1
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
2
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zuo F, Jiang L, Su N, Zhang Y, Bao B, Wang L, Shi Y, Yang H, Huang X, Li R, Zeng Q, Chen Z, Lin Q, Zhuang Y, Zhao Y, Chen X, Zhu L, Yang Y. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nat Chem Biol 2024; 20:1272-1281. [PMID: 38783134 DOI: 10.1038/s41589-024-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.
Collapse
Affiliation(s)
- Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Limei Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Huimin Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilong Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengda Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Kouchmeshky A, Whiting A, McCaffery P. Neuroprotective effects of ellorarxine in neuronal models of degeneration. Front Neurosci 2024; 18:1422294. [PMID: 39376539 PMCID: PMC11456694 DOI: 10.3389/fnins.2024.1422294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Retinoic acid (RA) was first recognised to be important for the central nervous system (CNS) in its developmental regulatory role and, given this action, it has been proposed in the adult CNS to regulate plasticity and promote regeneration. These types of roles have included support of neurogenesis, induction of neurite outgrowth, and protection from neuronal death. These functions are predominantly mediated by the retinoic acid receptor (RAR) transcription factor, and hence agonists for the RARs have been tested in a variety of models of neurodegeneration. This present study employs several in vitro models less explored for the action of RAR agonists to reverse neurodegeneration. Methods A series of assays are used in which neuronal cells are placed under the types of stress that have been linked to neurodegeneration, in particular amyotrophic lateral sclerosis (ALS), and the neuroprotective influence of a new potent agonist for RAR, ellorarxine, is tested out. In these assays, neuronal cells were subjected to excitotoxic stress induced by glutamate, proteostasis disruption caused by epoxomicin, and oxidative stress leading to stress granule formation triggered by sodium arsenite. Results Ellorarxine effectively reversed neuronal death in excitotoxic and proteostasis disruption assays and mitigated stress granule formation induced by sodium arsenite. This study also highlights for the first time the novel observation of RAR modulation of stress granules, although it is unknown whether this change in stress granules will be neuroprotective or potentially regenerative. Furthermore, the distribution of RAR agonists following intraperitoneal injection was assessed in mice, revealing preferential accumulation in the central nervous system, particularly in the spinal cord, compared to the liver. Gene expression studies in the spinal cord demonstrated that ellorarxine induces transcriptional changes at a low dose (0.01 mg/kg). Discussion These findings underscore the therapeutic potential of RAR agonists, such as ellorarxine, for ALS and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Azita Kouchmeshky
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, Durham, United Kingdom
| | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
5
|
Shi W, Ding R, Chen Y, Ji F, Ji J, Ma W, Jin J. The HRD1-SEL1L ubiquitin ligase regulates stress granule homeostasis in couple with distinctive signaling branches of ER stress. iScience 2024; 27:110196. [PMID: 38979013 PMCID: PMC11228786 DOI: 10.1016/j.isci.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Stress granules (SGs) are membrane-less cellular compartments which are dynamically assembled via biomolecular condensation mechanism when eukaryotic cells encounter environmental stresses. SGs are important for gene expression and cell fate regulation. Dysregulation of SG homeostasis has been linked to human neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we report that the HRD1-SEL1L ubiquitin ligase complex specifically regulates the homeostasis of heat shock-induced SGs through the ubiquitin-proteasome system (UPS) and the UPS-associated ATPase p97. Mechanistically, the HRD1-SEL1L complex mediates SG homeostasis through the BiP-coupled PERK-eIF2α signaling axis of endoplasmic reticulum (ER) stress, thereby coordinating the unfolded protein response (UPR) with SG dynamics. Furthermore, we show that the distinctive branches of ER stress play differential roles in SG homeostasis. Our study indicates that the UPS and the UPR together via the HRD1-SEL1L ubiquitin ligase to maintain SG homeostasis in a stressor-dependent manner.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fubo Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weirui Ma
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Otero G, Bolatto C, Isasi E, Cerri S, Rodríguez P, Boragno D, Marco M, Parada C, Stancov M, Cuitinho MN, Olivera-Bravo S. Adult aberrant astrocytes submitted to late passage cultivation lost differentiation markers and decreased their pro-inflammatory profile. Heliyon 2024; 10:e30360. [PMID: 38711658 PMCID: PMC11070869 DOI: 10.1016/j.heliyon.2024.e30360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
In amyotrophic lateral sclerosis (ALS), astrocytes are considered key players in some non-cell non-neuronal autonomous mechanisms that underlie motor neuron death. However, it is unknown how much of these deleterious features were permanently acquired. To assess this point, we evaluated if the most remarkable features of neurotoxic aberrant glial phenotypes (AbAs) isolated from paralytic rats of the ALS model G93A Cu/Zn superoxide dismutase 1 (SOD1) could remain upon long lasting cultivation. Real time PCR, immunolabelling and zymography analysis showed that upon many passages, AbAs preserved the cell proliferation capacity, mitochondrial function and response to different compounds that inhibit some key astrocyte functions but decreased the expression of parameters associated to cell lineage, homeostasis and inflammation. As these results are contrary to the sustained inflammatory status observed along disease progression in SOD1G93A rats, we propose that the most AbAs remarkable features related to homeostasis and neurotoxicity were not permanently acquired and might depend on the signaling coming from the injuring microenvironment present in the degenerating spinal cord of terminal rats.
Collapse
Affiliation(s)
- Gabriel Otero
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Carmen Bolatto
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Department of Histology and Embryology, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Eugenia Isasi
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Department of Histology and Embryology, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Sofía Cerri
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Paola Rodríguez
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Marta Marco
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Department of Clinical Biochemistry, School of Chemistry (UdelaR), Montevideo, Uruguay
| | - Cristina Parada
- Department of Histology and Embryology, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Matías Stancov
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Noel Cuitinho
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Department of Neurobiology and Neuropathology (NBNP), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
7
|
Shang Z, Zhang S, Wang J, Zhou L, Zhang X, Billadeau DD, Yang P, Zhang L, Zhou F, Bai P, Jia D. TRIM25 predominately associates with anti-viral stress granules. Nat Commun 2024; 15:4127. [PMID: 38750080 PMCID: PMC11096359 DOI: 10.1038/s41467-024-48596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.
