1
|
Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N, Zille M, Wang J, Zhang J, Chen X, Wang J. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Res Rev 2024; 101:102489. [PMID: 39277050 DOI: 10.1016/j.arr.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Yebin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mengzhe Qin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zahra Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fatemeh Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yunchao Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
2
|
Gao X, Pan T, Gao Y, Zhu W, Liu L, Duan W, Han C, Feng B, Yan W, Song Q, Liu Y, Yue L. Acetylation of PGK1 at lysine 323 promotes glycolysis, cell proliferation, and metastasis in luminal A breast cancer cells. BMC Cancer 2024; 24:1054. [PMID: 39192221 PMCID: PMC11348675 DOI: 10.1186/s12885-024-12792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. METHODS Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. RESULTS Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. CONCLUSION PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ting Pan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Gao
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbo Duan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bo Feng
- Dean's Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenjing Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Liu
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
3
|
Bahram Sangani N, Koetsier J, Mélius J, Kutmon M, Ehrhart F, Evelo CT, Curfs LMG, Reutelingsperger CP, Eijssen LMT. A novel insight into neurological disorders through HDAC6 protein-protein interactions. Sci Rep 2024; 14:14666. [PMID: 38918466 PMCID: PMC11199618 DOI: 10.1038/s41598-024-65094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.
Collapse
Affiliation(s)
- Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands.
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands.
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Jonathan Mélius
- DataHub, Maastricht University & Maastricht UMC+, P. Debyelaan 15, 6229 HX, Maastricht, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Leopold M G Curfs
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Qi M, Liu R, Zhang F, Yao Z, Zhou ML, Jiang X, Ling S. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology 2024; 251:109896. [PMID: 38490299 DOI: 10.1016/j.neuropharm.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/17/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Secondary brain injury after intracerebral hemorrhage (ICH) is the main cause of poor prognosis in ICH patients, but the underlying mechanisms remain less known. The involvement of Piezo1 in brain injury after ICH was studied in a mouse model of ICH. ICH was established by injecting autologous arterial blood into the basal ganglia in mice. After vehicle, Piezo1 blocker, GsMTx4, Piezo1 activator, Yoda-1, or together with mannitol (tail vein injection) was injected into the left lateral ventricle of mouse brain, Piezo1 level and the roles of Piezo1 in neuronal injury, brain edema, and neurological dysfunctions after ICH were determined by the various indicated methods. Piezo1 protein level in neurons was significantly upregulated 24 h after ICH in vivo (human and mice). Piezo1 protein level was also dramatically upregulated in HT22 cells (a murine neuron cell line) cultured in vitro 24 h after hemin treatment as an in vitro ICH model. GsMTx4 treatment or together with mannitol significantly downregulated Piezo1 and AQP4 levels, markedly increased Bcl2 level, maintained more neurons alive, considerably restored brain blood flow, remarkably relieved brain edema, substantially decreased serum IL-6 level, and almost fully reversed the neurological dysfunctions at ICH 24 h group mice. In contrast, Yoda-1 treatment achieved the opposite effects. In conclusion, Piezo1 plays a crucial role in the pathogenesis of brain injury after ICH and may be a target for clinical treatment of ICH.
