1
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Zhang HY, Minnis C, Gustavsson E, Ryten M, Mole SE. CLN3 transcript complexity revealed by long-read RNA sequencing analysis. BMC Med Genomics 2024; 17:244. [PMID: 39367445 PMCID: PMC11451007 DOI: 10.1186/s12920-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Batten disease is a group of rare inherited neurodegenerative diseases. Juvenile CLN3 disease is the most prevalent type, and the most common pathogenic variant shared by most patients is the "1-kb" deletion which removes two internal coding exons (7 and 8) in CLN3. Previously, we identified two transcripts in patient fibroblasts homozygous for the 1-kb deletion: the 'major' and 'minor' transcripts. To understand the full variety of disease transcripts and their role in disease pathogenesis, it is necessary to first investigate CLN3 transcription in "healthy" samples without juvenile CLN3 disease. METHODS We leveraged PacBio long-read RNA sequencing datasets from ENCODE to investigate the full range of CLN3 transcripts across various tissues and cell types in human control samples. Then we sought to validate their existence using data from different sources. RESULTS We found that a readthrough gene affects the quantification and annotation of CLN3. After taking this into account, we detected over 100 novel CLN3 transcripts, with no dominantly expressed CLN3 transcript. The most abundant transcript has median usage of 42.9%. Surprisingly, the known disease-associated 'major' transcripts are detected. Together, they have median usage of 1.5% across 22 samples. Furthermore, we identified 48 CLN3 ORFs, of which 26 are novel. The predominant ORF that encodes the canonical CLN3 protein isoform has median usage of 66.7%, meaning around one-third of CLN3 transcripts encode protein isoforms with different stretches of amino acids. The same ORFs could be found with alternative UTRs. Moreover, we were able to validate the translational potential of certain transcripts using public mass spectrometry data. CONCLUSION Overall, these findings provide valuable insights into the complexity of CLN3 transcription, highlighting the importance of studying both canonical and non-canonical CLN3 protein isoforms as well as the regulatory role of UTRs to fully comprehend the regulation and function(s) of CLN3. This knowledge is essential for investigating the impact of the 1-kb deletion and rare pathogenic variants on CLN3 transcription and disease pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Christopher Minnis
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Emil Gustavsson
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK.
| |
Collapse
|
3
|
Dick F, Johanson GAS, Tysnes OB, Alves G, Dölle C, Tzoulis C. Brain Proteome Profiling Reveals Common and Divergent Signatures in Parkinson's Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy. Mol Neurobiol 2024:10.1007/s12035-024-04422-y. [PMID: 39164482 DOI: 10.1007/s12035-024-04422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
The molecular pathogenesis of degenerative parkinsonisms, including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and Multiple system atrophy (MSA), remains largely unknown. To gain novel insight into molecular processes associated with these diseases, we conducted a proteome-wide expression study in prefrontal cortex tissue from a cohort of 181 individuals, comprising PD (N = 73), PSP (N = 18), MSA (N = 17) and healthy control (N = 73). Using marker gene profiles, we first assess the cellular composition of the samples and, subsequently, identify distinct protein signatures for each disease, while correcting for cell composition. Our findings indicate that all three diseases are characterized by a structural and/or functional loss of deep cortical neurons, while PD exhibits an additional decrease in somatostatin-expressing interneurons, as well as in endothelial cells. Differential protein expression analysis identified multiple proteins and pathways with disease-specific expression, some of which have previously been associated with parkinsonism or neurodegeneration in general. Notably, we observed a strong mitochondrial signature which was present in both PD and PSP, albeit of a different composition and most pronounced in PSP, but not in MSA where immunological/inflammation-related pathways dominated. Additionally, we identified protein signatures associated with the severity of α-synuclein pathology in PD and showed that these are highly enriched in an upregulation of mitochondrial processes, specifically related to oxidative phosphorylation and in particular respiratory complexes I and IV. We identify multiple novel signatures of protein expression, associated with PD, PSP, and MSA, as well as with the severity of α-synuclein pathology in the PD brain.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gard Aasmund Skulstad Johanson
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Guido Alves
- Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Christian Dölle
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
4
|
