these macro- and micro-elements with markers of oxidative stress. Blood and ejaculate from 10 male carp were collected in the summer period on the experimental pond in Kolíňany (West Slovak Lowland). Reactive oxygen species (ROS), total antioxidant capacity (TAC), protein carbonyls (PC), and malondialdehyde (MDA) levels were measured in blood serum and ejaculate using spectrophotometric methods. The amounts of elements (Ag, Al, Ba, Co, Li, Mo, Ca, K, Na, and Mg) in all samples were quantified using inductively coupled plasma optical emission spectrophotometry. Data demonstrated significant differences in elemental concentrations between blood and ejaculate, specifically significantly higher ejaculate levels were detected for Ag, Al, Ba, Co, Li, Mo, K, and Mg. Potassium was the most abundant macro-element in the ejaculate, while sodium was the most abundant in blood serum. Among the micro-elements, Al was predominant in both types of samples. It is noteworthy that oxidative status markers including ROS, TAC, and MDA were significantly higher in ejaculate indicating the presence of oxidative stress in C. carpio reproductive tissue. The positive correlations between Mg and Ca in blood serum and ejaculate suggest these elements play a functional role in metabolic and physiological processes. In contrast, the positive correlations of Ba and Al with markers of oxidative stress indicated the association of these metals with induction of oxidative stress. Our findings provide insights into the association of metals with biomarkers of physiological function as well as adverse effects in C. carpio.
Collapse
Affiliation(s)
- Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Snirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology, Faculty of Exact and Natural Sciences, University of the National Education Commission, Krakow, Poland
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
4
|
Nagy AM, Abdelhameed MF, Rihan S, Diab KA, El-Saied M, Mohamed SS, El-Nattat WS, Hammam AMM. Rosemary officinalis extract mitigates potassium dichromate-induced testicular degeneration in male rats: Insights from the Nrf2 and its target genes signaling pathway. Toxicol Rep 2024; 13:101700. [PMID: 39165924 PMCID: PMC11334654 DOI: 10.1016/j.toxrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed to investigate the protective effects of Rosemary ethanol extract (ROEE) on testicular damage induced by potassium Dichromate (PDC) in male rats regarding the signaling pathway of Nrf2 and its target genes and proteins. A total of 28 male rats were divided into four groups: control, PDC only (15 mg/kg b.w. orally), PDC + low dose ROEE (220 mg/kg b.w.), and PDC + high dose ROEE (440 mg/kg b.w.). After 28 days of consecutive treatment, the rats were sacrificed for histological, immunohistochemistry, and biochemical analyses. The results revealed that the ROEE treatment up-regulated the Nrf2 and its target genes (NQO1, HO-1) mRNA expressions compared to the PDC group. correspondingly, the protein levels of GCLM, GSH, SOD, and catalase were significantly increased in the ROEE-treated animals compared to the PDC-treated animals. Furthermore, ROEE administration led to increased serum levels of testosterone (T4) and decreased levels of estrogen (E2) compared to the PDC group. Semen analysis and histopathology demonstrated that ROEE administration significantly improved spermatological impairment caused by PDC. The immunoexpression of cytoplasmic HSP-90 was reduced in the ROEE-treated groups, while the expression of androgen receptor (AR) was markedly improved. ROEE exhibited protective effects against PDC-induced testicular damage, likely due to its antioxidant properties. However, further investigation is required to elucidate the underlying mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Nagy
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical research and clinical studies institute, National Research Centre, Cairo, Egypt
| | - Shaimaa Rihan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Kawthar A. Diab
- Department of Genetics and Cytology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shereif S. Mohamed
- Nutrition and Food Science Department, National Research Centre, Cairo, Egypt
| | - Walid S. El-Nattat
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Mohsen M. Hammam
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, Wang H, Ma Y, Liang G, Chen L, Yang K, Hu J. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230:330-340. [PMID: 39369625 DOI: 10.1016/j.theriogenology.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
During cryopreservation, a substantial portion of spermatozoa undergoes apoptosis due to cryoinjury, resulting in decreased fertility. Boar spermatozoa are highly sensitive to temperature, with low temperature triggering reactive oxygen species (ROS) generation, leading to oxidative stress and apoptosis. Sulforaphane (SFN), a potent natural compound found in cruciferous vegetables, is efficacious in mitigating oxidative stress. We here supplemented different SFN concentrations (0, 1.25, 2.5, 5, 10, and 20 μM) into the freezing extender to explore its effect on boar sperm during cryopreservation and determine the optimal SFN concentration. Supplementation of 5 μM SFN exhibited the highest sperm motility, motion performance, plasma membrane integrity, acrosome integrity, and antioxidant properties (total antioxidant capacity (T-AOC) and antioxidant enzyme activity) after freezing and thawing. Then, RT group, C group and C + SFN group were established to explore the effect of SFN on the cryopreservation-induced sperm apoptosis level and fertilizing capacity of post-thawed sperms. SFN effectively rescued the apoptosis and fertilizing capacity of post-thawed sperms. Mechanistically, SFN activated the redox-sensitive nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) by promoting adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. This activation improved antioxidant defenses, ultimately improving cryoinjury in boar spermatozoa. In summary, SFN suppressed cryopreservation-induced apoptosis of spermatozoa by activating antioxidant defenses and the AMPK/NFE2L2 signaling pathway. These findings suggest a novel approach for augmenting the cryoprotective efficiency and spermatozoa fertility after cryopreservation.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Zhang Yong Academician Animal Biotechnology Engineering Center, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Pingyu Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yunhui Ma
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Guodong Liang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Lin Chen
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Ke Yang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Abdi M, Fadaee M, Jourabchi A, Karimzadeh H, Kazemi T. Cyclophosphamide-Induced Infertility and the Impact of Antioxidants. Am J Reprod Immunol 2024; 92:e70014. [PMID: 39625043 DOI: 10.1111/aji.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
An important drawback of anticancer chemotherapy is the harm it causes to healthy cells. Cyclophosphamide (CP) is a widely used chemotherapeutic alkylating agent that is regularly used in cancer treatment. However, it can cause severe side effects, including genotoxicity, due to its ability to damage DNA. This toxicity is thought to be associated with oxidative stress induced by an excessive amount of reactive oxygen species (ROS). Therefore, there is a specific focus on the potential effects of anticancer treatments on fertility. Due to the increasing life expectancy of cancer patients, those desiring parenthood may face the negative impacts of therapies. Utilizing substances with antioxidant and cytoprotective characteristics to protect the reproductive system from harmful consequences during chemotherapy would be highly beneficial. This review introduces the physiological and pathological roles of ROS in the reproductive systems of both males and females, then we address the adverse effects of CP administration on infertility and discuss how antioxidants can reverse these effects.
Collapse
Affiliation(s)
- Morteza Abdi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Jourabchi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Karimzadeh
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
7
|
Bozdemir N, Kablan T, Sukur G, Cinar O, Uysal F. Obesity induced by a high-fat diet changes p62 protein levels in mouse reproductive organs. J Mol Histol 2024; 56:13. [PMID: 39611975 DOI: 10.1007/s10735-024-10310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
Obesity is one of the major risk factor for infertility since it causes decreased quality and quantity of gametes and a disrupted uterine environment which might result in miscarriage, stillbirth, and fetal abnormal growth. Obesity induces oxidative stress which is strongly associated with infertility. The clearing of oxidative stress by autophagy is maintained through the p62/ Keap1/Nrf2 pathway. In this pathway, oxidative stress induces p62 for binding to Keap1, thereby Keap1 cannot bind to the Nrf2 transcription factor. Then, Nrf2 translocates into the nucleus and initiates antioxidant-related gene expression. While p62, bound to Keap1, acts as an adaptor protein between autophagosome and damaged substrates which needs to be degraded for homeostasis. Up to date, obesity is strongly linked to abnormal autophagy activity. However, p62 protein expression has not been investigated in the obese ovary, testis, and uterus in detail. Thus, in the present study, we aimed to evaluate the effects of a high-fat diet (HFD)-induced obesity on p62 protein levels of the ovary, testis, and uterus in mice. Our results demonstrated that the p62 expression level was significantly altered by HFD in uterine glands, epithelium, myometrium, and stroma, and in the ovarian corpus luteum, testicular spermatogonium and spermatocytes.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Altindag, Ankara, 06050, Turkey
| | - Tuba Kablan
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Altindag, Ankara, 06050, Turkey
| | - Gozde Sukur
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Altindag, Ankara, 06050, Turkey.
