1
|
Brand T. Now it's getting bloody in cardiac organoids. Nat Cell Biol 2024:10.1038/s41556-024-01528-2. [PMID: 39415043 DOI: 10.1038/s41556-024-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Affiliation(s)
- Thomas Brand
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
2
|
Dardano M, Kleemiß F, Kosanke M, Lang D, Wilson L, Franke A, Teske J, Shivaraj A, de la Roche J, Fischer M, Lange L, Schambach A, Drakhlis L, Zweigerdt R. Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart. Nat Cell Biol 2024:10.1038/s41556-024-01526-4. [PMID: 39379702 DOI: 10.1038/s41556-024-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development. Modulating HFO differentiation, we here report the generation of blood-generating HFOs. While maintaining a functional ventricular-like heart anlagen, blood-generating HFOs comprise a mesenchyme-embedded haemogenic endothelial layer encompassing multiple haematopoietic derivatives and haematopoietic progenitor cells with erythro-myeloid and lymphoid potential, reflecting aspects of primitive and definitive haematopoiesis. The model enables the morphologically structured co-development of cardiac, endothelial and multipotent haematopoietic tissues equivalent to the intra-embryonic haematopoietic region in vivo, promoting research on haematopoiesis in vitro.
Collapse
Affiliation(s)
- Miriana Dardano
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Felix Kleemiß
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - Dorina Lang
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Liam Wilson
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jana Teske
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Akshatha Shivaraj
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Terheyden-Keighley D, Hühne M, Berger T, Hiller B, Martins S, Gamerschlag A, Sabour D, Meffert A, Kislat A, Slotta C, Hafezi F, Lichte J, Sudheer S, Tessmer K, Psathaki K, Ader M, Kogler G, Greber B. GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy. Stem Cells Transl Med 2024; 13:898-911. [PMID: 39042522 PMCID: PMC11386223 DOI: 10.1093/stcltm/szae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/08/2024] [Indexed: 07/25/2024] Open
Abstract
Cell therapeutic applications based on induced pluripotent stem cells (iPSCs) appear highly promising and challenging at the same time. Good manufacturing practice (GMP) regulations impose necessary yet demanding requirements for quality and consistency when manufacturing iPSCs and their differentiated progeny. Given the scarcity of accessible GMP iPSC lines, we have established a corresponding production workflow to generate the first set of compliant cell banks. Hence, these lines met a comprehensive set of release specifications and, for instance, displayed a low overall mutation load reflecting their neonatal origin, cord blood. Based on these iPSC lines, we have furthermore developed a set of GMP-compatible workflows enabling improved gene targeting at strongly enhanced efficiencies and directed differentiation into critical cell types: A new protocol for the generation of retinal pigment epithelium (RPE) features a high degree of simplicity and efficiency. Mesenchymal stromal cells (MSCs) derived from iPSCs displayed outstanding expansion capacity. A fully optimized cardiomyocyte differentiation protocol was characterized by a particularly high batch-to-batch consistency at purities above 95%. Finally, we introduce a universal immune cell induction platform that converts iPSCs into multipotent precursor cells. These hematopoietic precursors could selectively be stimulated to become macrophages, T cells, or natural killer (NK) cells. A switch in culture conditions upon NK-cell differentiation induced a several thousand-fold expansion, which opens up perspectives for upscaling this key cell type in a feeder cell-independent approach. Taken together, these cell lines and improved manipulation platforms will have broad utility in cell therapy as well as in basic research.
Collapse
Affiliation(s)
| | | | | | - Björn Hiller
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| | | | | | | | | | | | | | | | - Jens Lichte
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| | | | - Karen Tessmer
- Center for Regenerative Therapies Dresden (CRTD) and Center for Molecular and Cellular Bioengineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Katherina Psathaki
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, 49076 Osnabrück, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD) and Center for Molecular and Cellular Bioengineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Gesine Kogler
- Institute of Transplantation Diagnostics and Cell Therapeutics and Jose Carreras Stem Cell Bank, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Boris Greber
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| |
Collapse
|
4
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
5
|
Tanaka Y, Nakanishi Y, Furuhata E, Nakada KI, Maruyama R, Suzuki H, Suzuki T. FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation. Sci Rep 2024; 14:14080. [PMID: 38890442 PMCID: PMC11189521 DOI: 10.1038/s41598-024-64829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
Collapse
Affiliation(s)
- Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ken-Ichi Nakada
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Rino Maruyama
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
6
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
7
|
Son B, Park S, Cho S, Kim JA, Baek SH, Yoo KH, Han D, Joo J, Park HH, Park TH. Improved Neural Inductivity of Size-Controlled 3D Human Embryonic Stem Cells Using Magnetic Nanoparticles. Biomater Res 2024; 28:0011. [PMID: 38500782 PMCID: PMC10944702 DOI: 10.34133/bmr.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Background: To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. Methods: In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. Results: As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. Conclusion: Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.