Ivanov MV, Kopeykina AS, Gorshkov MV. Reanalysis of DIA Data Demonstrates the Capabilities of MS/MS-Free Proteomics to Reveal New Biological Insights in Disease-Related Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1775-1785. [PMID: 38938158 DOI: 10.1021/jasms.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Data-independent acquisition (DIA) at the shortened data acquisition time is becoming a method of choice for quantitative proteomic applications requiring high throughput analysis of large cohorts of samples. With the advent of the combination of high resolution mass spectrometry with an asymmetric track lossless analyzer, these DIA capabilities were further extended with the recent demonstration of quantitative analyses at the speed of up to hundreds of samples per day. In particular, the proteomic data for the brain samples related to multiple system atrophy disease were acquired using 7 and 28 min chromatography gradients (Guzman et al., Nat. Biotech. 2024). In this work, we applied the recently introduced DirectMS1 method to reanalysis of these data using only MS1 spectra. Both DirectMS1 and DIA results were matched against long gradient DDA analysis from the earlier study of the same sample cohort. While the quantitation efficiency of DirectMS1 was comparable with DIA on the same data sets, we found an additional five proteins of biological significance relevant to the analyzed tissue samples. Among the findings, DirectMS1 was able to detect decreased caspase activity for Vimentin protein in the multiple system atrophy samples missed by the MS/MS-based quantitation methods. Our study suggests that DirectMS1 can be an efficient MS1-only addition to the analysis of DIA data in high-throughput quantitative proteomic studies.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna S Kopeykina
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
5
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
6
|
Folke J, Skougaard M, Korsholm TL, Laursen ALS, Salvesen L, Hejl AM, Bech S, Løkkegaard A, Brudek T, Ditlev SB, Aznar S. Assessing serum anti-nuclear antibodies HEp-2 patterns in synucleinopathies. Immun Ageing 2024; 21:49. [PMID: 39026277 PMCID: PMC11256463 DOI: 10.1186/s12979-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the presence of antinuclear antibodies (ANA) in three primary synucleinopathies - Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), compared to healthy controls. Autoinflammatory disorders typically involve the immune system mistakenly attacking the body's own cells and start producing ANA. There is an increasing body of evidence that immune-mediated inflammation is a pathological feature linked to synucleinopathies. To investigate whether this could be autoimmune mediated we analyzed for ANA in the plasma of 25 MSA, 25 PD, and 17 DLB patients, along with 25 healthy controls, using the ANA HEp-2 indirect immunofluorescence antibody assay (ANA HEp-2 IFA). Contrary to initial expectations, results showed ANA HEp-2 positivity in 12% of PD, 8% of MSA patients, 18% of DLB patients, and 17% of healthy controls, indicating no increased prevalence of ANA in synucleinopathies compared to age-matched healthy individuals. Various ANA HEp-2 patterns were identified, but no specific pattern was associated with individual synucleinopathies. We conclude hereby that synucleinopathies are not associated with detectable presence of ANA in plasma.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Skougaard
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine-Line Korsholm
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
7
|
Gustavsson EK, Sethi S, Gao Y, Brenton JW, García-Ruiz S, Zhang D, Garza R, Reynolds RH, Evans JR, Chen Z, Grant-Peters M, Macpherson H, Montgomery K, Dore R, Wernick AI, Arber C, Wray S, Gandhi S, Esselborn J, Blauwendraat C, Douse CH, Adami A, Atacho DAM, Kouli A, Quaegebeur A, Barker RA, Englund E, Platt F, Jakobsson J, Wood NW, Houlden H, Saini H, Bento CF, Hardy J, Ryten M. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1. SCIENCE ADVANCES 2024; 10:eadk1296. [PMID: 38924406 PMCID: PMC11204300 DOI: 10.1126/sciadv.adk1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.
Collapse
Affiliation(s)
- Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Siddharth Sethi
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Yujing Gao
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Jonathan W. Brenton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Regina H. Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - James R. Evans
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie Montgomery
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhys Dore
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna I. Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Julian Esselborn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H. Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Antonina Kouli
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge, UK
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Frances Platt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Johan Jakobsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Nicholas W. Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Carla F. Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
8
|
Laursen ALS, Olesen MV, Folke J, Brudek T, Knecht LH, Sotty F, Lambertsen KL, Fog K, Dalgaard LT, Aznar S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating α-synuclein fibril aggregates. Mol Cell Neurosci 2024; 129:103931. [PMID: 38508542 DOI: 10.1016/j.mcn.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1β, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Collapse
Affiliation(s)
- Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Jonas Folke
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Luisa Harriet Knecht
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 21-25, DK-5000, Odense, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, Odense, Denmark; BRIDGE - Brain-Research-Inter-Disciplinary Guided Excellence, Department of Clinical Institute, University of Southern Denmark, Winsløwparken 19, Odense, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark.