Collapse
Affiliation(s)
- Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Xinyue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou, 310024, 310030, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Duran J, Poolsup S, Allers L, Lemus MR, Cheng Q, Pu J, Salemi M, Phinney B, Jia J. A mechanism that transduces lysosomal damage signals to stress granule formation for cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587368. [PMID: 38617306 PMCID: PMC11014484 DOI: 10.1101/2024.03.29.587368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Monica Rosas Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Lead Contact
| |
Collapse
|
10
|
Mao S, Xie C, Liu Y, Zhao Y, Li M, Gao H, Xiao Y, Zou Y, Zheng Z, Gao Y, Xie J, Tian B, Wang L, Hua Y, Xu H. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) promotes stress granule formation via YBX1 phosphorylation in ovarian cancer. Cell Mol Life Sci 2024; 81:113. [PMID: 38436697 PMCID: PMC10912283 DOI: 10.1007/s00018-023-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.
Collapse
Affiliation(s)
- Shuyu Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Chong Xie
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Mengxia Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Han Gao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Yue Xiao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yongkang Zou
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiguo Zheng
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ya Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Juan Xie
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Zheng H, Zhang H. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Bioessays 2024; 46:e2300203. [PMID: 38175843 DOI: 10.1002/bies.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.
Collapse
Affiliation(s)
- Hui Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
12
|
Sato K, Takayama KI, Inoue S. Stress granule-mediated RNA regulatory mechanism in Alzheimer's disease. Geriatr Gerontol Int 2024; 24 Suppl 1:7-14. [PMID: 37726158 DOI: 10.1111/ggi.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
13
|
Bhatter N, Dmitriev SE, Ivanov P. Cell death or survival: Insights into the role of mRNA translational control. Semin Cell Dev Biol 2024; 154:138-154. [PMID: 37357122 PMCID: PMC10695129 DOI: 10.1016/j.semcdb.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.
Collapse
Affiliation(s)
- Nupur Bhatter
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Younas N, Zafar S, Saleem T, Fernandez Flores LC, Younas A, Schmitz M, Zerr I. Differential interactome mapping of aggregation prone/prion-like proteins under stress: novel links to stress granule biology. Cell Biosci 2023; 13:221. [PMID: 38041189 PMCID: PMC10693047 DOI: 10.1186/s13578-023-01164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Saima Zafar
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Saleem
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Leticia Camila Fernandez Flores
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Abrar Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
15
|
Jayabalan AK, Bhambhani K, Leung AKL. PARP10 is Critical for Stress Granule Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562236. [PMID: 37873303 PMCID: PMC10592835 DOI: 10.1101/2023.10.13.562236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic biomolecular condensates enriched with RNA, translation factors, and other proteins. They form in response to stress and are implicated in various diseased states including viral infection, tumorigenesis, and neurodegeneration. Understanding the mechanism of SG assembly, particularly its initiation, offers potential therapeutic avenues. Although ADP-ribosylation plays a key role in SG assembly, and one of its key forms-poly(ADP-ribose) or PAR-is critical for recruiting proteins to SGs, the specific enzyme responsible remains unidentified. Here, we systematically knock down the human ADP-ribosyltransferase family and identify PARP10 as pivotal for SG assembly. Live-cell imaging reveals PARP10's crucial role in regulating initial assembly kinetics. Further, we pinpoint the core SG component, G3BP1, as a PARP10 substrate and find that PARP10 regulates SG assembly driven by both G3BP1 and its modeled mechanism. Intriguingly, while PARP10 only adds a single ADP-ribose unit to proteins, G3BP1 is PARylated, suggesting its potential role as a scaffold for protein recruitment. PARP10 knockdown alters the SG core composition, notably decreasing translation factor presence. Based on our findings, we propose a model in which ADP-ribosylation acts as a rate-limiting step, initiating the formation of this RNA-enriched condensate.
Collapse
Affiliation(s)
- Aravinth Kumar Jayabalan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Krishna Bhambhani
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetics Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Smailys J, Jiang F, Prioleau T, Kelley K, Mitchell O, Nour S, Ali L, Buchser W, Zavada L, Hinton SD. The DUSP domain of pseudophosphatase MK-STYX interacts with G3BP1 to decrease stress granules. Arch Biochem Biophys 2023; 744:109702. [PMID: 37516290 PMCID: PMC10500436 DOI: 10.1016/j.abb.2023.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Mitogen activated protein kinase phosphoserine/threonine/tyrosine-binding protein (MK-STYX) is a dual specificity (DUSP) member of the protein tyrosine phosphatase family. It is a pseudophosphatase, which lacks the essential amino acids histidine and cysteine in the catalytic active signature motif (HCX5R). We previously reported that MK-STYX interacts with G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding-1] and reduces stress granules, stalled mRNA. To determine how MK-STYX reduces stress granules, truncated domains, CH2 (cell division cycle 25 phosphatase homology 2) and DUSP, of MK-STYX were used. Wild-type MK-STYX and the DUSP domain significantly decreased stressed granules that were induced by sodium arsenite, in which G3BP1 (a stress granule nucleator) was used as the marker. In addition, HEK/293 and HeLa cells co-expressing G3BP1-GFP and mCherry-MK-STYX, mCherry-MK-STYX-CH2, mCherry-MK-STYX-DUSP or mCherry showed that stress granules were significantly decreased in the presence of wild-type MK-STYX and the DUSP domain of MK-STYX. Further characterization of these dynamics in HeLa cells showed that the CH2 domain increased the number of stress granules within a cell, relative to wild-type and DUSP domain of MK-STYX. To further analyze the interaction of G3BP1 and the domains of MK-STYX, coimmunoprecipitation experiments were performed. Cells co-expressing G3BP1-GFP and mCherry, mCherry-MK-STYX, mCherry-MK-STYX-CH2, or mCherry-MK-STYX-DUSP demonstrated that the DUSP domain of MK-STYX interacts with both G3BP1-GFP and endogenous G3BP1, whereas the CH2 domain of MK-STYX did not coimmunoprecipitate with G3BP1. In addition, G3BP1 tyrosine phosphorylation, which is required for stress granule formation, was decreased in the presence of wild-type MK-STYX or the DUSP domain but increased in the presence of CH2. These data highlight a model for how MK-STYX decreases G3BP1-induced stress granules. The DUSP domain of MK-STYX interacts with G3BP1 and negatively alters its tyrosine phosphorylation- decreasing stress granule formation.