Collapse
Affiliation(s)
- Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sora Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ki Hyun Yoo
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Korea
| | - Dongoh Han
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Thongsa-Ad U, Wongpan A, Wongkummool W, Chaiwijit P, Uppakara K, Chaiyakitpattana G, Singpant P, Tong-Ngam P, Chukhan A, Pabuprappap W, Wongniam S, Suksamrarn A, Hongeng S, Anurathapan U, Kulkeaw K, Tubsuwan A, Bhukhai K. Improving hematopoietic differentiation from human induced pluripotent stem cells by the modulation of Hippo signaling with a diarylheptanoid derivative. Stem Cell Res Ther 2024; 15:60. [PMID: 38433217 PMCID: PMC10910864 DOI: 10.1186/s13287-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.
Collapse
Affiliation(s)
- Umnuaychoke Thongsa-Ad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wasinee Wongkummool
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phaewa Chaiwijit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | | | - Passanan Singpant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pirut Tong-Ngam
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Amnat Chukhan
- Prima Scientific, 147/170-171 Baromrajchonnee, Arunamarin, Bangkok, 10700, Thailand
| | - Wachirachai Pabuprappap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Sirapope Wongniam
- Center for Scientific Instrumentation and Platform Services Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alisa Tubsuwan
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Dijkhuis L, Johns A, Ragusa D, van den Brink SC, Pina C. Haematopoietic development and HSC formation in vitro: promise and limitations of gastruloid models. Emerg Top Life Sci 2023; 7:439-454. [PMID: 38095554 PMCID: PMC10754337 DOI: 10.1042/etls20230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.
Collapse
Affiliation(s)
- Liza Dijkhuis
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Ayona Johns
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Denise Ragusa
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | | | - Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| |
Collapse
|
10
|
Piau O, Brunet-Manquat M, L'Homme B, Petit L, Birebent B, Linard C, Moeckes L, Zuliani T, Lapillonne H, Benderitter M, Douay L, Chapel A, Guyonneau-Harmand L, Jaffredo T. Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells. Cell Stem Cell 2023; 30:1610-1623.e7. [PMID: 38065068 DOI: 10.1016/j.stem.2023.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Hematopoietic stem cells (HSCs) are the rare cells responsible for the lifelong curative effects of hematopoietic cell (HC) transplantation. The demand for clinical-grade HSCs has increased significantly in recent decades, leading to major difficulties in treating patients. A promising but not yet achieved goal is the generation of HSCs from pluripotent stem cells. Here, we have obtained vector- and stroma-free transplantable HSCs by differentiating human induced pluripotent stem cells (hiPSCs) using an original one-step culture system. After injection into immunocompromised mice, cells derived from hiPSCs settle in the bone marrow and form a robust multilineage hematopoietic population that can be serially transplanted. Single-cell RNA sequencing shows that this repopulating activity is due to a hematopoietic population that is transcriptionally similar to human embryonic aorta-derived HSCs. Overall, our results demonstrate the generation of HSCs from hiPSCs and will help identify key regulators of HSC production during human ontogeny.
Collapse
Affiliation(s)
- Olivier Piau
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Mathias Brunet-Manquat
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Bruno L'Homme
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Petit
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Brigitte Birebent
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Christine Linard
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laetitia Moeckes
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Thomas Zuliani
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Hélène Lapillonne
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Marc Benderitter
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Luc Douay
- AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Alain Chapel
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Guyonneau-Harmand
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| | - Thierry Jaffredo
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| |
Collapse
|
11
|
Yeung AK, Villacorta-Martin C, Lindstrom-Vautrin J, Belkina AC, Vanuytsel K, Dowrey TW, Ysasi AB, Bawa P, Wang F, Vrbanac V, Mostoslavsky G, Balazs AB, Murphy GJ. De novo hematopoiesis from the fetal lung. Blood Adv 2023; 7:6898-6912. [PMID: 37729429 PMCID: PMC10685174 DOI: 10.1182/bloodadvances.2022008347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023] Open
Abstract
Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFβ/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.