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| |
Collapse
|
9
|
Shibata M, Makioka K, Nakamura T, Kasahara H, Yamazaki T, Takatama M, Okamoto K, Ikeda Y. Role of complement activation and disruption of the blood-brain barrier in the pathogenesis of multiple system atrophy. Neurosci Lett 2024; 822:137642. [PMID: 38228218 DOI: 10.1016/j.neulet.2024.137642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Multiple system atrophy (MSA) is a progressive and sporadic neurodegenerative disorder characterized by the histological appearance of glial cytoplasmic inclusions primarily composed of α-synuclein. Recently, complement-mediated neuroinflammation has been proposed as a key factor in the pathogenesis of numerous neurodegenerative disorders. We conducted immunohistochemical/immunofluorescent assays targeting a number of complements to explore the role of complements in MSA pathogenesis using brain samples from deceased patients and controls. Complement deposition was notably increased in the cerebral vasculature and myelin sheath in the MSA brains. Furthermore, fibrinogen leakage resulting from the disruption of the blood-brain barrier (BBB) was observed, along with the presence of C1q-positive microglia clusters surrounding the MSA brain vessels. These immunohistochemical/immunofluorescent findings suggest that complement activation and BBB disruption play critical roles in MSA progression.
Collapse
Affiliation(s)
- Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | - Koichi Okamoto
- Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
10
|
Guzman UH, Martinez-Val A, Ye Z, Damoc E, Arrey TN, Pashkova A, Renuse S, Denisov E, Petzoldt J, Peterson AC, Harking F, Østergaard O, Rydbirk R, Aznar S, Stewart H, Xuan Y, Hermanson D, Horning S, Hock C, Makarov A, Zabrouskov V, Olsen JV. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat Biotechnol 2024:10.1038/s41587-023-02099-7. [PMID: 38302753 DOI: 10.1038/s41587-023-02099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.
Collapse
Affiliation(s)
- Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Florian Harking
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Rydbirk
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Yang XL, Guo Y, Chen SF, Cui M, Shao RR, Huang YY, Luo YF, Dong ZY, Dong Q, Wu DH, Yu JT. Cerebral Small Vessel Disease Is Associated with Motor, Cognitive, and Emotional Dysfunction in Multiple System Atrophy. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1239-1252. [PMID: 37742661 PMCID: PMC10657662 DOI: 10.3233/jpd-230166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) has not been systematically studied in patients with multiple system atrophy (MSA). OBJECTIVE We sought to explore whether MSA patients suffer from a heavier CSVD burden relative to healthy individuals and whether CSVD has a relationship with motor, cognitive, and emotional dysfunction in patients with MSA. METHODS This study consecutively recruited 190 MSA patients and 190 matched healthy controls whose overall CSVD burden and single CSVD imaging markers (including white matter hyperintensity (WMH), microbleeds, lacunes, and enlarged perivascular spaces (EPVS)) were measured. Of the MSA patients, 118 completed multi-dimensional outcome assessments. Spearman's correlations and multivariable linear regressions were performed. RESULTS We observed a greater burden of overall CSVD, WMH, and EPVS in MSA patients compared with controls, but not for microbleeds and lacunes. Motor dysfunction and cognitive impairment were significantly worse in subjects with severe CSVD than those with none-to-mild CSVD. In patients with MSA, the severity of CSVD burden was positively associated with motor impairments as measured by the Unified Multiple System Atrophy Rating Scale-II (β= 2.430, p = 0.039) and Scale for the Assessment and Rating of Ataxia (β= 1.882, p = 0.015). Of CSVD imaging markers, different associations with MSA outcomes were displayed. WMH was associated with motor, cognitive, and emotional deficits, while the EPVS in the centrum semiovale, basal ganglia, and hippocampus regions was correlated only with motor severity, anxiety, and cognition, respectively. Similar findings were noted in MSA-cerebellar and MSA-parkinsonian patients. CONCLUSIONS Concomitant CSVD may be correlated with worse multi-dimensional dysfunction in patients with MSA.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Rong-Rong Shao
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Fan Luo
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhi-Yuan Dong
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Dan-Hong Wu
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|