| |
Collapse
|
8
|
Li C, Liang J, Allai L, Badaoui B, Shao Q, Ouyang Y, Wu G, Quan G, Lv C. Integrating proteomics and metabolomics to evaluate impact of semen collection techniques on the quality and cryotolerance of goat semen. Sci Rep 2024; 14:29489. [PMID: 39604559 PMCID: PMC11603158 DOI: 10.1038/s41598-024-80556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses. Semen samples were collected from Yunshang black goats and categorized into four groups: fresh sperm collected via AV (XAZ), fresh sperm collected via EE (XEZ), frozen sperm post-AV collection (DAZ) and frozen sperm post-EE collection (DEZ). Four comparisons (XAZ vs. XEZ, DAZ vs. XAZ, DEZ vs. XEZ, DAZ vs. DEZ) were performed, respectively. This study first evaluated sperm motility, acrosome integrity, plasma membrane integrity, mitochondrial activity, and reactive oxygen species (ROS) levels. The results indicated that there were no significant differences in fresh sperm quality parameters between the EE and AV methods. However, notable differences emerged post-cryopreservation. Specifically, the AV method proved more advantageous in preserving the motility, integrities of acrosome and plasma membrane, mitochondrial activity of frozen sperm compared to the EE method. Through the multi-omics approaches, a total of 210 differentially abundant proteins (DAPs) related to sperm characteristics and function were identified across the four comparations. Moreover, 32 differentially abundant metabolites (DAMs) were detected. Comprehensive bioinformatics analysis underscored significant molecular pathways in the co-enrichment of DAPs and DAMs, particularly focusing on the citrate cycle, ROS, oxidative phosphorylation, and glycine, serine, and threonine metabolism etc. We elucidated the differential impacts of AV and EE collection methods on the quality and cryotolerance of goat semen from omics perspectives, which offer a critical foundation for further exploration into optimizing semen collection and cryopreservation techniques in goat breeding program.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | | | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| |
Collapse
|
9
|
Rotimi DE, Elekofehinti OO, Oluba OM, Adeyemi OS. Co-Administration of a Plantain-Based Diet and Quercetin Modulates Atrazine-Induced Testicular Dysfunction in Rats via Testicular Steroidogenesis and Redox-Inflammatory Processes. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39564814 DOI: 10.1002/tox.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Plantain has been reported to enhance testicular function indices, however, the mechanism remains unknown. The present study investigated the action mechanisms of a plantain-based diet in the treatment of rat testicular dysfunction caused by exposure to atrazine (ATZ). The rats were grouped into 10 groups (5 rats each); control group, 50% plantain-based diet (50% PBD), 25% PBD, 12.5% PBD, quercetin (QUE), ATZ only, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ, and QUE + ATZ for 21 days. Results revealed that ATZ treatments in rats lowered gonadal hormone levels and the semen quality (sperm concentration, motility, count, and viability), damaged testicular morphology and functions, and impaired redox-inflammatory balance as well as cholinergic and purinergic activities. However, treatment with PBD and QUE ameliorated the testicular toxicity induced by ATZ, although the treatment did not improve the rat semen quality. In addition, the ATZ + QUE and QUE groups showed mild to moderate atrophic degenerative changes, with reduced spermatogenic activity. Together, the results are evidence that 21 days of exposure to ATZ impaired testicular function. However, co-administration of atrazine and PBD improves rat gonadal hormones, redox state, inflammatory indices, cholinergic, and purinergic activities, as well as histoarchitecture of the testes.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Ondo State, Nigeria
| | - Olarewaju Michael Oluba
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
10
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Yüksek T, Ataş H, Kartal SP, Aygar GT, Karakoyunlu AN. Impact of adalimumab on erectile dysfunction, sperm parameters and hormonal profile in male psoriasis patients: a six-month observational study. Arch Dermatol Res 2024; 317:21. [PMID: 39549069 DOI: 10.1007/s00403-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin disease, is associated with systemic complications that extend beyond cutaneous lesions, including cardiovascular risks and sexual dysfunction. Erectile dysfunction (ED) is notably more prevalent in male psoriasis patients, likely driven by both systemic inflammation and psychological stress. Adalimumab (ADA), a tumor necrosis factor-alpha (TNF-α) inhibitor, has been shown to effectively reduce psoriasis severity, but its effects on sexual and reproductive health remain underexplored. This study investigates the impact of ADA on erectile function, sperm parameters, and hormonal profiles in male psoriasis patients. This six-month prospective observational study included 33 biologic-naïve male patients aged 18-50 years with moderate-to-severe plaque psoriasis (Psoriasis Area and Severity Index [PASI] > 10). Patients received ADA according to standard clinical protocols. Erectile function was assessed using the International Index of Erectile Function (IIEF-5). Sperm parameters, including ejaculate volume, sperm concentration, total sperm count, motility, vitality, and morphology, were analyzed following World Health Organization (WHO) 2010 criteria. Hormonal profiles (testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol, and prolactin) were measured via standardized assays. Statistical analyses were performed using paired t-tests or Wilcoxon signed-rank tests, with p-values < 0.05 considered significant. ADA significantly improved erectile function, as the mean IIEF-5 score increased from 21.3 ± 2.2 to 22.2 ± 1.9 (p = 0.03). The percentage of patients with ED decreased from 51.5% at baseline to 36.4% post-treatment (p < 0.001). Progressive sperm motility and vitality showed statistically significant improvement post-treatment (p = 0.02 and p = 0.04, respectively), while other sperm parameters remained unchanged. Total testosterone levels significantly increased from 3.4 ± 0.4 ng/ml to 3.5 ± 0.4 ng/ml (p = 0.02), while LH, FSH, estradiol, and prolactin levels showed no significant changes. The anti-inflammatory properties of adalimumab, through the inhibition of TNF-α, not only reduce psoriasis severity but also appear to exert positive effects on male sexual and reproductive health. Our study demonstrated significant improvements in erectile function, sperm motility, vitality, and testosterone levels in male psoriasis patients after adalimumab therapy. These findings suggest that beyond its role in controlling psoriatic skin lesions, adalimumab may help mitigate the systemic inflammatory burden that contributes to sexual dysfunction and impaired spermatogenesis. Future long-term studies are essential to further explore the sustained impact of TNF-α inhibition on male fertility and reproductive outcomes.
Collapse
Affiliation(s)
- Tuğcan Yüksek
- Department of Dermatology, Kyrenia Dr. Akçiçek State Hospital, Kyrenia, Turkish Republic of Northern Cyprus.
| | - Hatice Ataş
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | - Selda Pelin Kartal
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | - Gamze Taş Aygar
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | | |
Collapse
|
12
|
Rastegar-Moghaddam SH, Akbarian M, Rajabian A, Alipour F, Hojjati Shargh A, Masoomi R, Ebrahimzadeh Bideskan A, Hosseini M. Potential therapeutic impacts of vitamin D on hypothyroid-induced heart and kidney fibrosis and oxidative status in male rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03593-8. [PMID: 39535596 DOI: 10.1007/s00210-024-03593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
There are several interactions between thyroid hormones (THs) and kidney and heart function. Consequently, THs deficit results in profound changes in renal and cardiac function regulation. Interestingly, emerging evidence suggests that vitamin D (Vit D) may benefit to fibrotic lesions in various tissues. Herein, this study was designed to investigate the potential impact of Vit D on renal and cardiac fibrosis in hypothyroid rats. Forty male Wistar rats were divided into four groups as follow: control, hypothyroid (0.05% PTU in drinking water), and hypothyroid + Vit D (PTU and doses of 100 or 500 IU/kg/day, by gavage) groups. After 6 weeks, biochemical parameters such as creatinine and urea in serum samples, and oxidative stress markers including malondialdehyde (MDA), total thiol groups, and superoxide dismutase (SOD) in renal and cardiac tissues homogenate were measured. Also, renal and cardiac fibrosis was evaluated histologically using Masson's trichrome staining. Hypothyroidism significantly increased creatinine and urea. Also, in hypothyroid group renal and cardiac fibrosis as well as MDA were increased, while anti-oxidative markers including total thiol group and SOD were decreased. Administration of Vit D significantly improved these alterations in oxidative stress markers and fibrosis in renal and cardiac tissues. In conclusion, this study highlighted that Vit D supplementation reduced renal and cardiac fibrosis and improved oxidative stress. These results support the emerging experimental findings linking Vit D being introduced as a potential therapeutic agent.