Collapse
Affiliation(s)
- Jonathan Smailys
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Fei Jiang
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Tatiana Prioleau
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Kylan Kelley
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA; Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Olivia Mitchell
- Department of Biology, Hampton University, Hampton, VA, 23666, USA
| | - Samah Nour
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lina Ali
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - William Buchser
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lynn Zavada
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Shantá D Hinton
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
17
|
Ma Y, Farny NG. Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene 2023; 871:147437. [PMID: 37084987 PMCID: PMC10205695 DOI: 10.1016/j.gene.2023.147437] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Cellular senescence increases with aging. While senescence is associated with an exit of the cell cycle, there is ample evidence that post-mitotic cells including neurons can undergo senescence as the brain ages, and that senescence likely contributes significantly to the progression of neurodegenerative diseases (ND) such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Stress granules (SGs) are stress-induced cytoplasmic biomolecular condensates of RNA and proteins, which have been linked to the development of AD and ALS. The SG seeding hypothesis of NDs proposes that chronic stress in aging neurons results in static SGs that progress into pathological aggregates Alterations in SG dynamics have also been linked to senescence, though studies that link SGs and senescence in the context of NDs and the aging brain have not yet been performed. In this Review, we summarize the literature on senescence, and explore the contribution of senescence to the aging brain. We describe senescence phenotypes in aging neurons and glia, and their links to neuroinflammation and the development of AD and ALS. We further examine the relationships of SGs to senescence and to ND. We propose a new hypothesis that neuronal senescence may contribute to the mechanism of SG seeding in ND by altering SG dynamics in aged cells, thereby providing additional aggregation opportunities within aged neurons.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
18
|
Hussain I, Sureshkumar HK, Bauer M, Rubio I. Starvation Protects Hepatocytes from Inflammatory Damage through Paradoxical mTORC1 Signaling. Cells 2023; 12:1668. [PMID: 37371138 PMCID: PMC10297036 DOI: 10.3390/cells12121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background and aims: Sepsis-related liver failure is associated with a particularly unfavorable clinical outcome. Calorie restriction is a well-established factor that can increase tissue resilience, protect against liver failure and improve outcome in preclinical models of bacterial sepsis. However, the underlying molecular basis is difficult to investigate in animal studies and remains largely unknown. METHODS We have used an immortalized hepatocyte line as a model of the liver parenchyma to uncover the role of caloric restriction in the resilience of hepatocytes to inflammatory cell damage. In addition, we applied genetic and pharmacological approaches to investigate the contribution of the three major intracellular nutrient/energy sensor systems, AMPK, mTORC1 and mTORC2, in this context. RESULTS We demonstrate that starvation reliably protects hepatocytes from cellular damage caused by pro-inflammatory cytokines. While the major nutrient- and energy-related signaling pathways AMPK, mTORC2/Akt and mTORC1 responded to caloric restriction as expected, mTORC1 was paradoxically activated by inflammatory stress in starved, energy-deprived hepatocytes. Pharmacological inhibition of mTORC1 or genetic silencing of the mTORC1 scaffold Raptor, but not its mTORC2 counterpart Rictor, abrogated the protective effect of starvation and exacerbated inflammation-induced cell death. Remarkably, mTORC1 activation in starved hepatocytes was uncoupled from the regulation of autophagy, but crucial for sustained protein synthesis in starved resistant cells. CONCLUSIONS AMPK engagement and paradoxical mTORC1 activation and signaling mediate protection against pro-inflammatory stress exerted by caloric restriction in hepatocytes.
Collapse
Affiliation(s)
- Iqra Hussain
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
| | - Harini K. Sureshkumar
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
| | - Michael Bauer
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Ignacio Rubio
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
19
|
Wang Y, Liu R, Wu K, Yang G, Wang Y, Wang H, Rui T. Stress granule activation attenuates lipopolysaccharide-induced cardiomyocyte dysfunction. BMC Cardiovasc Disord 2023; 23:277. [PMID: 37312024 DOI: 10.1186/s12872-023-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Sepsis is the leading cause of death in intensive care units. Sepsis-induced myocardial dysfunction, one of the most serious complications of sepsis, is associated with higher mortality rates. As the pathogenesis of sepsis-induced cardiomyopathy has not been fully elucidated, there is no specific therapeutic approach. Stress granules (SG) are cytoplasmic membrane-less compartments that form in response to cellular stress and play important roles in various cell signaling pathways. The role of SG in sepsis-induced myocardial dysfunction has not been determined. Therefore, this study aimed to determine the effects of SG activation in septic cardiomyocytes (CMs). METHODS Neonatal CMs were treated with lipopolysaccharide (LPS). SG activation was visualized by immunofluorescence staining to detect the co-localization of GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and T cell-restricted intracellular antigen 1 (TIA-1). Eukaryotic translation initiation factor alpha (eIF2α) phosphorylation, an indicator of SG formation, was assessed by western blotting. Tumor necrosis factor alpha (TNF-α) production was assessed by PCR and enzyme-linked immunosorbent assays. CMs function was evaluated by intracellular cyclic adenosine monophosphate (cAMP) levels in response to dobutamine. Pharmacological inhibition (ISRIB), a G3BP1 CRISPR activation plasmid, and a G3BP1 KO plasmid were employed to modulate SG activation. The fluorescence intensity of JC-1 was used to evaluate mitochondrial membrane potential. RESULTS LPS challenge in CMs induced SG activation and resulted in eIF2α phosphorylation, increased TNF-α production, and decreased intracellular cAMP in response to dobutamine. The pharmacological inhibition of SG (ISRIB) increased TNF-α expression and decreased intracellular cAMP levels in CMs treated with LPS. The overexpression of G3BP1 increased SG activation, attenuated the LPS-induced increase in TNF-α expression, and improved CMs contractility (as evidenced by increased intracellular cAMP). Furthermore, SG prevented LPS-induced mitochondrial membrane potential dissipation in CMs. CONCLUSION SG formation plays a protective role in CMs function in sepsis and is a candidate therapeutic target.
