1
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
2
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Zhang L, Sun Z, Yang Y, Mack A, Rodgers M, Aroor A, Jia G, Sowers JR, Hill MA. Endothelial cell serum and glucocorticoid regulated kinase 1 (SGK1) mediates vascular stiffening. Metabolism 2024; 154:155831. [PMID: 38431129 DOI: 10.1016/j.metabol.2024.155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Austin Mack
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Mackenna Rodgers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Annayya Aroor
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Lim XR, Harraz OF. Mechanosensing by Vascular Endothelium. Annu Rev Physiol 2024; 86:71-97. [PMID: 37863105 PMCID: PMC10922104 DOI: 10.1146/annurev-physiol-042022-030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
5
|
Foote CA, Ramirez-Perez FI, Smith JA, Ghiarone T, Morales-Quinones M, McMillan NJ, Augenreich MA, Power G, Burr K, Aroor AR, Bender SB, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Neuraminidase inhibition improves endothelial function in diabetic mice. Am J Physiol Heart Circ Physiol 2023; 325:H1337-H1353. [PMID: 37801046 PMCID: PMC10908409 DOI: 10.1152/ajpheart.00337.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Thaysa Ghiarone
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
6
|
Dominguez A, Iruela-Arispe ML. Integration of Chemo-mechanical signaling in response to fluid shear stress by the endothelium. Curr Opin Cell Biol 2023; 85:102232. [PMID: 37703647 DOI: 10.1016/j.ceb.2023.102232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
Physical forces exert profound effects on cells affecting fate, function, and response to stressors. In the case of the endothelium, the layer that resides in the inner surface of blood vessels, the collective effect of hemodynamic forces influences the onset and severity of vascular pathologies. Justifiably, much emphasis has been placed in understanding how endothelial cells sense and respond to mechanical challenges, particularly hemodynamic shear stress. In this review, we highlight recent developments that have expanded our understanding of the molecular mechanisms underlying mechanotransduction. We describe examples of protein compartmentalization in response to shear stress, consider the contribution of the glycocalyx, and discuss the specific role ion channels in response to flow. We also highlight the recently recognized contribution of the receptor ALK5 in sensing turbulent flow. Research in the last three years has enriched our understanding of the molecular landscape responsible for recognizing and transducing shear stress responses, including novel transcriptional-dependent and transcriptional-independent mechanisms.
Collapse
Affiliation(s)
- Annmarie Dominguez
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res 2023; 46:1234-1246. [PMID: 36810623 DOI: 10.1038/s41440-023-01219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
The recent discovery of mechanosensitive ion channels has promoted mechanobiological research in the field of hypertension and nephrology. We previously reported Piezo2 expression in mouse mesangial and juxtaglomerular renin-producing cells, and its modulation by dehydration. This study aimed to investigate how Piezo2 expression is altered in hypertensive nephropathy. The effects of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, were also analyzed. Four-week-old Dahl salt-sensitive rats were randomly assigned to three groups: rats fed a 0.3% NaCl diet (DSN), rats fed a high 8% NaCl diet (DSH), and rats fed a high salt diet supplemented with esaxerenone (DSH + E). After six weeks, DSH rats developed hypertension, albuminuria, glomerular and vascular injuries, and perivascular fibrosis. Esaxerenone effectively decreased blood pressure and ameliorated renal damage. In DSN rats, Piezo2 was expressed in Pdgfrb-positive mesangial and Ren1-positive cells. Piezo2 expression in these cells was enhanced in DSH rats. Moreover, Piezo2-positive cells accumulated in the adventitial layer of intrarenal small arteries and arterioles in DSH rats. These cells were positive for Pdgfrb, Col1a1, and Col3a1, but negative for Acta2 (αSMA), indicating that they were perivascular mesenchymal cells different from myofibroblasts. Piezo2 upregulation was reversed by esaxerenone treatment. Furthermore, Piezo2 inhibition by siRNA in the cultured mesangial cells resulted in upregulation of Tgfb1 expression. Cyclic stretch also upregulated Tgfb1 in both transfections of control siRNA and Piezo2 siRNA. Our findings suggest that Piezo2 may have a contributory role in modulating the pathogenesis of hypertensive nephrosclerosis and have also highlighted the therapeutic effects of esaxerenone on salt-induced hypertensive nephropathy. Mechanochannel Piezo2 is known to be expressed in the mouse mesangial cells and juxtaglomerular renin-producing cells, and this was confirmed in normotensive Dahl-S rats. In salt-induced hypertensive Dahl-S rats, Piezo2 upregulation was observed in the mesangial cells, renin cells, and notably, perivascular mesenchymal cells, suggesting its involvement in kidney fibrosis.