Collapse
Affiliation(s)
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reza Masoomi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
14
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 PMCID: PMC11614172 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Liu CY, Chen YW, Tsai TY, Liu TH, Chang TC, Tsao CW. Lactiplantibacillus plantarum 1008 Enhances Testicular Function and Spermatogenesis via the Modulation of Gut Microbiota in Male Mice with High-Fat-Diet-Induced Obesity. BIOLOGY 2024; 13:890. [PMID: 39596845 PMCID: PMC11592197 DOI: 10.3390/biology13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Our study was designed to investigate the Lactiplantibacillus plantarum 1008 (LP1008) on testicular antioxidant capacity, spermatogenesis, apoptosis, autophagy, and metabolic function in male mice with high-fat-diet-induced obesity. A total of thirty-six male C57BL/6 mice were fed a normal diet (denoted as the NC group) or a high-fat control diet (denoted as the HFC group) for 16 weeks, then half of the HFC group was randomly chosen and subsequently fed with LP1008 for the final 8 weeks (high-fat diet + LP1008; denoted as the HFP group). The HFP group expressed improved blood cholesterol, insulin resistance, hepatic function, and lipopolysaccharide (LPS) levels compared to the HFC group. Meanwhile, the HFC group displayed decreased testicular testosterone levels, sperm quality, and 17β-HSD protein expression, which were rescued after LP1008 treatment. Moreover, the HFC group had lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities. After LP1008 treatment, enhanced antioxidative activities and decreased lipid peroxidation were observed. The HFC group also exhibited aggravated apoptosis, inflammation, and autophagy proteins in the testis, which were ameliorated by LP1008 supplementation. Furthermore, the gut microbiota analysis results revealed that the Firmicutes/Bacteroidetes ratio was significantly elevated in the HFC and HFP groups compared to the NC group and that LP1008 treatment diminished Ruminococcaceae and enhanced Bifidobacteriaceae diversity. In summary, LP1008 treatment strengthened antioxidative enzyme levels and regulated microbiota-ameliorated HFC-induced oxidative stress, apoptosis, inflammation, and autophagy, and thus improved testicular function and semen quality.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Yi-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (Y.-W.C.); (T.-C.C.)
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
16
|
Wu W, Guo X, Li J, Yang M, Xiong Y. Comparison of different processed products of Allium tuberosum Rottler for the treatment of mice asthenozoospermia. Transl Androl Urol 2024; 13:2209-2228. [PMID: 39507862 PMCID: PMC11535743 DOI: 10.21037/tau-24-274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Allium tuberosum Rottler improves sexual function and is used in the treatment of impotence and spermatorrhea. However, its chemical composition and mechanism of action remain unclear. This study investigates the chemical composition and mechanism of action of Allium tuberosum Rottler co-processed with salt and wine (GZP) in modulating testicular mitochondrial autophagy for the treatment of asthenozoospermia in mice. Methods Adenine gavage + cyclophosphamide intraperitoneal injection was used to establish the model of asthenozoospermia, and six Allium tuberosum Rottler processed products were compared in the pharmacological efficacy for the treatment of asthenozoospermia in mice. The liquid chromatograph mass spectrometer (LC-MS) assay was performed to analyse the compositional changes in the GZP. The mechanism of GZP in the treatment of asthenozoospermia in mice was further investigated. The mitophagy was detected by transmission electron microscope (TEM) and immunofluorescence, respectively. Reactive oxygen species (ROS) were detected by probe. Protein expression was determined by Western blotting. Results GZP exhibited optimal therapeutic effects on asthenozoospermia in mice. It showed the best therapeutic effect in improving the total number of spermatozoa, sperm survival rate, improving sperm viability and reducing sperm deformity rate, alleviating the abnormal pathological morphology of mice testis, and increasing the serum testosterone (T), follicle-stimulating hormone (FSH) and prolactin (PRL) levels in mice. The LC-MS detection found that Allicin showed the most significant increase in GZP. Besides, GZP reduced ROS level and inhibited mitophagy in mice testicular tissues. Meanwhile, it restrained the expression of PINK1, Parkin, Light chain 3II (LC3-II)/Light chain 3I (LC3-I) and Caspase-3 proteins. Conclusions GZP improves asthenozoospermia via inhibiting excessive mitophagy and protects the integrity of mitochondria by blocking the PINK1/Parkin signaling pathway. During which, the Allicin may play an important role.
Collapse
Affiliation(s)
- Wenhui Wu
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaohong Guo
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Li
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Min Yang
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Zhang T, Zhang S, Zhang C, Liu H, Liu M, Zhang GH, Duan G, Chen S, Ren J. The moderation effect of GSTM1/GSTT1 gene polymorphisms on the association of sperm mitochondrial DNA copy number and sperm mobility. Sci Rep 2024; 14:24790. [PMID: 39433861 PMCID: PMC11493958 DOI: 10.1038/s41598-024-74968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress (OS) is believed to be a significant factor in the decline of semen quality, with mitochondrial DNA copy number (mtDNAcn) serving as a sensitive biomarker for both semen quality and mitochondrial dysfunction resulting from oxidative stress. While glutathione S-transferases (GSTs) are commonly known as 'antioxidant' enzymes, there is ongoing debate regarding the relationship between GST genotypes and semen quality. In a study involving 568 male volunteers from the outpatient department of Puyang Reproductive Medicine Center, sperm mtDNAcn, semen quality, and GSTM1/GSTT1 genotypes were analyzed to investigate the potential link between GSTM1/GSTT1 gene variations and semen quality, as well as the impact of GSTs gene variations on the connection between sperm mtDNAcn and semen quality. Adjusting for variables such as age, BMI, smoking, and alcohol consumption, it was found that mtDNAcn was significantly correlated with decreased sperm concentration and total sperm count (b = - 0.109, - 0.128, respectively; P = 0.002, 0.001, respectively). GSTM1 was associated with progressive motility (OR 0.390, 95% CI 0.218, 0.697), Straight line velocity (VSL) (OR = 0.606, 95% CI 0.385, 0.953), and Straightness (STR) (OR 0.604, 95% CI 0.367, 0.994), while GSTT1 was linked to progressive motility (OR 0.554, 95% CI 0.324, 0.944) and Beat crossover frequency (OR 0.624, 95% CI 0.397, 0.982). The GSTT1 was found to moderate the relationship between mtDNAcn and sperm motility parameters linearity (LIN), STR, and Wobble (WOB), with additive interaction effects observed between GSTT1 and mtDNAcn on LIN, STR, and WOB (P for interaction = 0.008, 0.034, 0.010, respectively). Overall, this study suggests that GSTT1 and GSTM1 gene variations may play a role in sperm motility, with GSTT1 potentially influencing the impact of oxidative stress on sperm motility.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Zhang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mingming Liu
- Department of Cardiology, PLA Northern Theater Command General Hospital, Shenyang, 110000, China
| | - Guang-Hui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guangcai Duan
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingchao Ren
- School of Public Health, Chongqing Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Wang S, Zhang W, Tian B, Hu Y, Li T, Cui X, Zhang L, Luo X. Regulation Progression on Ellagic Acid Improving Poultry Production Performance by Regulating Redox Homeostasis, Inflammatory Response, and Cell Apoptosis. Animals (Basel) 2024; 14:3009. [PMID: 39457938 PMCID: PMC11505372 DOI: 10.3390/ani14203009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
It has been approximately 2000 years since the medicinal homologous theory, which primarily holds that food has the same therapeutic value as medicine in order to improve the health of both humans and animals. In recent years, this theory has also been proposed to be used in poultry breeding. Ellagic acid (EA), a natural compound primarily extracted from medicinal homologous foods such as raspberries and pomegranates, is reported to have incomparable advantages in improving the production performance and disease resistance of poultry due to its pharmacological properties, which regulate the processes of redox homeostasis, inflammatory response, and cell apoptotic death. However, the application and research of EA in poultry production are still in the initial stage, and the potential mechanisms of its biological functions affecting animal health have not been clearly identified, which requires more attention worldwide. This mini-review collects the latest 10-year achievements of research on the effects of EA on poultry health, aiming to promote the practical application of EA in maintaining animal health and formulating corresponding targeted strategies.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Wenjun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Bing Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Liyang Zhang
- State Key Laboratory of Animal Nutrition, Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| |
Collapse
|
19
|
Cai J, Song L, Hu Z, Gao X, Wang Y, Chen Y, Xi K, Lu X, Shi Y. Astragalin alleviates oligoasthenospermia via promoting nuclear translocation of Nrf2 and reducing ferroptosis of testis. Heliyon 2024; 10:e38778. [PMID: 39444397 PMCID: PMC11497445 DOI: 10.1016/j.heliyon.2024.e38778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Oligoasthenospermia (OAS) is a global human developmental disease and the most common type of male infertility. There are currently no sufficiently effective therapeutic strategies for OAS. Wuziyanzong Pill (WZYZP) is a traditional Chinese prescription for the clinical treatment of male infertility, and its efficacy is well known in China. Therefore, due to the complexity of traditional Chinese medicine, the specific mechanism of action of WZYZP on OAS has not been elucidated. Astragalin (AG), one of the main active substances in WZYZP, has good antioxidant effect. The aim of this research is to investigate whether AG, the active substance in WZYZP, can treat OAS by promoting Nrf2 nuclear translocation and inhibiting ferroptosis. The OAS model was established by intraperitoneal injection of cyclophosphamide, and the therapeutic effects of AG and WZYZP on OAS were evaluated by detecting sperm quality, sex hormone levels and testicular pathological changes after intragastric administration of AG and WZYZP. Western blot was used to measure the expression levels of TFR1, SLC7A11, GPX4 and FTH1. The nuclear translocation of Nrf2 was detected by immunofluorescence staining and nuclear/intracellular expression of Nrf2. The results showed that AG could improve sperm quality and serum sex hormone levels in OAS rats, reduce the expression of testicular Fe2+ and TFR1, up-regulate testicular SLC7A11, GPX4 and FTH1, and inhibit testicular ferroptosis. At the same time, AG can promote the expression and nuclear translocation of Nrf2 in the testis of OAS rats. AG can alleviate OAS via promoting nuclear translocation of Nrf2 and inhibiting ferroptosis of testis.