Collapse
Affiliation(s)
- Yaqiao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Runmin Liu
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kehan Wu
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Gaowei Yang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yusheng Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
20
|
Li P, Chen J, Wang X, Su Z, Gao M, Huang Y. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis 2023; 183:106167. [PMID: 37230179 DOI: 10.1016/j.nbd.2023.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023] Open
Abstract
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
21
|
Sato K, Takayama KI, Inoue S. Stress granules sequester Alzheimer's disease-associated gene transcripts and regulate disease-related neuronal proteostasis. Aging (Albany NY) 2023; 15:204737. [PMID: 37219408 DOI: 10.18632/aging.204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Environmental and physiological stresses can accelerate Alzheimer's disease (AD) pathogenesis. Under stress, a cytoplasmic membraneless structure termed a stress granule (SG) is formed and is associated with various neurodegenerative disorders, including AD. SGs contain translationally arrested mRNAs, suggesting that impaired RNA metabolism in neurons causes AD progression; however, the underlying mechanism remains unclear. Here, we identified numerous mRNAs and long non-coding RNAs that are directly targeted by the SG core proteins G3BP1 and G3BP2. They redundantly target RNAs before and after stress conditions. We further identified RNAs within SGs, wherein AD-associated gene transcripts accumulated, suggesting that SGs can directly regulate AD development. Furthermore, gene-network analysis revealed a possible link between the sequestration of RNAs by SGs and the impairment of protein neurohomeostasis in AD brains. Together, our study provides a comprehensive RNA regulatory mechanism involving SGs, which could be targeted therapeutically to slow AD progression mediated by SGs.
Collapse
Affiliation(s)
- Kaoru Sato
- Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Itabashi-ku, Tokyo 173-0015, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), TMIG, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ken-Ichi Takayama
- Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Itabashi-ku, Tokyo 173-0015, Japan
| | - Satoshi Inoue
- Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
22
|
Schulte T, Panas MD, Han X, Williams L, Kedersha N, Fleck JS, Tan TJC, Dopico XC, Olsson A, Morro AM, Hanke L, Nilvebrant J, Giang KA, Nygren PÅ, Anderson P, Achour A, McInerney GM. Caprin-1 binding to the critical stress granule protein G3BP1 is influenced by pH. Open Biol 2023; 13:220369. [PMID: 37161291 PMCID: PMC10170197 DOI: 10.1098/rsob.220369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
G3BP is the central node within stress-induced protein-RNA interaction networks known as stress granules (SGs). The SG-associated proteins Caprin-1 and USP10 bind mutually exclusively to the NTF2 domain of G3BP1, promoting and inhibiting SG formation, respectively. Herein, we present the crystal structure of G3BP1-NTF2 in complex with a Caprin-1-derived short linear motif (SLiM). Caprin-1 interacts with His-31 and His-62 within a third NTF2-binding site outside those covered by USP10, as confirmed using biochemical and biophysical-binding assays. Nano-differential scanning fluorimetry revealed reduced thermal stability of G3BP1-NTF2 at acidic pH. This destabilization was counterbalanced significantly better by bound USP10 than Caprin-1. The G3BP1/USP10 complex immunoprecipated from human U2OS cells was more resistant to acidic buffer washes than G3BP1/Caprin-1. Acidification of cellular condensates by approximately 0.5 units relative to the cytosol was detected by ratiometric fluorescence analysis of pHluorin2 fused to G3BP1. Cells expressing a Caprin-1/FGDF chimera with higher G3BP1-binding affinity had reduced Caprin-1 levels and slightly reduced condensate sizes. This unexpected finding may suggest that binding of the USP10-derived SLiM to NTF2 reduces the propensity of G3BP1 to enter condensates.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Lucy Williams
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Nancy Kedersha
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Simon Fleck
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Timothy J. C. Tan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Anders Olsson
- Protein Expression and Characterization, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
| | - Ainhoa Moliner Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Johan Nilvebrant
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Kim Anh Giang
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Paul Anderson
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
23
|
Kassouf T, Shrivastava R, Meszka I, Bailly A, Polanowska J, Trauchessec H, Mandrioli J, Carra S, Xirodimas DP. Targeting the NEDP1 enzyme to ameliorate ALS phenotypes through stress granule disassembly. SCIENCE ADVANCES 2023; 9:eabq7585. [PMID: 37000881 PMCID: PMC10065448 DOI: 10.1126/sciadv.abq7585] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The elimination of aberrant inclusions is regarded as a therapeutic approach in neurodegeneration. In amyotrophic lateral sclerosis (ALS), mutations in proteins found within cytoplasmic condensates called stress granules (SGs) are linked to the formation of pathological SGs, aberrant protein inclusions, and neuronal toxicity. We found that inhibition of NEDP1, the enzyme that processes/deconjugates the ubiquitin-like molecule NEDD8, promotes the disassembly of physiological and pathological SGs. Reduction in poly(ADP-ribose) polymerase1 activity through hyper-NEDDylation is a key mechanism for the observed phenotype. These effects are related to improved cell survival in human cells, and in C. elegans, nedp1 deletion ameliorates ALS phenotypes related to animal motility. Our studies reveal NEDP1 as potential therapeutic target for ALS, correlated to the disassembly of pathological SGs.