Collapse
Affiliation(s)
- Min Qi
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
| | - Ran Liu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Fan Zhang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Zhipeng Yao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Meng-Liang Zhou
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
| |
Collapse
|
5
|
Shi C, Zhang Y, Chen Q, Wang Y, Zhang D, Guo J, Zhang Q, Zhang W, Gong Z. The acetylation of MDH1 and IDH1 is associated with energy metabolism in acute liver failure. iScience 2024; 27:109678. [PMID: 38660411 PMCID: PMC11039345 DOI: 10.1016/j.isci.2024.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The liver is the main organ associated with metabolism. In our previous studies, we identified that the metabolic enzymes malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) were differentially expressed in ALF. The aim of this study was to explore the changes in the acetylation of MDH1 and IDH1 and the therapeutic effect of histone deacetylase (HDAC) inhibitor in acute liver failure (ALF). Decreased levels of many metabolites were observed in ALF patients. MDH1 and IDH1 were decreased in the livers of ALF patients. The HDAC inhibitor ACY1215 improved the expression of MDH1 and IDH1 after treatment with MDH1-siRNA and IDH1-siRNA. Transfection with mutant plasmids and adeno-associated viruses, identified MDH1 K118 acetylation and IDH1 K93 acetylation as two important sites that regulate metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Chen
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
6
|
Zhang X, Li H, Wang H, Zhang Q, Deng X, Zhang S, Wang L, Guo C, Zhao F, Yin Y, Zhou T, Zhong J, Feng H, Chen W, Zhang J, Feng H, Hu R. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke. Redox Biol 2024; 71:103086. [PMID: 38367510 PMCID: PMC10883838 DOI: 10.1016/j.redox.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Haomiao Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueyun Deng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chao Guo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fengchun Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Zhang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
7
|
Zhang GD, Wang LL, Zheng L, Wang SQ, Yang RQ, He YT, Wang JW, Zhao MY, Ding Y, Liu M, Yang TY, Wu BM, Cui H, Zhang L. A novel HDAC6 inhibitor attenuate APAP-induced liver injury by regulating MDH1-mediated oxidative stress. Int Immunopharmacol 2024; 131:111861. [PMID: 38484665 DOI: 10.1016/j.intimp.2024.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.
Collapse
Affiliation(s)
- Guo-Dong Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Li-Li Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Ling Zheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Shi-Qi Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Rong-Quan Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yu-Ting He
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jun-Wei Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Ming-Yu Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yi Ding
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Mei Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Tian-Yu Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Bao-Ming Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Hao Cui
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Lv B, Fu P, Wang M, Cui L, Bao L, Wang X, Yu L, Zhou C, Zhu M, Wang F, Pang Y, Qi S, Zhang Z, Cui G. DMT1 ubiquitination by Nedd4 protects against ferroptosis after intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14685. [PMID: 38634270 PMCID: PMC11024684 DOI: 10.1111/cns.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.
Collapse
Affiliation(s)
- Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Ping Fu
- School of Life Sciences, Nanjing UniversityNanjingChina
| | - Miao Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of GeriatricsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Likun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Lei Bao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Xingzhi Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Chao Zhou
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Mengxin Zhu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Fei Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Ye Pang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical UniversityXuzhouChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
9
|
Tang X, Yang X, Yu Y, Wu M, Li Y, Zhang Z, Jia G, Wang Q, Tu W, Wang Y, Zhu X, Li S. Carbon quantum dots of ginsenoside Rb1 for application in a mouse model of intracerebral Hemorrhage. J Nanobiotechnology 2024; 22:125. [PMID: 38520022 PMCID: PMC10958843 DOI: 10.1186/s12951-024-02368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