Collapse
Affiliation(s)
- Jiayu Cai
- Traditional Chinese Medicine Department, Jinling Hospital, Nanjing 210002,China
| | - Lingxiong Song
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Zebo Hu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xiaojiao Gao
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yuhan Wang
- School of Public Health and Management, Ningxia Medicine University, Ningxia, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Ke Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xin Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
22
|
Hassan MH, Saadeldin AA, Alsagheer G, Desoky T, Hasan AS. Biochemical and Pharmacological Assessments of Tramadol Abuse on Human Male Fertility: Relation to Seminal Plasma 8-Hydroxyguanosine and Zinc. Indian J Clin Biochem 2024; 39:489-505. [PMID: 39346718 PMCID: PMC11436548 DOI: 10.1007/s12291-023-01141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Tramadol is a pain killing drug highly used worldwide. There is a knowledge gap for fertility consequences of analgesic addiction in men. In this observational study, we investigated the hazards of tramadol abuse on human male reproductive function. A total of 30 tramadol addicts and 30 healthy controls have participated in the study. History and clinical examination of the included subjects were performed. Biochemical and molecular assays were measured in all participants include serum reproductive hormones (calculated free testosterone, FSH, LH, prolactin and estradiol) using ELISA techniques, semen analysis, seminal plasma zinc and selenium assays using colorimetric kits, seminal plasma tramadol concentrations using Gas Chromatography-Mass Spectrometry (GC-MS), and seminal plasma 8-hydroxyguanosine (8-OHG) using high performance liquid chromatography were measured. Tramadol abuse significantly decreased semen parameters quality. Additionally, tramadol abuse significantly decreased testosterone (P = 0.001) and increased prolactin serum levels (P = 0.000). Tramadol abusers showed significantly higher levels of 8-OHG (P < 0.0001) with significantly lower levels of zinc and selenium in their seminal plasma compared with the controls (P < 0.0001, and 0.0002 respectively). Also, tramadol addicts displayed positive correlations between seminal plasma levels of 8-OHG (r = 0.905, P = 0.00) and sperm abnormal forms (r = 0.610, P = 0.000) with seminal plasma tramadol levels. Seminal plasma levels of zinc (r = - 0.815, P = 0.00), sperm motility (r = - 0.484, P = 0.007), and vitality (r = - 0.430, P = 0.018) were negatively correlated with seminal plasma levels of tramadol. Our data suggest that tramadol abuse may impair male fertility by increasing oxidative damage of sperms and reducing testosterone and the antioxidants trace elements in testicular tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01141-4.
Collapse
Affiliation(s)
- Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, 83523 Egypt
| | - Aya A Saadeldin
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Gamal Alsagheer
- Department of Urology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tarek Desoky
- Department of Neuropsychiatry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
23
|
Peña-García MV, Moyano-Gallego MJ, Gómez-Melero S, Molero-Payán R, Rodríguez-Cantalejo F, Caballero-Villarraso J. One-Year Impact of Occupational Exposure to Polycyclic Aromatic Hydrocarbons on Sperm Quality. Antioxidants (Basel) 2024; 13:1181. [PMID: 39456435 PMCID: PMC11504984 DOI: 10.3390/antiox13101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal plants. METHODS Case-control study. A total of 61 men were included: 32 workers exposed to PAH at a solar thermal plant and 29 unexposed people. Seminal quality was studied both at the cellular level (quantity and quality of sperm) and at the biochemical level (magnitudes of oxidative stress in seminal plasma). RESULTS In exposure to PAHs, a significantly higher seminal leukocyte infiltration was observed, as well as lower activity in seminal plasma of superoxide dismutase (SOD) and a reduced glutathione/oxidised glutathione (GSH/GSSG) ratio. The oxidative stress parameters of seminal plasma did not show a relationship with sperm cellularity, neither in those exposed nor in those not exposed to PAH. CONCLUSION One year of exposure to PAH in a solar thermal plant does not have a negative impact on the sperm cellularity of the worker, either quantitatively (sperm count) or qualitatively (motility, vitality, morphology, or cellular DNA fragmentation). However, PAH exposure is associated with lower antioxidant capacity and higher leukocyte infiltration in seminal plasma.
Collapse
Affiliation(s)
- Mª Victoria Peña-García
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Mª José Moyano-Gallego
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Sara Gómez-Melero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Rafael Molero-Payán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Fernando Rodríguez-Cantalejo
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Javier Caballero-Villarraso
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
- Department of Biochemistry and Molecular Biology, Universidad of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
24
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2024:10.1007/s43032-024-01714-5. [PMID: 39333437 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
25
|
Dong PY, Yan YMC, Chen Y, Bai Y, Li YY, Dong Y, Liu J, Zhang BQ, Klinger FG, Chen MM, Zhang XF. Multiple omics integration analysis reveals the regulatory effect of chitosan oligosaccharide on testicular development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116802. [PMID: 39106567 DOI: 10.1016/j.ecoenv.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
Infertility is a global health problem affecting millions of people of reproductive age worldwide, with approximately half caused by males. Chitosan oligosaccharide (COS) has strong antioxidant capacity, but its impact on the male reproductive system has not been effectively evaluated. To address this, we integrated RNA-seq, serum metabolomics and intestinal 16 S rDNA analysis to conduct a comprehensive investigation on the male reproductive system. The results showed that COS has potential targets for the treatment of oligospermia, which can promote the expression of meiotic proteins DDX4, DAZL and SYCP1, benefit germ cell proliferation and testicular development, enhance antioxidant capacity, and increase the expression of testicular steroid proteins STAR and CYP11A1. At the same time, COS can activate PI3K-Akt signaling pathway in testis and TM3 cells. Microbiome and metabolomics analysis suggested that COS alters gut microbial community composition and cooperates with serum metabolites to regulate spermatogenesis. Therefore, COS promotes male reproduction by regulating intestinal microorganisms and serum metabolism, activating PI3K-Akt signaling pathway, improving testicular antioxidant capacity and steroid regulation.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao 266100, China
| | - Bing-Qiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China
| | | | - Meng-Meng Chen
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266111, China; Qingdao Restore Biotechnology Co., Ltd., Qingdao, Shandong 266111, China.
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|
26
|
Zhang Y, Ding N, Cao J, Zhang J, Liu J, Zhang C, Jiang L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res 2024; 23:3764-3779. [PMID: 39067049 PMCID: PMC11385425 DOI: 10.1021/acs.jproteome.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Ding
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jinkang Cao
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chun Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
27
|
Moretti E, Signorini C, Liguori L, Corsaro R, Nerucci F, Fiorini M, Menchiari S, Collodel G. Evaluation of Known Markers of Ferroptosis in Semen of Patients with Different Reproductive Pathologies and Fertile Men. Cells 2024; 13:1490. [PMID: 39273059 PMCID: PMC11394366 DOI: 10.3390/cells13171490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to investigate the role of ferroptosis, an iron-dependent form of regulated cell death, in male infertility. The motivation behind this research stems from the increasing recognition of oxidative stress and iron metabolism dysregulation as critical factors in male reproductive health. In this study, 28 infertile patients (grouped by the presence of urogenital infections or varicocele) and 19 fertile men were selected. Spermiograms were performed by light microscopy (WHO, 2021). Testosterone, ferritin, transferrin-bound iron, transferrin, and F2-isoprostanes (F2-IsoPs) were detected in seminal plasma. Glutathione peroxidase 4 (GPX4) and acyl coenzyme A synthetase long chain family member 4 (ACSL4) were also assessed in sperm cells using enzyme-linked immunosorbent assays (ELISA). All the variables were correlated (statistically significant Spearman's rank correlations) in the whole population, and then the comparison between variables of the different groups of men were carried out. Seminal ferritin and transferrin positively correlated with seminal F2-IsoPs, which had positive correlations with ACSL4 detected in sperm cells. Ferritin and ACSL4 negatively correlated with the seminal parameters. No correlation was detected for GPX4. Comparing the variables in the three examined groups, elevated levels of ACSL4 were observed in infertile patients with urogenital infections and varicocele; GPX4 levels were similar in the three groups. These results suggested a mechanism of ferroptosis, identified by increased ACSL4 levels and the occurrence of lipid peroxidation. Such events appear to be GPX4-independent in reproductive pathologies such as varicocele and urogenital infections.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Fabiola Nerucci
- Clinical Pathology Unit, Department of Cellular Therapy, Hematology and Laboratory Medicine, Azienda Ospedaliera-Senese, 53100 Siena, Italy
| | - Marcello Fiorini
- Clinical Pathology Unit, Department of Cellular Therapy, Hematology and Laboratory Medicine, Azienda Ospedaliera-Senese, 53100 Siena, Italy
| | - Silvia Menchiari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
28
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
29
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
30
|
Jiahong C, Junfeng D, Shuxian L, Tao W, Liyun W, Hongfu W. The role of immune cell death in spermatogenesis and male fertility. J Reprod Immunol 2024; 165:104291. [PMID: 38986230 DOI: 10.1016/j.jri.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The male reproductive system provides a distinctive shield to the immune system, safeguarding germ cells (GCs) from autoimmune harm. The testis in mammals creates a unique immunological setting due to its exceptional immune privilege and potent local innate immunity. which can result from a number of different circumstances, including disorders of the pituitary gland, GC aplasia, and immunological elements. Apoptosis, or programmed cell death (PCD), is essential for mammalian spermatogenesis to maintain and ensure an appropriate number of GCs that correspond with the supporting capability of the Sertoli cells. Apoptosis is substantial in controlling the number of GCs in the testis throughout spermatogenesis, and any dysregulation of this process has been linked to male infertility. There is a number of evidence about the potential of PCD in designing novel therapeutic approaches in the treatment of infertility. A detailed understanding of PCD and the processes that underlie immunological infertility can contribute to the progress in designing strategies to prevent and treat male infertility. This review will provide a summary of the role of immune cell death in male reproduction and infertility and describe the therapeutic strategies and agents for treatment based on immune cell death.