Collapse
Affiliation(s)
- Koji Ochiai
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yuki Mochida
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tachikawa, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshihiro Yamaguchi
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| |
Collapse
|
9
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
10
|
Olde Hanhof CJA, Dilmen E, Yousef Yengej FA, Latta F, Ammerlaan CME, Schreurs J, Hooijmaijers L, Jansen J, Rookmaaker MB, Orhon I, Verhaar MC, Hoenderop JG. Differentiated mouse kidney tubuloids as a novel in vitro model to study collecting duct physiology. Front Cell Dev Biol 2023; 11:1086823. [PMID: 36760360 PMCID: PMC9905633 DOI: 10.3389/fcell.2023.1086823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Kidney tubuloids are cell models that are derived from human or mouse renal epithelial cells and show high similarities with their in vivo counterparts. Tubuloids grow polarized in 3D, allow for long-term expansion, and represent multiple segments of the nephron, as shown by their gene expression pattern. In addition, human tubuloids form tight, functional barriers and have been succesfully used for drug testing. Our knowledge of mouse tubuloids, on the other hand, is only minimal. In this study, we further characterized mouse tubuloids and differentiated them towards the collecting duct, which led to a significant upregulation of collecting duct-specific mRNAs of genes and protein expression, including the water channel AQP2 and the sodium channel ENaC. Differentiation resulted in polarized expression of collecting duct water channels AQP2 and AQP3. Also, a physiological response to desmopressin and forskolin stimulation by translocation of AQP2 to the apical membrane was demonstrated. Furthermore, amiloride-sensitive ENaC-mediated sodium uptake was shown in differentiated tubuloids using radioactive tracer sodium. This study demonstrates that mouse tubuloids can be differentiated towards the collecting duct and exhibit collecting duct-specific function. This illustrates the potential use of mouse kidney tubuloids as novel in vitro models to study (patho)physiology of kidney diseases.
Collapse
Affiliation(s)
- C. J. A. Olde Hanhof
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - E. Dilmen
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F. A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - F. Latta
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C. M. E. Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Schreurs
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - L. Hooijmaijers
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, Netherlands,Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - M. B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. Orhon
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. G. Hoenderop
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: J. G. Hoenderop,
| |
Collapse
|
11
|
Achner L, Klersy T, Fels B, Reinberger T, Schmidt CX, Groß N, Hille S, Müller OJ, Aherrahrou Z, Kusche-Vihrog K, Raasch W. AFM-based nanoindentation indicates an impaired cortical stiffness in the AAV-PCSK9 DY atherosclerosis mouse model. Pflugers Arch 2022; 474:993-1002. [PMID: 35648220 PMCID: PMC9393126 DOI: 10.1007/s00424-022-02710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/22/2022] [Indexed: 12/23/2022]
Abstract
Investigating atherosclerosis and endothelial dysfunction has mainly become established in genetically modified ApoE−/− or LDL-R−/− mice transgenic models. A new AAV-PCSK9DYDY mouse model with no genetic modification has now been reported as an alternative atherosclerosis model. Here, we aimed to employ this AAV-PCSK9DY mouse model to quantify the mechanical stiffness of the endothelial surface, an accepted hallmark for endothelial dysfunction and forerunner for atherosclerosis. Ten-week-old male C57BL/6 N mice were injected with AAV-PCSK9DY (0.5, 1 or 5 × 1011 VG) or saline as controls and fed with Western diet (1.25% cholesterol) for 3 months. Total cholesterol (TC) and triglycerides (TG) were measured after 6 and 12 weeks. Aortic sections were used for atomic force microscopy (AFM) measurements or histological analysis using Oil-Red-O staining. Mechanical properties of in situ endothelial cells derived from ex vivo aorta preparations were quantified using AFM-based nanoindentation. Compared to controls, an increase in plasma TC and TG and extent of atherosclerosis was demonstrated in all groups of mice in a viral load-dependent manner. Cortical stiffness of controls was 1.305 pN/nm and increased (10%) in response to viral load (≥ 0.5 × 1011 VG) and positively correlated with the aortic plaque content and plasma TC and TG. For the first time, we show changes in the mechanical properties of the endothelial surface and thus the development of endothelial dysfunction in the AAV-PCSK9DY mouse model. Our results demonstrate that this model is highly suitable and represents a good alternative to the commonly used transgenic mouse models for studying atherosclerosis and other vascular pathologies.
Collapse
Affiliation(s)
- Leonie Achner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Tobias Klersy
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Benedikt Fels
- Institute for Physiology, University Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Cosima X Schmidt
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Natalie Groß
- Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zouhair Aherrahrou
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Kristina Kusche-Vihrog
- Institute for Physiology, University Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany. .,CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany.
| |
Collapse
|