After intracerebral hemorrhage (ICH) occurs, the overproduction of reactive oxygen species (ROS) and iron ion overload are the leading causes of secondary damage. Removing excess iron ions and ROS in the meningeal system can effectively alleviate the secondary damage after ICH. This study synthesized ginsenoside Rb1 carbon quantum dots (RBCQDs) using ginsenoside Rb1 and ethylenediamine via a hydrothermal method. RBCQDs exhibit potent capabilities in scavenging ABTS + free radicals and iron ions in solution. After intrathecal injection, the distribution of RBCQDs is predominantly localized in the subarachnoid space. RBCQDs can eliminate ROS and chelate iron ions within the meningeal system. Treatment with RBCQDs significantly improves blood flow in the meningeal system, effectively protecting dying neurons, improving neurological function, and providing a new therapeutic approach for the clinical treatment of ICH.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinyu Yang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yamei Yu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guangyu Jia
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Tu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Ye Wang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Shiyong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
10
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
11
|
Peng C, Wang Y, Hu Z, Chen C. Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14429. [PMID: 37665135 PMCID: PMC10915991 DOI: 10.1111/cns.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUNDS Blood-brain barrier (BBB) disruption after intracerebral hemorrhage (ICH) significantly induces neurological impairment. Previous studies showed that HDAC6 knockdown or TubA can protect the TNF-induced endothelial dysfunction. However, the role of HDAC6 inhibition on ICH-induced BBB disruption remains unknown. METHODS Hemin-induced human brain microvascular endothelial cells (HBMECs) and collagenase-induced rats were employed to investigated the underlying impact of the HDAC6 inhibition in BBB lesion and neuronal dysfunction after ICH. RESULTS We found a significant decrease in acetylated α-tubulin during early phase of ICH. Both 25 or 40 mg/kg of TubA could relieve neurological deficits, perihematomal cell apoptosis, and ipsilateral brain edema in ICH animal model. TubA or specific siRNA of HDAC6 inhibited apoptosis and reduced the endothelial permeability of HBMECs. HDAC6 inhibition rescued the degradation of TJ proteins and repaired TJs collapses after ICH induction. Finally, the results suggested that the protective effects on BBB after ICH induction were exerted via upregulating the acetylated α-tubulin and reducing stress fiber formation. CONCLUSIONS Inhibition of HDAC6 expression showed beneficial effects against BBB disruption after experimental ICH, which suggested that HDAC6 could be a novel and promising target for ICH treatment.
Collapse
Affiliation(s)
- Cuiying Peng
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Neurology, Hunan Provincial Rehabilitation HospitalHunan University of MedicineChangshaHunanChina
| | - Yilin Wang
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiping Hu
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chunli Chen
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Ou Y, Shen C, Chen Z, Liu T, Peng Y, Zong D, Ouyang R. TDP43/HDAC6/Prdx1 signaling pathway participated in the cognitive impairment of obstructive sleep apnea via regulating inflammation and oxidative stress. Int Immunopharmacol 2024; 127:111350. [PMID: 38104368 DOI: 10.1016/j.intimp.2023.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Neuroinflammation and oxidative stress induced by intermittent hypoxia (IH) are associated with cognitive dysfunction in patients with obstructive sleep apnea (OSA). Recently, TAR DNA-binding protein 43 (TDP-43), histone deacetylase 6 (HDAC6), and peroxiredoxin 1 (Prdx1) have been reported to be involved in cognitive impairment in many degenerative diseases; however, the underlying mechanisms remain unclear. In the present study, subjects underwent polysomnography to diagnose OSA. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) and peripheral blood samples were collected. HMC3 cells were treated with lipopolysaccharide (LPS) to mimic in vitro neuroinflammation. Western blotting was used to assess protein expression and ELISA to assess inflammation and oxidative stress levels. Participants were divided into three groups: healthy control (n = 20); mild to moderate OSA (n = 20); and severe OSA (n = 20). The MoCA scores in mild-moderate OSA and severe OSA were lower than those in healthy controls. Continuous positive airway pressure therapy was found to be effective for cognitive impairment in subjects with severe OSA (24.70 ± 1.81). Expression of TDP-43 and HDAC6 was increased in subjects with OSA, whereas Prdx1 expression was decreased. Alterations in these proteins were partially reversed after 12 weeks of CPAP treatment. Protein expression of TDP-43 and HDAC6 was negatively correlated with MoCA scores in patients with OSA, while Prdx1 expression exhibited the opposite trend. In LPS-treated HMC3 cells, TDP-43 and HDAC6 were upregulated, whereas Prdx1 expression was reduced. TDP-43 influenced the expression of Prdx1 by regulating