Collapse
Affiliation(s)
- Chen Jiahong
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China
| | - Dong Junfeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liu Shuxian
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Wang Tao
- Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China.
| | - Wang Liyun
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Wu Hongfu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
31
|
Dong R, Li L, Chang H, Song G, Liu S. Study on the mechanisms of defective spermatogenesis induced by TiO 2 NPs based on 3D blood-testis barrier microfluidic chip. Toxicology 2024; 507:153888. [PMID: 39019315 DOI: 10.1016/j.tox.2024.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Li Li
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
32
|
Shen QZ, Wang YF, Fang YW, Chen YY, He LT, Zhang Y, Liu GT, Zhao K, Liu CY, Fan ZP, Zhang HP. Seminal plasma S100A8/A9 as a potential biomarker of genital tract inflammation. Asian J Androl 2024; 26:464-471. [PMID: 38727211 PMCID: PMC11449414 DOI: 10.4103/aja202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/16/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.
Collapse
Affiliation(s)
- Qiu-Zi Shen
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-Feng Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Wei Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan-Yao Chen
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Ting He
- The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550018, China
| | - Yuan Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guo-Tao Liu
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| | - Kai Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zun-Pan Fan
- Center for Reproductive Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui-Ping Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| |
Collapse
|
33
|
Díaz Ruiz E, Delgado Bermejo JV, León Jurado JM, Navas González FJ, Arando Arbulu A, Fernández-Bolaños Guzmán J, Bermúdez Oria A, González Ariza A. Effect of Supplementation of a Cryopreservation Extender with Pectoliv30 on Post-Thawing Semen Quality Parameters in Rooster Species. Antioxidants (Basel) 2024; 13:1018. [PMID: 39199262 PMCID: PMC11351633 DOI: 10.3390/antiox13081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Sperm cryopreservation is a fundamental tool for the conservation of avian genetic resources; however, avian spermatozoa are susceptible to this process. To cope with the high production of reactive oxygen species (ROS), the addition of exogenous antioxidants is beneficial. Pectoliv30 is a substance derived from alperujo, and in this study, its effect was analyzed on seminal quality after its addition to the cryopreservation extender of roosters at different concentrations. For this purpose, 16 Utrerana breed roosters were used, and seminal collection was performed in six replicates, creating a pool for each working day with ejaculates of quality. After cryopreservation, one sample per treatment and replicate was thawed, and several seminal quality parameters were evaluated. Statistical analysis revealed numerous correlations between these variables, both positive and negative according to the correlation matrix obtained. Furthermore, the chi-squared automatic interaction detection (CHAID) decision tree (DT) reported significant differences in the hypo-osmotic swelling test (HOST) variable between groups. Moreover, results for this parameter were more desirable at high concentrations of Pectoliv30. The application of this substance extracted from the by-product alperujo as an antioxidant allows the improvement of the post-thawing seminal quality in roosters and facilitates optimization of the cryopreservation process as a way to improve the conservation programs of different endangered poultry breeds.
Collapse
Affiliation(s)
- Esther Díaz Ruiz
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (E.D.R.); (J.V.D.B.); (A.A.A.)
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14005 Cordoba, Spain
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (E.D.R.); (J.V.D.B.); (A.A.A.)
| | | | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (E.D.R.); (J.V.D.B.); (A.A.A.)
| | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (E.D.R.); (J.V.D.B.); (A.A.A.)
| | - Juan Fernández-Bolaños Guzmán
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), 41013 Sevilla, Spain; (J.F.-B.G.); (A.B.O.)
| | - Alejandra Bermúdez Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), 41013 Sevilla, Spain; (J.F.-B.G.); (A.B.O.)
| | | |
Collapse
|
34
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
35
|
Karimian M, Shabani M, Nikzad H. Association of Functional Genetic Variations in Uric Acid Transporters with the Risk of Idiopathic Male Infertility: A Genetic Association Study and Bioinformatic Analysis. Biochem Genet 2024:10.1007/s10528-024-10902-6. [PMID: 39141156 DOI: 10.1007/s10528-024-10902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Uric acid plays an important role in sustaining and improving sperm morphology, viability, and motility. It is known that SLC2A9 and ABCG2 protein are the main urate transporter and genetic variations in these genes could be associated with the levels of serum uric acid. This study aimed to investigate the association between single-nucleotide polymorphisms (SNPs) SLC2A9-rs16890979, SLC2A9-rs3733591, ABCG2-rs2231142, and ABCG2-rs2231137 with male infertility. Additionally, the correlation of these SNPs with the uric acid level in seminal plasma of infertile men was examined. Subsequently, an in silico analysis was performed. In a case-control study, 193 infertile and 154 healthy controls were recruited. After semen sample collection, the uric acid level of seminal plasma was measured by a commercial kit. After genomic DNA extraction from sperm samples, SNPs genotyping was performed by PCR-RFLP method. Lastly, the effects of SNPs on the SLC2A9 and ABCG2 gene function were evaluated by bioinformatics tools. The genetic association study revealed that there are significant associations between rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations and increased risk of male infertility. Also, these variations were associated with oligozoospermia and teratozoospermia, and sometimes with asthenozoospermia. Also, we found that four studied SNPs could be associated with a decreased level of uric acid of seminal plasma in teratozoospermia and asthenozoospermia. Bioinformatic analysis revealed that the mentioned polymorphisms could affect molecular aspects of SLC2A9 and ABCG2 genes. In this preliminary study, the rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations could be considered as genetic risk factors for male infertility by interfering with the uric acid level of seminal plasma.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Maryam Shabani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran.
| |
Collapse
|
36
|
Garro LA, Andrada MF, Vega-Hissi EG, Barberis S, Garro Martinez JC. Development of QSARs for cysteine-containing di- and tripeptides with antioxidant activity:influence of the cysteine position. J Comput Aided Mol Des 2024; 38:27. [PMID: 39093524 DOI: 10.1007/s10822-024-00567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R2train = 0.947 and R2test = 0.804) and for tripeptide models (R2train = 0.923 and R2test = 0.847) indicate that the generated models have high predictive capacity. Then, the influence of the cysteine position was analyzed predicting the antioxidant activity for new di- and tripeptides, and comparing them with glutathione. In dipeptides, excepting SC, TC and VC, the activity increases when cysteine is at the N-terminal position. For tripeptides, we observed a notable increase in activity when cysteine is placed in the N-terminal position.