Collapse
Affiliation(s)
- Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | | | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Kim Vanuytsel
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Todd W. Dowrey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | | | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
12
|
Chang Y, Hummel SN, Jung J, Jin G, Deng Q, Bao X. Engineered hematopoietic and immune cells derived from human pluripotent stem cells. Exp Hematol 2023; 127:14-27. [PMID: 37611730 PMCID: PMC10615717 DOI: 10.1016/j.exphem.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
For the past decade, significant advances have been achieved in human hematopoietic stem cell (HSC) transplantation for treating various blood diseases and cancers. However, challenges remain with the quality control, amount, and cost of HSCs and HSC-derived immune cells. The advent of human pluripotent stem cells (hPSCs) may transform HSC transplantation and cancer immunotherapy by providing a cost-effective and scalable cell source for fundamental studies and translational applications. In this review, we discuss the current developments in the field of stem cell engineering for hematopoietic stem and progenitor cell (HSPC) differentiation and further differentiation of HSPCs into functional immune cells. The key advances in stem cell engineering include the generation of HSPCs from hPSCs, genetic modification of hPSCs, and hPSC-derived HSPCs for improved function, further differentiation of HPSCs into functional immune cells, and applications of cell culture platforms for hematopoietic cell manufacturing. Current challenges impeding the translation of hPSC-HSPCs and immune cells as well as further directions to address these challenges are also discussed.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Juhyung Jung
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, Indiana; Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
13
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
15
|
Li H, Luo Q, Cai S, Tie R, Meng Y, Shan W, Xu Y, Zeng X, Qian P, Huang H. Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells. Stem Cell Res Ther 2023; 14:117. [PMID: 37122014 PMCID: PMC10150485 DOI: 10.1186/s13287-023-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ye Meng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
16
|
Chuang CK, Chen SF, Su YH, Chen WH, Lin WM, Wang IC, Shyue SK. The Role of SCL Isoforms in Embryonic Hematopoiesis. Int J Mol Sci 2023; 24:ijms24076427. [PMID: 37047400 PMCID: PMC10094407 DOI: 10.3390/ijms24076427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.
Collapse
|
17
|
Peng H, Lin Y, Hu F, Lv C, Wu B, Weng Q, Liu L, Xia C, Liu X, Zhao Y, Zhang Q, Geng Y, Zhang M, Wang J. Prolonged generation of multi-lineage blood cells in wild-type animals from pluripotent stem cells. Stem Cell Reports 2023; 18:720-735. [PMID: 36801005 PMCID: PMC10031304 DOI: 10.1016/j.stemcr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Regenerating prolonged multi-lineage hematopoiesis from pluripotent stem cells (PSCs), an unlimited cell source, is a crucial aim of regenerative hematology. In this study, we used a gene-edited PSC line and revealed that simultaneous expression of three transcription factors, Runx1, Hoxa9, and Hoxa10, drove the robust emergence of induced hematopoietic progenitor cells (iHPCs). The iHPCs engrafted successfully in wild-type animals and repopulated abundant and complete myeloid-, B-, and T-lineage mature cells. The generative multi-lineage hematopoiesis distributed normally in multiple organs, persisted over 6 months, and eventually declined over time with no leukemogenesis. Transcriptome characterization of generative myeloid, B, and T cells at the single-cell resolution further projected their identities to natural cell counterparts. Thus, we provide evidence that co-expression of exogenous Runx1, Hoxa9, and Hoxa10 simultaneously leads to long-term reconstitution of myeloid, B, and T lineages using PSC-derived iHPCs as the cell source.
Collapse
Affiliation(s)
- Huan Peng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqing Lin
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100083, China
| | - Cui Lv
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Bingyan Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitong Weng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijuan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100083, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalan Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Qi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100083, China.
| |
Collapse
|
18
|
Ding J, Li Y, Larochelle A. De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells 2023; 12:321. [PMID: 36672255 PMCID: PMC9857267 DOI: 10.3390/cells12020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.
Collapse
Affiliation(s)
| | | | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Jeon S, Han A, Lee S, Lee SC, Lee MJ, Park S, Moon S, Lee JY. CD34 dim cells identified as pluripotent stem cell-derived definitive hemogenic endothelium purified using bone morphogenetic protein 4. Cell Prolif 2022; 56:e13366. [PMID: 36478274 PMCID: PMC9890535 DOI: 10.1111/cpr.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta-gonad-mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4- CD73- phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4- CD73- CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.