HDAC6, and inflammation and oxidative stress varied with the expression of TDP-43. When a specific inhibitor of HDAC6 was used, LPS-induced inflammation and oxidative stress were alleviated by an elevated level of Prdx1. In summary, findings of the present study suggest that TDP-43 influenced Prdx1 by regulating HDAC6 expression and promoting neuroinflammation and oxidative stress. This process may be involved in the cognitive impairment experienced by patients with OSA and may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Chong Shen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Zhifeng Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yating Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Resipratory and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Wang Y, Shi C, Guo J, Zhang D, Zhang Y, Zhang L, Gong Z. IDH1/MDH1 deacetylation promotes acute liver failure by regulating NETosis. Cell Mol Biol Lett 2024; 29:8. [PMID: 38172700 PMCID: PMC10765752 DOI: 10.1186/s11658-023-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
14
|
Yang X, Tang X, Jia G, Wang Y, Yang L, Li Y, Wu M, Zhang Z, Yu Y, Xiao Y, Zhu X, Li S. Multifunctional Carbon Quantum Dots: Iron Clearance and Antioxidation for Neuroprotection in Intracerebral Hemorrhage Mice. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038958 DOI: 10.1021/acsami.3c13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Iron overload and oxidative stress are pivotal in the pathogenesis of brain injury secondary to intracerebral hemorrhage (ICH). There is a compelling need for agents that can chelate iron and scavenge free radicals, particularly those that demonstrate substantial brain penetration, to mitigate ICH-related damage. In this study, we have engineered an amine-functionalized aspirin-derived carbon quantum dot (NACQD) with a nominal diameter of 6-13 nm. The NACQD possesses robust iron-binding and antioxidative capacities. Through intrathecal administration, NACQD therapy substantially reduced iron deposition and oxidative stress in brain tissue, alleviated meningeal inflammatory responses, and improved the recovery of neurological function in a murine ICH model. As a proof of concept, the intrathecal injection of NACQD is a promising therapeutic strategy to ameliorate the ICH injury.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xiaolong Tang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Guangyu Jia
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Li Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Zhe Zhang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yamei Yu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yao Xiao
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xingen Zhu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Shiyong Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| |
Collapse
|
15
|
Mai L, He G, Chen J, Zhu J, Chen S, Yang H, Zhang M, Hou X, Ke M, Li X. Profilin1 Promotes Renal Tubular Epithelial Cell Apoptosis in Diabetic Nephropathy Through the Hedgehog Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:1731-1743. [PMID: 37323855 PMCID: PMC10263159 DOI: 10.2147/dmso.s411781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Background Profilin-1 (PFN1) regulates the dynamic balance of actin and plays an important role in cell functions as a hub protein in signaling molecule interaction networks. Dysregulation of PFN1 is related to pathologic kidney diseases. Diabetic nephropathy (DN) was recently reported as an inflammatory disorder, however, the molecular mechanisms of PFN1 in DN remain unclear. Therefore, the present study was conducted to explore the molecular and bioinformatic characteristics of PFN1 in DN. Methods Bioinformatics analyses were performed on the chip of database in DN kidney tissues. A cellular model of DN was established in human renal tubular epithelial cells (HK-2) induced by high glucose. The PFN1 gene was overexpressed or knocked-down to investigate its function in DN. Flow cytometry was used to detect cell proliferation and apoptosis. PFN1 and proteins in the related signaling pathways were evaluated by Western blotting. Results The expression of PFN1 was significantly increased in DN kidney tissues (P < 0.001) and was correlated with a high apoptosis-associated score (Pearson's correlation = 0.664) and cellular senescence-associated score (Pearson's correlation = 0.703). PFN1 protein was mainly located in cytoplasm. Overexpression of PFN1 promoted apoptosis and blocked the proliferation of HK-2 cells treated with high levels of glucose. Knockdown of PFN1 led to the opposite effects. Additionally, we found that PFN1 was correlated with the inactivation of the Hedgehog signaling pathway in HK-2 cells treated with high levels of glucose. Conclusion PFN1 might play an integral role in the regulation of cell proliferation and apoptosis during DN development by activating the Hedgehog signaling pathway. This study provided molecular and bioinformatic characterizations of PFN1, and contributed to the understanding of the molecular mechanisms leading to DN.