Collapse
Affiliation(s)
| | | | - Igor Meszka
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | - Jessica Mandrioli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia,G. Campi 287, 41125 Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia,G. Campi 287, 41125 Modena, Italy
| | | |
Collapse
|
24
|
Söhnel AC, Brandt R. Neuronal stress granules as dynamic microcompartments: current concepts and open questions. Biol Chem 2023; 404:491-498. [PMID: 36779376 DOI: 10.1515/hsz-2022-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/14/2023]
Abstract
Stress granules are cytosolic, membraneless RNA-protein complexes that form in the cytosol in response to various stressors. Stress granules form through a process termed liquid-liquid phase separation, which increases the local concentration of RNA and protein within the granules, creates dynamic sorting stations for mRNAs and associated proteins, and modulates the availability of mRNA for protein translation. We introduce the concept that neuronal stress granules act as dynamic cytosolic microcompartments in which their components differentially cycle in and out, monitoring the cellular environment. We discuss that neuronal stress granules have distinctive features and contain substructures in which individual components interact transiently. We describe that neuronal stress granules modulate protein expression at multiple levels and affect the proteoform profile of the cytoskeletal protein tau. We argue that a better knowledge of the regulation of stress granule dynamics in neurons and the modulation of their material state is necessary to understand their function during physiological and pathological stress responses. Finally, we delineate approaches to determine the behavior and regulation of critical stress granule organizers and the physical state of stress granules in living neurons.
Collapse
Affiliation(s)
| | - Roland Brandt
- Department of Neurobiology, Osnabrück, Germany.,Center for Cellular Nanoanalytics, Osnabrück, Germany.,Institute of Cognitive Science, Osnabrück University, 49076 Osnabrück, Germany
| |
Collapse
|
25
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
26
|
Cabral AJ, Costello DC, Farny NG. The enigma of ultraviolet radiation stress granules: Research challenges and new perspectives. Front Mol Biosci 2022; 9:1066650. [DOI: 10.3389/fmolb.2022.1066650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Stress granules (SGs) are non-membrane bound cytoplasmic condensates that form in response to a variety of different stressors. Canonical SGs are thought to have a cytoprotective role, reallocating cellular resources during stress by activation of the integrated stress response (ISR) to inhibit translation and avoid apoptosis. However, different stresses result in compositionally distinct, non-canonical SG formation that is likely pro-apoptotic, though the exact function(s) of both SGs subtypes remain unclear. A unique non-canonical SG subtype is triggered upon exposure to ultraviolet (UV) radiation. While it is generally agreed that UV SGs are bona fide SGs due to their dependence upon the core SG nucleating protein Ras GTPase-activating protein-binding protein 1 (G3BP1), the localization of other key components of UV SGs are unknown or under debate. Further, the dynamics of UV SGs are not known, though unique properties such as cell cycle dependence have been observed. This Perspective compiles the available information on SG subtypes and on UV SGs in particular in an attempt to understand the formation, dynamics, and function of these mysterious stress-specific complexes. We identify key gaps in knowledge related to UV SGs, and examine the unique aspects of their formation. We propose that more thorough knowledge of the distinct properties of UV SGs will lead to new avenues of understanding of the function of SGs, as well as their roles in disease.
Collapse
|
27
|
Meszka I, Polanowska J, Xirodimas DP. Mixed in chains: NEDD8 polymers in the Protein Quality Control system. Semin Cell Dev Biol 2022; 132:27-37. [PMID: 35078718 DOI: 10.1016/j.semcdb.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Post-translational modification of proteins with the Ubiquitin-like molecule NEDD8 is a critical regulatory mechanism for several biological processes and a potential target for therapeutic intervention. The role of NEDD8 has been mainly characterised through its modification as single moiety on the cullin family of proteins and control of Cullin-Ring-Ligases, but also on non-cullin substrates. In addition to monoNEDDylation, recent studies have now revealed that NEDD8 can also generate diverse polymers. This is either through modification of the 9 available lysines in NEDD8 and the formation of polyNEDD8 chains, or NEDDylation of Ubiquitin and SUMO-2 for the generation of hybrid NEDD8 chains. Here, we review recent findings that characterise the formation of NEDD8 polymers under distinct modes of protein NEDDylation (canonical/atypical) and their potential role as regulatory signals of the proteotoxic stress response and the Protein Quality Control system.
Collapse
Affiliation(s)
- Igor Meszka
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
28
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
29
|
Akiyama Y, Takenaka Y, Kasahara T, Abe T, Tomioka Y, Ivanov P. RTCB Complex Regulates Stress-Induced tRNA Cleavage. Int J Mol Sci 2022; 23:ijms232113100. [PMID: 36361884 PMCID: PMC9655011 DOI: 10.3390/ijms232113100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Correspondence: (Y.A.); (P.I.)
| | - Yoshika Takenaka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (Y.A.); (P.I.)
| |
Collapse
|
30
|
Liu Y, Lv Y, Wei A, Guo M, Li Y, Wang J, Wang X, Bao Y. Unfolded protein response in balancing plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019414. [PMID: 36275569 PMCID: PMC9585285 DOI: 10.3389/fpls.2022.1019414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The ER (endoplasmic reticulum) is the largest membrane-bound multifunctional organelle in eukaryotic cells, serving particularly important in protein synthesis, modification, folding and transport. UPR (unfolded protein response) is one of the systematized strategies that eukaryotic cells employ for responding to ER stress, a condition represents the processing capability of ER is overwhelmed and stressed. UPR is usually triggered when the protein folding capacity of ER is overloaded, and indeed, mounting studies were focused on the stress responding side of UPR. In plants, beyond stress response, accumulating evidence suggests that UPR is essential for growth and development, and more importantly, the necessity of UPR in this regard requires its endogenous basal activation even without stress. Then plants must have to fine tune the activation level of UPR pathway for balancing growth and stress response. In this review, we summarized the recent progresses in plant UPR, centering on its role in controlling plant reproduction and root growth, and lay out some outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Yao Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglun Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - An Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujin Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Wang T, Tian X, Kim HB, Jang Y, Huang Z, Na CH, Wang J. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. Nat Commun 2022; 13:5584. [PMID: 36151083 PMCID: PMC9508253 DOI: 10.1038/s41467-022-33079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022] Open
Abstract
Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases. Stress granules are associated with neurodegenerative diseases. Here, Wang et al. found intracellular energy deficiencies trigger a unique type of granules and disrupt granule disassembly through 4EBP1/eIF4A.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Xibin Tian
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Han Byeol Kim
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhiyuan Huang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
32
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
33
|
Chen W, Chen S, Yan C, Zhang Y, Zhang R, Chen M, Zhong S, Fan W, Zhu S, Zhang D, Lu X, Zhang J, Huang Y, Zhu L, Li X, Lv D, Fu Y, Iv H, Ling Z, Ma L, Jiang H, Long G, Zhu J, Wu D, Wu B, Sun B. Allergen protease-activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion. Nat Immunol 2022; 23:1021-1030. [PMID: 35794369 PMCID: PMC11345751 DOI: 10.1038/s41590-022-01255-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences University, Shanghai, China
| | - Shuangfeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Ronghua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital, Institute of Respiratory Diseases, Guangdong Medical College, Zhanjiang, China
| | - Shufen Zhong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weiguo Fan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Songling Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Danyan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Lu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuying Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dawei Lv
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences University, Shanghai, China
| | - Yadong Fu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Houkun Iv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Long
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences University, Shanghai, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital, Institute of Respiratory Diseases, Guangdong Medical College, Zhanjiang, China.