Collapse
Affiliation(s)
- Soo‐Been Jeon
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - A‐Reum Han
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - Sunghun Lee
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - Seung Chan Lee
- R&D DivisionCHA BiotechSeongnamKyunggi‐doRepublic of Korea
| | - Min Ji Lee
- R&D DivisionCHA BiotechSeongnamKyunggi‐doRepublic of Korea
| | - Soon‐Jung Park
- Research InstituteT&R Biofab Co. LtdSiheungRepublic of Korea,Department of MedicineKonkuk University School of MedicineSeoulRepublic of Korea
| | - Sung‐Hwan Moon
- Department of MedicineKonkuk University School of MedicineSeoulRepublic of Korea,Department of Animal Science and TechnologyChung‐Ang UniversityAnseong‐siRepublic of Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea,Department of Biomedical ScienceCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| |
Collapse
|
20
|
Vargas-Valderrama A, Ponsen AC, Le Gall M, Clay D, Jacques S, Manoliu T, Rouffiac V, Ser-le-Roux K, Quivoron C, Louache F, Uzan G, Mitjavila-Garcia MT, Oberlin E, Guenou H. Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Res Ther 2022; 13:254. [PMID: 35715824 PMCID: PMC9205076 DOI: 10.1186/s13287-022-02925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages.
Methods Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144+-embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144+, respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other’s (e.g. hPSC-ECs vs. hPSC-EB-CD144+) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations.
Results A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144+ contributed to the generation of CD45+ human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144+. Endothelial differentiation of hPSC-EB-CD144+ yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144+ generated an intermediate population of > 90% CD43+ hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144+, hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144+CD45+, a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors.
Conclusion The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02925-w.
Collapse
Affiliation(s)
| | - Anne-Charlotte Ponsen
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Morgane Le Gall
- Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Denis Clay
- INSERM UMS-44, Hôpital Paul Brousse, Université Paris Sud-Université Paris-Saclay, 94807, Villejuif, France
| | - Sébastien Jacques
- Plateforme de Génomique- GENOM'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Tudor Manoliu
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Valérie Rouffiac
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Karine Ser-le-Roux
- INSERM, UMS AMMICa, Plate-forme d'Evaluation Préclinique, Gustave Roussy, 94807, Villejuif, France
| | - Cyril Quivoron
- Laboratoire d'Hématologie Translationnelle, Gustave Roussy, 94805, Villejuif, France
| | - Fawzia Louache
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Georges Uzan
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | | | - Estelle Oberlin
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France. .,Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 91000, Evry, France.
| |
Collapse
|
21
|
Challenges in Cell Fate Acquisition to Scid-Repopulating Activity from Hemogenic Endothelium of hiPSCs Derived from AML Patients Using Forced Transcription Factor Expression. Cells 2022; 11:cells11121915. [PMID: 35741044 PMCID: PMC9221973 DOI: 10.3390/cells11121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of human hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) represents a major goal in regenerative medicine and is believed would follow principles of early development. HSCs arise from a type of endothelial cell called a “hemogenic endothelium” (HE), and human HSCs are experimentally detected by transplantation into SCID or other immune-deficient mouse recipients, termed SCID-Repopulating Cells (SRC). Recently, SRCs were detected by forced expression of seven transcription factors (TF) (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) in hPSC-derived HE, suggesting these factors are deficient in hPSC differentiation to HEs required to generate HSCs. Here we derived PECAM-1-, Flk-1-, and VE-cadherin-positive endothelial cells that also lack CD45 expression (PFVCD45−) which are solely responsible for hematopoietic output from iPSC lines reprogrammed from AML patients. Using HEs derived from AML patient iPSCs devoid of somatic leukemic aberrations, we sought to generate putative SRCs by the forced expression of 7TFs to model autologous HSC transplantation. The expression of 7TFs in hPSC-derived HE cells from an enhanced hematopoietic progenitor capacity was present in vitro, but failed to acquire SRC activity in vivo. Our findings emphasize the benefits of forced TF expression, along with the continued challenges in developing HSCs for autologous-based therapies from hPSC sources.