Collapse
Affiliation(s)
- Lucas A Garro
- Instituto de Física Aplicada (INFAP), CCT - San Luis, CONICET, Universidad Nacional de San Luis, San Luis, 5700, Argentina
| | - Matias F Andrada
- Instituto de Física Aplicada (INFAP), CCT - San Luis, CONICET, Universidad Nacional de San Luis, San Luis, 5700, Argentina
| | - Esteban G Vega-Hissi
- Facultad de Química, Bioquímica y Farmacia, IMIBIO-SL-CONICET, Universidad Nacional de San Luis, San Luis, 5700, Argentina
| | - Sonia Barberis
- Instituto de Física Aplicada (INFAP), CCT - San Luis, CONICET, Universidad Nacional de San Luis, San Luis, 5700, Argentina
| | - Juan C Garro Martinez
- Facultad de Química, Bioquímica y Farmacia, IMIBIO-SL-CONICET, Universidad Nacional de San Luis, San Luis, 5700, Argentina.
| |
Collapse
|
37
|
Kaya U, Olğaç KT. Evaluation of the relationships between oxidative stress, inflammation, hormonal status and sperm parameters in rats: Canonical correlation analysis. J Reprod Immunol 2024; 164:104276. [PMID: 38896933 DOI: 10.1016/j.jri.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Many endocrine or non-endocrine factors are involved in sperm production. Although reproductive hormones are very important for the initiation and maintenance of spermatogenesis, other factors, such as inflammation and oxidative stress, affect spermatogenesis. The aim of this study is to evaluate the relationships between sperm parameters and hormones, oxidative stress, and inflammation status. We conducted this study on 40 rats. Sperm parameters (motility, abnormal sperm rate, and dead sperm rate), oxidative stress (malondialdehyde, glutathione, glutathione peroxidase, and catalase), inflammation (NF-κβ, TNF-α, IL-1β, IL-6, and IL-10), and hormone parameters (follicle-stimulating hormone, luteinizing hormone, testosterone, melatonin, and corticosterone) were determined. Relationships between mentioned parameters were investigated by canonical correlation analysis. Canonical correlation coefficients for these data sets (sperm-oxidative stress, sperm-inflammation, and sperm-hormone parameters) were found to be strongly significant (rc= 0.875, p<0.001; rc= 0.868, p<0.001; rc= 0.886, p<0.001, respectively). The rate of explanation of oxidative stress, inflammation parameters and hormones by sperm parameters was 61.80 %, 56.10 % and 63.90 %, respectively. Canonical correlation analysis results have revealed that dead sperm rate is mostly related to nuclear factor-kappa beta (NF-κβ), catalase, and corticosterone. CCA, which has taken into account the multiple relationships, has revealed that multidimensional evaluation of data sets can provide important and innovative information to researchers for the assessment of relationships between sperm, oxidative stress, inflammation, and hormone parameters.
Collapse
Affiliation(s)
- Ufuk Kaya
- Department of Biostatistics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay 31060, Turkey.
| | - Kemal Tuna Olğaç
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Turkey.
| |
Collapse
|
38
|
Huang Q, Wu H, Xiao X, Qin X, Liu S. Preparation of oyster peptide and Pfaffia glomerata pressed candy and its ameliorative effect on sexual dysfunction in male mice. Food Sci Nutr 2024; 12:5572-5586. [PMID: 39139926 PMCID: PMC11317697 DOI: 10.1002/fsn3.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 08/15/2024] Open
Abstract
Oyster peptide (OP) and Pfaffia glomerata extract (PGE) were used as raw materials. The optimal formulation of the pressed candy (PC) was optimized by one-way experiment and D-optimal mixture experiment design, and animal experiment was used to evaluate the effect of PC on male sexual dysfunction. The results showed that PC intervention significantly improved the sexual behavior of male mice with sexual dysfunction, including a significant shortening of the mount latency (ML) and intromission latency, and a significant increase in the mount frequency (MF) and intromission frequency (IF). At the same time, the concentrations of serum testosterone (T) and luteinizing hormone (LH) in mice were restored, and the erectile parameters and pathological changes of penile tissue were improved. Further studies found that PC intervention increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the content of malondialdehyde (MDA) in testicular tissue. In addition, PC intervention improved testicular tissue morphology. In conclusion, the obtained PC has good taste quality, and the relevant quality indicators are qualified. It has a good ameliorative effect on male sexual dysfunction and may be a potential dietary supplement.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Haiying Wu
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Xiangxin Xiao
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Suqing Liu
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
39
|
Tan Y, Yuan Y, Yang X, Wang Y, Liu L. Diagnostic value of oxidation-reduction potential for male infertility: a systematic review and meta-analysis. Transl Androl Urol 2024; 13:1228-1238. [PMID: 39100838 PMCID: PMC11291403 DOI: 10.21037/tau-24-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background In the last few years, studies have initially confirmed the diagnostic significance of oxidation-reduction potential (ORP) in male infertility patients. In this article, we used meta-analysis to clarify the role of ORP in the diagnosis of male infertility. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched by computer for relevant published literature. Quality assessment of the included literature was performed by Quality Assessment of Diagnostic Accuracy Studies (QUADAS) scale. Heterogeneity analysis of included studies was conducted using Metadisc 1.4 and Stata 12.0, and effective models for quantitative synthesis were selected based on heterogeneity results; the sensitivity and specificity of the synthesis were obtained using the software, and in order to reduce the effects of heterogeneity and thresholds, the information of sensitivity and specificity was integrated. We used the subject receiver operating characteristic (SROC) curve, area under the curve (AUC) and Q* index for comprehensive evaluation. Results Seven papers were eventually included in the study, and the results showed that ORP had a sensitivity of 0.81 [95% confidence interval (CI): 0.80-0.82] and specificity of 0.66 (95% CI: 0.63-0.69), an AUC of 0.8 and a Q* index of 0.74 for the diagnosis of male infertility. Conclusions ORP has high sensitivity and specificity for diagnosing male infertility.
Collapse
Affiliation(s)
- Yangyang Tan
- Department of Urology, The Second People’s Hospital of Neijiang, Neijiang, China
| | - Yacheng Yuan
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Xukai Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yong Wang
- Department of Urology, The Second People’s Hospital of Neijiang, Neijiang, China
| | - Linhai Liu
- Department of Urology, The Second People’s Hospital of Neijiang, Neijiang, China
| |
Collapse
|
40
|
Arab HH, Alsufyani SE, Ashour AM, Gad AM, Elhemiely AA, Gadelmawla MHA, Mahmoud MA, Khames A. Targeting JAK2/STAT3, NLRP3/Caspase-1, and PK2/PKR2 Pathways with Arbutin Ameliorates Lead Acetate-Induced Testicular Injury in Rats. Pharmaceuticals (Basel) 2024; 17:909. [PMID: 39065759 PMCID: PMC11279748 DOI: 10.3390/ph17070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The reproductive system of males is adversely impacted by lead (Pb), a toxic heavy metal. The present study examined arbutin, a promising hydroquinone glycoside, for its potential ameliorative impact against Pb-induced testicular impairment in rats. The testicular injury was induced by the intraperitoneal administration of Pb acetate (20 mg/kg/day) for 10 consecutive days. Thirty-six rats were divided into six experimental groups (n = 6 per group): control, control treated with oral arbutin (250 mg/kg), control treated with intraperitoneal arbutin (75 mg/kg), untreated Pb, Pb treated with oral arbutin, and Pb treated with intraperitoneal arbutin. The treatments were administered daily for 10 days. Arbutin was administered by the oral and intraperitoneal routes to compare the efficacy of both routes in mitigating Pb acetate-induced testicular dysfunction. The current data revealed that both oral and intraperitoneal administration of arbutin significantly enhanced serum testosterone and sperm count/motility, indicating the amelioration of testicular dysfunction. In tandem, both routes lowered testicular histopathological aberrations and Johnsen's damage scores. These favorable outcomes were driven by dampening testicular oxidative stress, evidenced by lowered lipid peroxidation and increased glutathione and catalase antioxidants. Moreover, arbutin lowered testicular p-JAK2 and p-STAT3 levels, confirming the inhibition of the JAK2/STAT3 pro-inflammatory pathway. In tandem, arbutin suppressed the testicular NLRP3/caspase-1/NF-B axis and augmented the cytoprotective PK2/PKR2 pathway. Notably, intraperitoneal arbutin at a lower dose prompted a more pronounced mitigation of Pb-induced testicular dysfunction compared to oral administration. In conclusion, arbutin ameliorates Pb-evoked testicular damage by stimulating testicular antioxidants and the PK2/PKR2 pathway and inhibiting the JAK2/STAT3 and NLRP3/caspase-1 pro-inflammatory pathways. Hence, arbutin may be used as an adjunct agent for mitigating Pb-induced testicular impairment.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Amany M. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Alzahraa A. Elhemiely
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Mohamed H. A. Gadelmawla
- Department of Histology, Faculty of Dentistry, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Marwa Ahmed Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Sohag University, Sohag 82511, Egypt
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82511, Egypt
| |
Collapse
|
41
|
Yin T, Yue X, Li Q, Zhou X, Dong R, Chen J, Zhang R, Wang X, He S, Jiang T, Tao F, Cao Y, Ji D, Liang C. The Association Between the Levels of Oxidative Stress Indicators (MDA, SOD, and GSH) in Seminal Plasma and the Risk of Idiopathic Oligo-asthenotera-tozoospermia: Does Cu or Se Level Alter the Association? Biol Trace Elem Res 2024; 202:2941-2953. [PMID: 37803189 DOI: 10.1007/s12011-023-03888-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
Epidemiological studies on the associations between the levels of oxidative stress (OS) indicators (MDA, SOD, and GSH) in seminal plasma and the risk of idiopathic oligo-asthenotera-tozoospermia (OAT) are still inconsistent. Additionally, whether the associations can be altered by the status of essential trace elements is still unknown. To investigate the relationship between MDA, SOD, and GSH levels in seminal plasma and the risk of idiopathic OAT, and further to examine whether levels of iron (Fe), copper (Cu), and selenium (Se) in seminal plasma can alter the associations. A total of 148 subjects (75 idiopathic OAT cases and 73 controls) were included in this study. Seminal plasma samples from all the participants were measured for levels of MDA, SOD, GSH, Fe, Cu, and Se. Unconditional logistic regression models were used to examine the associations between three oxidative stress indicators and the risk of idiopathic OAT. Bayesian kernel machine regression was performed to determine the joint effects of levels of three OS indicators on the risk of idiopathic OAT. Subgroup analyses were performed to explore whether the above associations can be different when Fe, Cu, and Se were in different levels. The level of MDA in seminal plasma was positively associated with the risk of idiopathic OAT, with adjusted odds ratio (OR) and 95% confidence interval (CI) of 2.38 (1.17, 4.83), and SOD and GSH levels were not associated with the risk of idiopathic OAT. In BKMR analyses, we found a significant positive association between the mixture of MDA, SOD, and GSH levels and the risk of idiopathic OAT at concentrations below the 65th percentile, while a negative association at concentrations above it. In subgroup analysis, a positive association was observed between MDA levels in seminal plasma and the risk of idiopathic OAT in the high-Cu group (adjusted OR = 3.66, 95%CI = 1.16, 11.57), while no significant association was found in the low-Cu group (adjusted OR = 1.43, 95%CI = 0.44, 4.58). Additionally, a negative association was found between GSH levels in seminal plasma and the risk of idiopathic OAT in the high-Se group (adjusted OR = 0.34, 95%CI = 0.11, 0.99), while no significant association was observed in the low-Se group (adjusted OR = 1.96, 95%CI = 0.46, 8.27). The levels of MDA, SOD, and GSH in seminal plasma were associated with the risk of idiopathic OAT, and the levels of Cu and Se in seminal plasma may alter the associations.