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital, Institute of Respiratory Diseases, Guangdong Medical College, Zhanjiang, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
34
|
Libner CD, Salapa HE, Hutchinson C, Stang TE, Thibault PA, Hammond SA, Levin MC. Autoimmunity to a ribonucleoprotein drives neuron loss in multiple sclerosis models. Neurobiol Dis 2022; 170:105775. [PMID: 35618205 DOI: 10.1016/j.nbd.2022.105775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Neurodegeneration, the progressive loss or damage to neurons and axons, underlies permanent disability in multiple sclerosis (MS); yet its mechanisms are incompletely understood. Recent data indicates autoimmunity to several intraneuronal antigens, including the RNA binding protein (RBP) heterogenous nuclear ribonucleoprotein A1 (hnRNP A1), as contributors to neurodegeneration. We previously showed that addition of anti-hnRNP A1 antibodies, which target the same immunodominant domain of MS IgG, to mice with experimental autoimmune encephalomyelitis (EAE) worsened disease and resulted in an exacerbation of hnRNP A1 dysfunction including cytoplasmic mislocalization of hnRNP A1, stress granule (SG) formation and neurodegeneration in the chronic stages of disease. Because this previous study focused on a singular timepoint during EAE, it is unclear whether anti-hnRNP A1 antibody induced hnRNP A1 dysfunction caused neurodegeneration or was result of it. In the present study, we analyzed in vivo and in vitro models of anti-hnRNP A1 antibody-mediated autoimmunity for markers of hnRNP A1 dysfunction and neurodegeneration over a time course to gain a better understanding of the connection between hnRNP A1 dysfunction and neurodegeneration. Anti-hnRNP A1 antibody treatment resulted in increased neuronal hnRNP A1 mislocalization and nuclear depletion temporally followed by altered RNA expression and SG formation, and lastly an increase in necroptotic signalling and neuronal cell death. Treatment with necrostatin-1s inhibited necroptosis and partially rescued anti-hnRNP A1 antibody-mediated neurodegeneration while clathrin knockdown specifically inhibited anti-hnRNP A1 antibody uptake into neurons. This data identifies a novel antibody-mediated mechanism of neurodegeneration, which may be targeted to inhibit neurodegeneration and prevent permanent neurological decline in persons living with MS.
Collapse
Affiliation(s)
- Cole D Libner
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Catherine Hutchinson
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Todd E Stang
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - S Austin Hammond
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
35
|
Eiermann N, Stoecklin G, Jovanovic B. Mitochondrial Inhibition by Sodium Azide Induces Assembly of eIF2α Phosphorylation-Independent Stress Granules in Mammalian Cells. Int J Mol Sci 2022; 23:5600. [PMID: 35628412 PMCID: PMC9142010 DOI: 10.3390/ijms23105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial stress is involved in many pathological conditions and triggers the integrated stress response (ISR). The ISR is initiated by phosphorylation of the eukaryotic translation initiation factor (eIF) 2α and results in global inhibition of protein synthesis, while the production of specific proteins important for the stress response and recovery is favored. The stalled translation preinitiation complexes phase-separate together with local RNA binding proteins into cytoplasmic stress granules (SG), which are important for regulation of cell signaling and survival under stress conditions. Here we found that mitochondrial inhibition by sodium azide (NaN3) in mammalian cells leads to translational inhibition and formation of SGs, as previously shown in yeast. Although mammalian NaN3-induced SGs are very small, they still contain the canonical SG proteins Caprin 1, eIF4A, eIF4E, eIF4G and eIF3B. Similar to FCCP and oligomycine, other mitochodrial stressors that cause SG formation, NaN3-induced SGs are formed by an eIF2α phosphorylation-independent mechanisms. Finally, we discovered that as shown for arsenite (ASN), but unlike FCCP or heatshock stress, Thioredoxin 1 (Trx1) is required for formation of NaN3-induced SGs.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bogdan Jovanovic
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
36
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
37
|
Wang L, Moreira EA, Kempf G, Miyake Y, Oliveira Esteves BI, Fahmi A, Schaefer JV, Dreier B, Yamauchi Y, Alves MP, Plückthun A, Matthias P. Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways. Cell Rep 2022; 39:110736. [PMID: 35476995 PMCID: PMC9065369 DOI: 10.1016/j.celrep.2022.110736] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery. A small synthetic protein (DARPin) blocks interaction between HDAC6 and ubiquitin This DARPin impairs infection by influenza and Zika virus at the uncoating step Both viruses contain ubiquitin associated with their capsid The DARPin also impacts the formation of aggresomes and stress granules
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Etori Aguiar Moreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Yasuyuki Miyake
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Amal Fahmi
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
38
|
Roy R, Das G, Kuttanda IA, Bhatter N, Rajyaguru PI. Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly. Nat Commun 2022; 13:2077. [PMID: 35440550 PMCID: PMC9019020 DOI: 10.1038/s41467-022-29715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
P-bodies are conserved mRNP complexes that are implicated in determining mRNA fate by affecting translation and mRNA decay. In this report, we identify RGG-motif containing translation repressor protein Sbp1 as a disassembly factor of P-bodies since disassembly of P-bodies is defective in Δsbp1. RGG-motif is necessary and sufficient to rescue the PB disassembly defect in Δsbp1. Binding studies using purified proteins revealed that Sbp1 physically interacts with Edc3 and Sbp1-Edc3 interaction competes with Edc3-Edc3 interaction. Purified Edc3 forms assemblies, promoted by the presence of RNA and NADH and the addition of purified Sbp1, but not the RGG-deletion mutant, leads to significantly decreased Edc3 assemblies. We further note that the aggregates of human EWSR1 protein, implicated in neurodegeneration, are more persistent in the absence of Sbp1 and overexpression of EWSR1 in Δsbp1 leads to a growth defect. Taken together, our observations suggest a role of Sbp1 in disassembly, which could apply to disease-relevant heterologous protein-aggregates.