Collapse
Affiliation(s)
- Liping Mai
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Guodong He
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jiening Zhu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Hui Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Mengzhen Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Xinghua Hou
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Xiaohong Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
16
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
17
|
Zhou C, Zhu T, Ni W, Zhou H, Song J, Wang M, Jin G, Zhou Y, Han J, Hua F. Gain-of-function of progesterone receptor membrane component 2 ameliorates ischemic brain injury. CNS Neurosci Ther 2023; 29:1585-1601. [PMID: 36794556 PMCID: PMC10173723 DOI: 10.1111/cns.14122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Progesterone receptor membrane component 2 (PGRMC2) belongs to the membrane-associated progesterone receptor family, which regulates multiple pathophysiological processes. However, the role of PGRMC2 in ischemic stroke remains unexplored. The present study sought to determine the regulatory role of PGRMC2 in ischemic stroke. METHODS Male C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAO). The protein expression level and localization of PGRMC2 were examined by western blotting and immunofluorescence staining. The gain-of-function ligand of PGRMC2 (CPAG-1, 45 mg/kg) was intraperitoneally injected into sham/MCAO mice, and brain infarction, blood-brain barrier (BBB) leakage, and sensorimotor functions were evaluated by magnetic resonance imaging, brain water content, Evans blue extravasation, immunofluorescence staining, and neurobehavioral tests. The astrocyte and microglial activation, neuronal functions, and gene expression profiles were revealed by RNA sequencing, qPCR, western blotting, and immunofluorescence staining after surgery and CPAG-1 treatment. RESULTS Progesterone receptor membrane component 2 was elevated in different brain cells after ischemic stroke. Intraperitoneal delivery of CPAG-1 reduced infarct size, brain edema, BBB leakage, astrocyte and microglial activation, and neuronal death, and improved sensorimotor deficits after ischemic stroke. CONCLUSION CPAG-1 acts as a novel neuroprotective compound that could reduce neuropathologic damage and improve functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Taiyang Zhu
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Wanyan Ni
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hui Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Jiaxing Song
- Department of NeurologyXinqiao Hospital and The Second Affiliated Hospital, Third Military Medical UniversityChongqingChina
| | - Miao Wang
- Department of GeriatricsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guoliang Jin
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yan Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Jingjing Han
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Fang Hua
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of Interdisciplinary Health ScienceCollege of Allied Health Science, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
18
|
Kwon HJ, Hahn KR, Kang MS, Choi JH, Moon SM, Yoon YS, Hwang IK, Kim DW. Tat-malate dehydrogenase fusion protein protects neurons from oxidative and ischemic damage by reduction of reactive oxygen species and modulation of glutathione redox system. Sci Rep 2023; 13:5653. [PMID: 37024665 PMCID: PMC10079925 DOI: 10.1038/s41598-023-32812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Malate dehydrogenase (MDH) plays an important role in the conversion of malate to oxaloacetate during the tricarboxylic acid cycle. In this study, we examined the role of cytoplasmic MDH (MDH1) in hydrogen peroxide (H2O2)-induced oxidative stress in HT22 cells and ischemia-induced neuronal damage in the gerbil hippocampus. The Tat-MDH1 fusion protein was constructed to enable the delivery of MDH1 into the intracellular space and penetration of the blood-brain barrier. Tat-MDH1, but not MDH1 control protein, showed significant cellular delivery in HT22 cells in a concentration- and time-dependent manner and gradual intracellular degradation in HT22 cells. Treatment with 4 μM Tat-MDH1 significantly ameliorated 200 μM H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation in HT22 cells. Transient increases in MDH1 immunoreactivity were detected in the hippocampal CA1 region 6-12 h after ischemia, but MDH1 activity significantly decreased 2 days after ischemia. Supplementation of Tat-MDH1 immediately after ischemia alleviated ischemia-induced hyperlocomotion and neuronal damage 1 and 4 days after ischemia. In addition, treatment with Tat-MDH1 significantly ameliorated the increases in hydroperoxides, lipid peroxidation, and reactive oxygen species 2 days after ischemia. Tat-MDH1 treatment maintained the redox status of the glutathione system in the hippocampus 2 days after ischemia. These results suggest that Tat-MDH1 exerts neuroprotective effects by reducing oxidative stress and maintaining glutathione redox system in the hippocampus.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
19
|