Collapse
Affiliation(s)
- Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qian Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Dong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiayi Chen
- The First Clinical School of Anhui Medical University, Anhui, China
| | - Runtao Zhang
- The First Clinical School of Anhui Medical University, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
42
|
Li Z, Li J, Li Y, Guo L, Xu P, Du H, Lin N, Xu Y. The role of Cistanches Herba and its ingredients in improving reproductive outcomes: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155681. [PMID: 38718638 DOI: 10.1016/j.phymed.2024.155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zehui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiashan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
43
|
Budihastuti UR, Murti B, Prakosa T, Nurwati I, Laqif A, Melinawati E, Hadi C, Susanto L, Sukmawati M, Prasetya H, Wijayanti AS, Ahmad MF. Effect of electroacupuncture on total motile sperm count and sperm motility. J Public Health Res 2024; 13:22799036241272394. [PMID: 39234212 PMCID: PMC11372768 DOI: 10.1177/22799036241272394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Background Approximately 50% of infertility cases are attributed to male factors. Acupuncture has long been employed as a complementary therapy to enhance male infertility treatment outcomes. This study aimed to assess the impact of electroacupuncture (EA) therapy on sperm motility and TMSC in male infertility patients. Design and methods This randomized clinical trial involved 30 male infertility patients divided into 2 groups. Consecutive sampling was utilized among men diagnosed with infertility at the Fertility Clinic Sekar, Dr. Moewardi General Hospital, Surakarta. Both groups underwent assessments of sperm motility and TMSC before and after the intervention. The first group received Coenzyme Q, while the second group received Coenzyme Q + EA. Results The Qoenzyme Q + EA group exhibited no significant difference in motility levels before treatment, with an average motility of 41.40% ± 13.33 and a TMSC level of 33.59 × 106 ± 27.91. Post-treatment, motility remarkably increased by 56.40% ± 11.78, and the TMSC level rose by 78.63 × 106 ± 58.38 in the Qoenzyme Q + EA group. Conversely, the Qoenzyme Q pre-treatment group had an average motility of 48.07% ± 15.77 and a TMSC level of 30.20 × 106 ± 34.82. After Coenzyme Q treatment, a significant decrease in motility by 42.80% ± 18.03 and TMSC level by 28.22 × 106 ± 15.16 was observed. Conclusion Combining Coenzyme Q + EA had a more significant impact on sperm motility and TMSC levels than Coenzyme Q alone. These findings underscore the differential effects of Coenzyme Q + EA and Coenzyme Q on sperm motility and TMSC levels, suggesting potential therapeutic implications for male reproductive health. Future studies with larger sample sizes are warranted to validate and expand upon these results.
Collapse
Affiliation(s)
- Uki Retno Budihastuti
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
- Public Health Science Study Program, Universitas Sebelas Maret, Surakarta, Indonesia
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Jawa Tengah, Indonesia
| | - Bhisma Murti
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Public Health Science Study Program, Universitas Sebelas Maret, Surakarta, Indonesia
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Jawa Tengah, Indonesia
| | - Teguh Prakosa
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Ida Nurwati
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Jawa Tengah, Indonesia
| | - Abdurahman Laqif
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Eriana Melinawati
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Cahyono Hadi
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Lunardhi Susanto
- School of Pharmacy, Universitas Hang Tuah, Surabaya, Jawa Timur, Indonesia
| | - Metanolia Sukmawati
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Hanung Prasetya
- Acupuncture Department, Surakarta Health Polytechnic, Surakarta, Jawa Tengah, Indonesia
| | - Agung Sari Wijayanti
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Miftahul Falah Ahmad
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Department of Obstetrics and Gynecology, Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| |
Collapse
|
44
|
Raeeszadeh M, Moradian M, Khademi N, Amiri AA. The Effectiveness of Time in Treatment with Vitamin C and Broccoli Extract on Cadmium Poisoning in Mice: Histological Changes of Testicular Tissue and Cell Apoptotic Index. Biol Trace Elem Res 2024; 202:3278-3292. [PMID: 37821783 DOI: 10.1007/s12011-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The growth rate of reproductive system disorders caused by heavy metals is undeniable. The effect of time and interfering compounds are also of paramount importance. The main objective of this study was to compare the effects of broccoli extract and vitamin C in the context of cadmium poisoning on various reproductive parameters in mice, with a specific focus on the influence of time. A total of one hundred and forty-four male mice were randomly assigned to six groups. The control (C) group received only water and a standard diet without any interventions. The Cd group received a single intraperitoneal dose of cadmium chloride at 1.5 mg/kg. The cadmium intervention groups were administered broccoli extract at dosages of 100 mg/kg (Cd + B100), 200 mg/kg (Cd + B200), and 300 mg/kg (Cd + B300), respectively. Additionally, the Cd + VC group was treated with cadmium and vitamin C at 200 mg/kg intraperitoneally for a duration of 28 days. At the end of each week (four stages), five animals were randomly chosen from each group. Epididymal sperm were subjected to analysis for sperm parameters, while testicular tissue sections were examined for histological studies, apoptosis index, and markers of oxidative stress. The influence of time on body and testis weight gain was notably significant in the Cd + B300 and Cd + VC groups (p = 0.001). In all groups, except for Cd + B100, there were marked increases in spermatogenic cell lines and the Johnson coefficient compared to the Cd group (p = 0.001). These changes were particularly pronounced in the Cd + VC and Cd + B300 groups with respect to time (p < 0.001). Furthermore, there was a discernible positive impact of time on sperm count in the high-dose broccoli and vitamin C groups, although this effect did not reach significance in terms of sperm motility and vitality. Over time, the levels of superoxide dismutase (SOD) and catalase (CAT) enzymes increased, while malondialdehyde (MDA) levels decreased in the Cd + VC, Cd + B200, and Cd + B300 groups (p = 0.001). The apoptosis index in testicular tissue reached its highest level in the Cd group and its lowest level in the Cd + B300 and Cd + VC groups during the fourth week (p < 0.05). Linolenic acid, indole, and sulforaphane were identified as the most potent compounds in broccoli during this intervention. Consequently, vitamin C and broccoli extract at a dosage of 300 mg/kg demonstrated significant enhancements in reproductive performance in cases of cadmium poisoning. Overall, the influence of time significantly amplified the process of spermatogenesis and sperm production, with no observable changes in sperm viability and motility.