Collapse
|
22
|
Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. Hemasphere 2022; 6:e737. [PMID: 35647488 PMCID: PMC9132533 DOI: 10.1097/hs9.0000000000000737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
The hierarchical framework of the adult blood system as we know it from current medical and hematology textbooks, displays a linear branching network of dividing and differentiated cells essential for the growth and maintenance of the healthy organism. This view of the hierarchy has evolved over the last 75 years. An amazing increase in cellular complexity has been realized; however, innovative single-cell technologies continue to uncover essential cell types and functions in animal models and the human blood system. The most potent cell of the hematopoietic hierarchy is the hematopoietic stem cell. Stem cells for adult tissues are the long-lived self-renewing cellular component, which ensure that differentiated tissue-specific cells are maintained and replaced through the entire adult lifespan. Although much blood research is focused on hematopoietic tissue homeostasis, replacement and regeneration during adult life, embryological studies have widened and enriched our understanding of additional developmental hierarchies and interacting cells of this life-sustaining tissue. Here, we review the current state of knowledge of the hierarchical organization and the vast heterogeneity of the hematopoietic system from embryonic to adult stages.
Collapse
|
23
|
Mezu-Ndubuisi OJ, Maheshwari A. Role of the Endothelium in Neonatal Diseases. NEWBORN 2022; 1:44-57. [PMID: 35754998 PMCID: PMC9217741 DOI: 10.5005/jp-journals-11002-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an extensive database literature search from EMBASE, PubMed, and Scopus.
Collapse
Affiliation(s)
- Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
24
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
25
|
Ma C, Xiong Y, Han P, Zhang X, Cao Y, Wang B, Zhao H, Duan E, Zhang JV, Lei X. Simulated Microgravity Potentiates Hematopoietic Differentiation of Human Pluripotent Stem Cells and Supports Formation of 3D Hematopoietic Cluster. Front Cell Dev Biol 2022; 9:797060. [PMID: 35083220 PMCID: PMC8784808 DOI: 10.3389/fcell.2021.797060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Microgravity has been shown to induces many changes in proliferation, differentiation and growth behavior of stem cells. Little is known about the effect of microgravity on hematopoietic differentiation of pluripotent stem cells (PSCs). In this study, we used the random position machine (RPM) to investigate whether simulated microgravity (SMG) allows the induction of hematopoietic stem/progenitor cell (HSPC) derived from human embryonic stem cells (hESCs) in vitro. The results showed that SMG facilitates hESCs differentiate to HSPC with more efficient induction of CD34+CD31+ hemogenic endothelium progenitors (HEPs) on day 4 and CD34+CD43+ HSPC on day 7, and these cells shows an increased generation of functional hematopoietic cells in colony-forming unit assay when compared with normal gravity (NG) conditions. Additionally, we found that SMG significantly increased the total number of cells on day 4 and day 7 which formed more 3D cell clusters. Transcriptome analysis of cells identified thousands of differentially expressed genes (DEGs) between NG and SMG. DEGs down-regulated were enriched in the axonogenesis, positive regulation of cell adhesion, cell adhesion molecule and axon guidance, while SMG resulted in the up-regulation of genes were functionally associated with DNA replication, cell cycle, PI3K-Akt signaling pathway and tumorigenesis. Interestingly, some key gene terms were enriched in SMG, like hypoxia and ECM receptor interaction. Moreover, HSPC obtained from SMG culture conditions had a robust ability of proliferation in vitro. The proliferated cells also had the ability to form erythroid, granulocyte and monocyte/macrophage colonies, and can be induced to generate macrophages and megakaryocytes. In summary, our data has shown a potent impact of microgravity on hematopoietic differentiation of hPSCs for the first time and reveals an underlying mechanism for the effect of SMG on hematopoiesis development.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Xueying Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baobei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
26
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
27
|
Xiang Y, Sugimura R. Single-Cell Approaches to Deconvolute the Development of HSCs. Cells 2021; 10:2876. [PMID: 34831099 PMCID: PMC8616492 DOI: 10.3390/cells10112876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) play a core role in blood development. The ability to efficiently produce HSCs from various pluripotent stem cell sources is the Holy Grail in the hematology field. However, in vitro or in vivo HSC production remains low, which may be attributable to the lack of understanding of hematopoiesis. Here, we review the recent progress in this area and introduce advanced technologies, such as single-cell RNA-seq, spatial transcriptomics, and molecular barcoding, which may help to acquire missing information about HSC generation. We finally discuss unresolved questions, the answers to which may be conducive to HSC production, providing a promising path toward HSC-based immunotherapies.
Collapse
Affiliation(s)
| | - Ryohichi Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|