Xu Y, Wei S, Zhu L, Huang C, Yang T, Wang S, Zhang Y, Duan Y, Li X, Wang Z, Pan W. Low expression of the intestinal metabolite butyric acid and the corresponding memory pattern regulate HDAC4 to promote apoptosis in rat hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114660. [PMID: 36812872 DOI: 10.1016/j.ecoenv.2023.114660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
After intensive research on the gut-brain axis, intestinal dysbiosis is considered to be one of the important pathways of cognitive decline. Microbiota transplantation has long been thought to reverse the behavioral changes in the brain caused by colony dysregulation, but in our study, microbiota transplantation seemed to improve only behavioral brain function, and there was no reasonable explanation for the high level of hippocampal neuron apoptosis that remained. Butyric acid is one of the short-chain fatty acids of intestinal metabolites and is mainly used as an edible flavoring. It is commonly used in butter, cheese and fruit flavorings, and is a natural product of bacterial fermentation of dietary fiber and resistant starch in the colon, acting similarly to the small-molecule HDAC inhibitor TSA. The effect of butyric acid on HDAC levels in hippocampal neurons in the brain remains unclear. Therefore, this study used rats with low bacterial abundance, conditional knockout mice, microbiota transplantation, 16S rDNA amplicon sequencing, and behavioral assays to demonstrate the regulatory mechanism of short-chain fatty acids on the acetylation of hippocampal histones. The results showed that disturbance of short-chain fatty acid metabolism led to high HDAC4 expression in the hippocampus and regulated H4K8ac, H4K12ac, and H4K16ac to promote increased neuronal apoptosis. However, microbiota transplantation did not change the pattern of low butyric acid expression, resulting in maintained high HDAC4 expression in hippocampal neurons with continued neuronal apoptosis. Overall, our study shows that low levels of butyric acid in vivo can promote HDAC4 expression through the gut-brain axis pathway, leading to hippocampal neuronal apoptosis, and demonstrates that butyric acid has great potential value for neuroprotection in the brain. In this regard, we suggest that patients with chronic dysbiosis should pay attention to changes in the levels of SCFAs in their bodies, and if deficiencies occur, they should be promptly supplemented through diet and other means to avoid affecting brain health.
Collapse
Affiliation(s)
- Yongjie Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Sijia Wei
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Liying Zhu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Changyudong Huang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Tingting Yang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Shuang Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yiqiong Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yunfeng Duan
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xing Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550004, Guizhou, PR China.
| | - Zhengrong Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Wei Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
20
|
Network Pharmacology Prediction and Experimental Verification for Anti-Ferroptosis of Edaravone After Experimental Intracerebral Hemorrhage. Mol Neurobiol 2023; 60:3633-3649. [PMID: 36905568 DOI: 10.1007/s12035-023-03279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Neuronal ferroptosis plays an important role in secondary brain injuries after intracerebral hemorrhage (ICH). Edaravone (Eda) is a promising free radical scavenger that inhibits ferroptosis in neurological diseases. However, its protective effects and underlying mechanisms in ameliorating post-ICH ferroptosis remain unclear. We employed a network pharmacology approach to determine the core targets of Eda against ICH. Forty-two rats were subjected to successful striatal autologous whole blood injection (n=28) or sham operation (n=14). The 28 blood-injected rats were randomly assigned to either the Eda or vehicle group (n=14) for immediate administration and then for 3 consecutive days. Hemin-induced HT22 cells were used for in vitro studies. The effects of Eda in ICH on ferroptosis and the MEK/ERK pathway were investigated in vivo and in vitro. Network pharmacology-based analysis revealed that candidate targets of Eda-treated ICH might be related to ferroptosis; among which prostaglandin G/H synthase 2 (PTGS2) was a ferroptosis marker. In vivo experiments showed that Eda alleviated sensorimotor deficits and decreased PTGS2 expression (all p<0.05) after ICH. Eda rescued neuron pathological changes after ICH (increased NeuN+ cells and decreased FJC+ cells, all p<0.01). In vitro experiments showed that Eda reduced intracellular reactive oxygen species and reversed mitochondria damage. Eda repressed ferroptosis by decreasing malondialdehyde and iron deposition and by influencing ferroptosis-related protein expression (all p<0.05) in ICH rats and hemin-induced HT22 cells. Mechanically, Eda significantly suppressed phosphorylated-MEK and phosphorylated-ERK1/2 expression. These results indicate that Eda has protective effects on ICH injury through ferroptosis and MEK/ERK pathway suppression.