Collapse
Affiliation(s)
- Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Gitartha Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Nupur Bhatter
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
39
|
Role of the Ubiquitin System in Stress Granule Metabolism. Int J Mol Sci 2022; 23:ijms23073624. [PMID: 35408984 PMCID: PMC8999021 DOI: 10.3390/ijms23073624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells react to various stress conditions with the rapid formation of membrane-less organelles called stress granules (SGs). SGs form by multivalent interactions between RNAs and RNA-binding proteins and are believed to protect stalled translation initiation complexes from stress-induced degradation. SGs contain hundreds of different mRNAs and proteins, and their assembly and disassembly are tightly controlled by post-translational modifications. The ubiquitin system, which mediates the covalent modification of target proteins with the small protein ubiquitin (‘ubiquitylation’), has been implicated in different aspects of SG metabolism, but specific functions in SG turnover have only recently emerged. Here, we summarize the evidence for the presence of ubiquitylated proteins at SGs, review the functions of different components of the ubiquitin system in SG formation and clearance, and discuss the link between perturbed SG clearance and the pathogenesis of neurodegenerative disorders. We conclude that the ubiquitin system plays an important, medically relevant role in SG biology.
Collapse
|
40
|
Yu CY, Cho Y, Sharma O, Kanehara K. What's unique? The unfolded protein response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1268-1276. [PMID: 34849719 DOI: 10.1093/jxb/erab513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The investigation of a phenomenon called the unfolded protein response (UPR) started approximately three decades ago, and we now know that the UPR is involved in a number of cellular events among metazoans, higher plants, and algae. The relevance of the UPR in human diseases featuring protein folding defects, such as Alzheimer's and Huntington's diseases, has drawn much attention to the response in medical research to date. While metazoans and plants share similar molecular mechanisms of the UPR, recent studies shed light on the uniqueness of the plant UPR, with plant-specific protein families appearing to play pivotal roles. Given the considerable emphasis on the original discoveries of key factors in metazoans, this review highlights the uniqueness of the plant UPR based on current knowledge.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Oshin Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
41
|
Singh A, Kandi AR, Jayaprakashappa D, Thuery G, Purohit DJ, Huelsmeier J, Singh R, Pothapragada SS, Ramaswami M, Bakthavachalu B. The transcriptional response to oxidative stress is independent of stress-granule formation. Mol Biol Cell 2022; 33:ar25. [PMID: 34985933 PMCID: PMC9250384 DOI: 10.1091/mbc.e21-08-0418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded protein and viral stress responses, whether and how SGs contribute to stress-induced transcription have not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3 h predominantly resulted in induction or up-regulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress transcriptome is enriched in mRNAs coding for chaperones including HSP70s, small heat shock proteins, glutathione transferases, and several noncoding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3 h after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.
Collapse
Affiliation(s)
- Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Arvind Reddy Kandi
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
| | | | - Guillaume Thuery
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Devam J Purohit
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Rashi Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
- School of Basic Sciences, Indian Institute of Technology, Mandi 175005, India
| |
Collapse
|
42
|
Sidibé H, Vande Velde C. Collective Learnings of Studies of Stress Granule Assembly and Composition. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2428:199-228. [PMID: 35171482 DOI: 10.1007/978-1-0716-1975-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stress granules have gained considerable exposure and interest in recent years. These micron-sized entities, composed of RNA and protein, form following a stress exposure and have been linked to several pathologies. Understanding stress granule function is paramount but has been arduous due to the membraneless nature of these organelles. Several new methodologies have recently been developed to catalogue the protein and RNA composition of stress granules. Collectively, this work has provided important insights to potential stress granule functions as well as molecular mechanisms for their assembly and disassembly. This chapter reviews the latest advancements in the understanding of stress granule dynamics and discusses the various protocols developed to study their composition.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada.
| |
Collapse
|
43
|
Adnane S, Marino A, Leucci E. LncRNAs in human cancers: signal from noise. Trends Cell Biol 2022; 32:565-573. [DOI: 10.1016/j.tcb.2022.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
|
44
|
Abstract
Ascorbate peroxidase (APEX)-catalyzed proximity labeling has been recently established as a robust approach to uncover localized protein environments and transient protein-protein interactions occurring across mammalian cells. This molecular tool enables improved identification of individual proteins localized to and involved in specific cellular and subcellular pathways and functions. Engineering of an APEX2 fusion protein into the endogenous loci of proteins of interest enables directed biotinylation of neighboring polypeptides and mRNAs. This results in identification of subcellular and context-dependent proteomes or transcriptomes via quantitative mass spectrometry or RNA sequencing, respectively. Here, we describe the utility of APEX-mediated proximity labeling to recover components of stress granules (SGs) by endogenous tagging of well-established SG-associated proteins.
Collapse
Affiliation(s)
- Sara Elmsaouri
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Das S, Santos L, Failla AV, Ignatova Z. mRNAs sequestered in stress granules recover nearly completely for translation. RNA Biol 2022; 19:877-884. [PMID: 35796440 PMCID: PMC9272840 DOI: 10.1080/15476286.2022.2094137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stress granules (SGs) are membrane-less condensates composed of RNA and protein that assemble in response to stress stimuli and disassemble when stress is lifted. Both assembly and disassembly are tightly controlled processes, yet, it remains elusive whether mRNAs in SGs completely recover for translation following stress relief. Using RNA-seq of translating fractions in human cell line, we found that higher fraction of the m6A-modified mRNAs recovered for translation compared to unmodified mRNAs, i.e. 95% vs 84%, respectively. Considering structural mRNA analysis, we found that the m6A modification enhances structuring at nucleotides in its close vicinity. Our results suggest that SG-sequestered mRNAs disassemble nearly completely from SGs and the m6A modification may display some advantage to the mRNAs in their recovery for translation likely by m6A-driven structural stabilization.