Collapse
Affiliation(s)
- Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Midia Moradian
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Nadia Khademi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
45
|
Bravo A, Sánchez R, Zambrano F, Uribe P. Exogenous Oxidative Stress in Human Spermatozoa Induces Opening of the Mitochondrial Permeability Transition Pore: Effect on Mitochondrial Function, Sperm Motility and Induction of Cell Death. Antioxidants (Basel) 2024; 13:739. [PMID: 38929178 PMCID: PMC11201210 DOI: 10.3390/antiox13060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) and disrupted antioxidant defense mechanisms play a pivotal role in the etiology of male infertility. The alterations in reactive oxygen species (ROS) production and calcium (Ca2+) homeostasis are the main activators for the mitochondrial permeability transition pore (mPTP) opening. The mPTP opening is one of the main mechanisms involved in mitochondrial dysfunction in spermatozoa. This alteration in mitochondrial function adversely affects energy supply, sperm motility, and fertilizing capacity and contributes to the development of male infertility. In human spermatozoa, the mPTP opening has been associated with ionomycin-induced endogenous oxidative stress and peroxynitrite-induced nitrosative stress; however, the effect of exogenous oxidative stress on mPTP opening in sperm has not been evaluated. The aim of this study was to determine the effect of exogenous oxidative stress induced by hydrogen peroxide (H2O2) on mPTP opening, mitochondrial function, motility, and cell death markers in human spermatozoa. Human spermatozoa were incubated with 3 mmol/L of H2O2 for 60 min, and intracellular Ca2+ concentration, mPTP opening, mitochondrial membrane potential (ΔΨm), ATP levels, mitochondrial reactive oxygen species (mROS) production, phosphatidylserine (PS) externalization, DNA fragmentation, viability, and sperm motility were evaluated. H2O2-induced exogenous oxidative stress caused increased intracellular Ca2+, leading to subsequent mPTP opening and alteration of mitochondrial function, characterized by ΔΨm dissipation, decreased ATP levels, increased mROS production, and the subsequent alteration of sperm motility. Furthermore, H2O2-induced opening of mPTP was associated with the expression of apoptotic cell death markers including PS externalization and DNA fragmentation. These results highlight the role of exogenous oxidative stress in causing mitochondrial dysfunction, deterioration of sperm motility, and an increase in apoptotic cell death markers, including PS externalization and DNA fragmentation, through the mPTP opening. This study yielded new knowledge regarding the effects of this type of stress on mitochondrial function and specifically on mPTP opening, factors that can contribute to the development of male infertility, considering that the role of mPTP in mitochondrial dysfunction in human sperm is not completely elucidated. Therefore, these findings are relevant to understanding male infertility and may provide an in vitro model for further research aimed at improving human sperm quality.
Collapse
Affiliation(s)
- Anita Bravo
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
| | - Raúl Sánchez
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Fabiola Zambrano
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Pamela Uribe
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
46
|
Liu X, Duan C, Yin X, Zhang L, Chen M, Zhao W, Li X, Liu Y, Zhang Y. Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks. Animals (Basel) 2024; 14:1778. [PMID: 38929397 PMCID: PMC11201029 DOI: 10.3390/ani14121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| |
Collapse
|
47
|
Rochdi C, Ouadrhiri M, Allai L, Bellajdel I, Mamri S, Taheri H, Saadi H, Mimouni A, Choukri M. Beneficial effects of oral antioxidant supplementation on semen quality parameters, reproductive hormones, and sperm DNA integrity in men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 2024; 51:135-141. [PMID: 38525521 PMCID: PMC11140257 DOI: 10.5653/cerm.2023.06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Recently, oral antioxidants in combined forms have been used to treat men with idiopathic infertility. This study aimed to evaluate the effects of treatment with vitamin C, vitamin E, selenium, zinc, arginine, L-carnitine, and coenzyme Q10 on sperm quality parameters, DNA integrity, reproductive hormones, and pregnancy rates in men with infertility and idiopathic oligoasthenoteratozoospermia (OAT). METHODS A prospective study was conducted on 420 men with infertility and idiopathic OAT who took an oral supplement of antioxidant SP-Power tablets twice daily for 6 months. Semen quality, reproductive hormones, and the DNA fragmentation index (DFI) were evaluated at baseline and at 3 and 6 months after supplementation, using the World Health Organization 2021 guidelines. RESULTS No significant difference was observed in volume or the percentage of typical morphology during treatment. A significant improvement in sperm concentration was observed after supplementation (8.67±1.41, 12.17±1.91, and 19.01±0.86 at baseline, 3, and 6 months respectively, p<0.01). The total motility, progressive motility, and total motile sperm count also increased significantly (p<0.01), whereas the DFI decreased after 6 months. There was an increase in normal FSH levels and testosterone levels after 6 months of supplementation of antioxidant SP-Power but these differences were not statistically significant (p=not significant and p=0.06, respectively). CONCLUSION Supplementation with SP-Power tablets improved sperm quality parameters, sperm DFI, some reproductive hormones, and pregnancy rates in men with infertility and idiopathic OAT, which could be attributed to the supplement's synergistic antioxidant action. Further studies are needed to determine the effects of supplementation on oxidative stress markers.
Collapse
Affiliation(s)
- Chaymae Rochdi
- Maternal-Child and Mental Health Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Meriem Ouadrhiri
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammed Benabdellah University, Fez, Morocco
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Ibtissam Bellajdel
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
- Obstetrics Gynecology Service, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Samira Mamri
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Hafsa Taheri
- Maternal-Child and Mental Health Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
- Obstetrics Gynecology Service, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Hanane Saadi
- Maternal-Child and Mental Health Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
- Obstetrics Gynecology Service, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Ahmed Mimouni
- Maternal-Child and Mental Health Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
- Obstetrics Gynecology Service, Mohammed VI University Hospital Center, Oujda, Morocco
| | - Mohammed Choukri
- Maternal-Child and Mental Health Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
- Medically Assisted Procreation Unit, Central Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco
| |
Collapse
|
48
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Lui WY, Tse WKF, Fang JKH, Lai KP, Li L. Microplastics from face mask impairs sperm motility. MARINE POLLUTION BULLETIN 2024; 203:116422. [PMID: 38749155 DOI: 10.1016/j.marpolbul.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
49
|
Yan L, Wang J, Dai D, Zhang Y, Li Y, Xiao W. Testicular protective effects of hesperidin against chemical and biological toxicants. Toxicol Res (Camb) 2024; 13:tfae078. [PMID: 38799410 PMCID: PMC11116832 DOI: 10.1093/toxres/tfae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Toxic agents can adversely impact the male reproductive system mainly via activating oxidative stress affecting the seminiferous epithelia, spermatogenesis, sperms, and the testis. Toxic agents lead to the excessive generation of reactive oxygen species (ROS), such as hydroxyl radicals, hydrogen peroxide, and superoxide anions. ROS exert a cytotoxic effect and oxidative damage to nucleic acids, proteins, and membrane lipids. Hesperidin is a pharmacologically active phytoflavone abundantly occurring in citrus fruits, such as oranges and lemons. It has shown various pharmacological properties such as antioxidant, anti-inflammatory, anti-carcinogenic, analgesic, antiviral, anti-coagulant, hypolipidemic, and hypoglycemic effects. Hesperidin has been found to exert protective effects against natural and chemical toxins-induced organ toxicity. Considerable evidence has implicated the testicular protective effects of hesperidin against the toxicological properties of pharmaceutical drugs as well as biological and chemical agents, and in the present review, we discussed, for the first time, the reported studies. The resultant data indicate that hesperidin can exert testicular protective effects through antioxidant properties.
Collapse
Affiliation(s)
- Linyin Yan
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Jia Wang
- Institute of Orthopedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Decai Dai
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yu Zhang
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yanqiang Li
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Wei Xiao
- Wuhan Aimin Pharmaceutical Co., LTD, No. 10, Entrepreneurship Avenue, Gedian Economic and Technological Development Zone, Ezhou City, Wuhan, Hubei, China
| |
Collapse
|
50
|
Babenko AN, Krepkova LV, Borovkova MV, Kuzina OS, Mkhitarov VA, Job KM, Enioutina EY. Effects of Chicory ( Cichorium intybus L.) Extract on Male Rat Reproductive System, Pregnancy and Offspring Development. Pharmaceuticals (Basel) 2024; 17:700. [PMID: 38931367 PMCID: PMC11206608 DOI: 10.3390/ph17060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We recently reported that extract prepared from the aerial part of Cichorium intybus L. (CE) possesses hepatoprotective, hypolipidemic, and hypoglycemic properties. This paper focuses on the effects of CE on the male rat reproductive system and the effects of this treatment on pregnancy and offspring development. METHODS The experimental male rats received 100 mg/kg bw/day, 500 mg/kg bw/day, and 1000 mg/kg bw/day of CE orally for 60 consecutive days. Rats that received tap water were used as controls. After treatment, we evaluated the effects of CE on the male reproductive system, fertility, and offspring development. RESULTS For CE-treated male rats, there was a significant increase in the (1) diameter of seminiferous tubules, (2) spermatogenic index, (3) number of total and motile spermatozoa, and (4) testosterone levels. Additionally, there was a decrease in the pre- and post-implantation death of the embryos in the CE-treated group. All pups born from CE-treated males demonstrated normal development. CONCLUSIONS CE treatment significantly improved male reproductive functions. No adverse effects on pregnancy and offspring development were observed when males were treated with CE. Further clinical evaluation of CE should lead to the development of a safe and effective phytodrug for treating male infertility.
Collapse
Affiliation(s)
- Alexandra N. Babenko
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Lubov V. Krepkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Marina V. Borovkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Olga S. Kuzina
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | | | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|