Collapse
|
21
|
Zhang T, He M, Zhang J, Tong Y, Chen T, Wang C, Pan W, Xiao Z. Mechanisms of primordial follicle activation and new pregnancy opportunity for premature ovarian failure patients. Front Physiol 2023; 14:1113684. [PMID: 36926197 PMCID: PMC10011087 DOI: 10.3389/fphys.2023.1113684] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Primordial follicles are the starting point of follicular development and the basic functional unit of female reproduction. Primordial follicles are formed around birth, and most of the primordial follicles then enter a dormant state. Since primordial follicles are limited in number and can't be renewed, dormant primordial follicles cannot be reversed once they enter the growing state. Thus, the orderly occurrence of primordial follicles selective activation directly affects the rate of follicle consumption and thus determines the length of female reproductive lifespan. Studies have found that appropriately inhibiting the activation rate of primordial follicles can effectively slow down the rate of follicle consumption, maintain fertility and delay ovarian aging. Based on the known mechanisms of primordial follicle activation, primordial follicle in vitro activation (IVA) technique has been clinically developed. IVA can help patients with premature ovarian failure, middle-aged infertile women, or infertile women due to gynecological surgery treatment to solve infertility problems. The study of the mechanism of selective activation of primordial follicles can contribute to the development of more efficient and safe IVA techniques. In this paper, recent mechanisms of primordial follicle activation and its clinical application are reviewed.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Peng C, Gong X, Hu Z, Chen C, Jiang Z. Selective HDAC6 inhibitor TubA offers neuroprotection after intracerebral hemorrhage via inhibiting neuronal apoptosis. PeerJ 2023; 11:e15293. [PMID: 37138816 PMCID: PMC10150719 DOI: 10.7717/peerj.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
A large body of evidence has demonstrated that neuronal apoptosis is involved in the pathological process of secondary brain injury following intracerebral hemorrhage (ICH). Additionally, our previous studies determined that the inhibition of HDAC6 activity by tubacin or specific shRNA can attenuate neuronal apoptosis in an oxygen-glucose deprivation reperfusion model. However, whether the pharmacological inhibition of HDAC6-attenuated neuronal apoptosis in ICH remains unclear. In this study, we used hemin-induced SH-SY5Y cells to simulate a hemorrhage state in vitro and adopted a collagenase-induced ICH rat model in vivo to assess the effect of the HDAC6 inhibition. We found a significant increase in HDAC6 during the early stages of ICH. As expected, the acetylated α-tubulin significantly decreased in correlation with the expression of HDAC6. Medium and high doses (25, 40 mg/kg) of TubA, a selective inhibitor of HDAC6, both reduced neurological impairments, histological impairments, and ipsilateral brain edema in vivo. TubA or HDAC6 siRNA both alleviated neuronal apoptosis in vivo and in vitro. Finally, HDAC6 inhibition increased the level of acetylated α-tubulin and Bcl-2 and lowered the expression of Bax and cleaved caspase-3 post-ICH. In general, these results suggested that the pharmacological inhibition of HDAC6 may act as a novel and promising therapeutic target for ICH therapy by up-regulating acetylated α-tubulin and reducing neuronal apoptosis.
Collapse
|