Collapse
Affiliation(s)
- Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
46
|
De Graeve F, Formicola N, Pushpalatha KV, Nakamura A, Debreuve E, Descombes X, Besse F. Detecting Stress Granules in Drosophila Neurons. Methods Mol Biol 2022; 2428:229-242. [PMID: 35171483 DOI: 10.1007/978-1-0716-1975-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates that dynamically and reversibly assemble in response to stress. They are thought to contribute to the adaptive stress response by storing translationally inactive mRNAs as well as signaling molecules. Recent work has shown that SG composition and properties depend on both stress and cell types, and that neurons exhibit a complex SG proteome and a strong vulnerability to mutations in SG proteins. Drosophila has emerged as a powerful genetically tractable organism where to study the physiological regulation and functions of SGs in normal and pathological contexts. In this chapter, we describe a protocol enabling quantitative analysis of SG properties in both larval and adult Drosophila CNS samples. In this protocol, fluorescently tagged SGs are induced upon acute ex vivo stress or chronic in vivo stress, imaged at high-resolution via confocal microscopy and detected automatically, using a dedicated software.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Nadia Formicola
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | | | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eric Debreuve
- Université Côte d'Azur, CNRS, Inria, Laboratoire I3S, Sophia Antipolis, France
| | - Xavier Descombes
- Université Côte d'Azur, Inria, CNRS, Laboratoire I3S, Sophia Antipolis, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
47
|
Hoerth K, Eiermann N, Beneke J, Erfle H, Stoecklin G. Image-Based Screening for Stress Granule Regulators. Methods Mol Biol 2022; 2428:361-379. [PMID: 35171491 DOI: 10.1007/978-1-0716-1975-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stress granule (SG)-based RNA interference (RNAi) screening is a powerful method to discover factors that control protein synthesis and aggregation, as well as regulators of SG assembly and disassembly. Here, we describe how to set up and optimize a large-scale siRNA screen, and give a detailed outline for the automated quantification of SGs as a visual readout. Hit evaluation via calculated Z scores provides a list of candidates for further in-depth studies.
Collapse
Affiliation(s)
- Katharina Hoerth
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Nina Eiermann
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Jürgen Beneke
- Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
- CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
- CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
- CellNetworks Cluster of Excellence, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
48
|
De K, Jayabalan AK, Mariappan R, Ramasamy VS, Ohn T. Dihydrocapsaicin induces translational repression and stress granule through HRI-eIF2α phosphorylation axis. Biochem Biophys Res Commun 2021; 588:125-132. [PMID: 34953209 DOI: 10.1016/j.bbrc.2021.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/02/2022]
Abstract
Stress granules (SGs) are cytoplasmic biomolecular condensates that are formed against a variety of stress conditions when translation initiation is perturbed. SGs form through the weak protein-protein, protein-RNA, and RNA-RNA interactions, as well as through the intrinsically disordered domains and post-translation modifications within RNA binding proteins (RBPs). SGs are known to contribute to cell survivability by minimizing the stress-induced damage to the cells by delaying the activation of apoptosis. Here, we find that dihydrocapsaicin (DHC), an analogue of capsaicin, is a SG inducer that promotes polysome disassembly and reduces global protein translation via phosphorylation of eIF2α. DHC-mediated SG assembly is controlled by the phosphorylation of eIF2α at serine 51 position and is controlled by all four eIF2α stress kinases (i.e., HRI, PKR, PERK, and GCN2) with HRI showing maximal effect. We demonstrate that DHC is a bonafide compound that induces SG assembly, disassembles polysome, phosphorylates eIF2α in an HRI dependent manner, and thereby arrest global translation. Together, our results suggest that DHC is a novel SG inducer and an alternate to sodium arsenite to study SG dynamics.
Collapse
Affiliation(s)
- Koushitak De
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Aravinth Kumar Jayabalan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ramesh Mariappan
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Vijay Sankar Ramasamy
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
49
|
Studying RNP Composition with RIP. Methods Mol Biol 2021. [PMID: 34694608 DOI: 10.1007/978-1-0716-1851-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA is never left alone throughout its life cycle. Together with proteins, RNAs form membraneless organelles, called ribonucleoprotein particles (RNPs) where these two types of macromolecules strongly influence each other's functions and destinies. RNA immunoprecipitation is still one of the favorite techniques which allows to simultaneously study both the RNA and protein composition of the RNP complex.
Collapse
|
50
|
Cadena Sandoval M, Heberle AM, Rehbein U, Barile C, Ramos Pittol JM, Thedieck K. mTORC1 Crosstalk With Stress Granules in Aging and Age-Related Diseases. FRONTIERS IN AGING 2021; 2:761333. [PMID: 35822040 PMCID: PMC9261333 DOI: 10.3389/fragi.2021.761333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a master regulator of metabolism and aging. A complex signaling network converges on mTORC1 and integrates growth factor, nutrient and stress signals. Aging is a dynamic process characterized by declining cellular survival, renewal, and fertility. Stressors elicited by aging hallmarks such as mitochondrial malfunction, loss of proteostasis, genomic instability and telomere shortening impinge on mTORC1 thereby contributing to age-related processes. Stress granules (SGs) constitute a cytoplasmic non-membranous compartment formed by RNA-protein aggregates, which control RNA metabolism, signaling, and survival under stress. Increasing evidence reveals complex crosstalk between the mTORC1 network and SGs. In this review, we cover stressors elicited by aging hallmarks that impinge on mTORC1 and SGs. We discuss their interplay, and we highlight possible links in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrike Rehbein
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Cecilia Barile
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - José Miguel Ramos Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Kathrin Thedieck, , ,
| |
Collapse
|