1
|
Santos TAC, Sousa Ferreira C, Barreto Alves P, Scher R, Assis Pinheiro L, Vilaça Costa E, Roberto Gagliardi P, Fernandes RPM. Methoxy Chalcone Derivatives: Promising Antimicrobial Agents Against Phytopathogens. Chem Biodivers 2024:e202400945. [PMID: 39106337 DOI: 10.1002/cbdv.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Chalcone (E)-1,3-diphenyl-prop-2-en-1-one and a series of 14 methoxylated derivatives have been synthesized via Claisen-Schmidt aldol condensation and characterized by FTIR, CG/MS/DIC, 1D (1H and 13C), 2D (COSY, HSQC, and HMBC) NMR, and EMAR techniques. All molecules were tested at 1 mM concentration for antifungal (Sclerotium sp., Macrophomina phaesolina and Colletotrichum gloeosporioides), antibacterial (Acidovorax citrulli two strains), and antiprotozoal (Phytomonas serpens) activities. Unmodified chalcone (CH0) and derivatives CH1, CH2, CH8 stood out in terms of antifungal activity. CH0 presented IC50 values of 47.3 μM (9.8 μg/mL) for the fungus C. gloeosporioides. In addition, fluorescence microscopy indicated that CH0 promoted loss of hyphal cell membrane integrity. The CH1 and CH2 derivatives promoted the inhibition of Sclerotium sp. with IC50 of 127.5 μM (32.9 μg/mL) and 110.4 μM (29.6 μg/mL), respectively. All molecules showed high activity against the phytoparasite P. serpens with IC50 values of 0.98, 2.40, 10.25, and 3.11 μM for the derivatives CH2, CH3, CH5 and CH14 respectively. The results demonstrated that derivatives methoxylated in both rings (CH2) as well as derivatives with a furan ring associated with the methoxy group in ring A, as well as unmodified chalcone can be promising agricultural fungicides for controlling the fungi studied.
Collapse
Affiliation(s)
- Tamiris A C Santos
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Cassia Sousa Ferreira
- Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Péricles Barreto Alves
- Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Ricardo Scher
- Department of Morphology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | | | - Emmanoel Vilaça Costa
- Department of Chemistry, Federal University of Amazonas, 69080-900, Manaus, AM, Brazil
| | - Paulo Roberto Gagliardi
- Department of Agronomic Engineering, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|
2
|
Dziągwa-Becker M, Oleszek M, Zielińska S, Oleszek W. Chalcones-Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules 2024; 29:2247. [PMID: 38792109 PMCID: PMC11124243 DOI: 10.3390/molecules29102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review article is a comprehensive and current overview on chalcones, covering their sources, identification methods, and properties with a particular focus on their applications in the agricultural sector. The widespread use of synthetic pesticides has not only led to increased resistance among weeds and pests, resulting in economic losses, but it has also raised significant health concerns due to the overuse of these chemicals. In line with the European Green Deal 2030 and its Farm to Fork strategy, there is a targeted 50% reduction in the use of chemical pesticides by 2030, emphasizing a shift towards natural alternatives that are more environmentally sustainable and help in the restoration of natural resources. Chalcones and their derivatives, with their herbicidal, fungicidal, bactericidal, and antiviral properties, appear to be ideal candidates. These naturally occurring compounds have been recognized for their beneficial health effects for many years and have applications across multiple areas. This review not only complements the previous literature on the agricultural use of chalcones but also provides updates and introduces methods of detection such as chromatography and MALDI technique.
Collapse
Affiliation(s)
- Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation, State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland
| | - Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (M.O.); (W.O.)
| | - Sylwia Zielińska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (M.O.); (W.O.)
| |
Collapse
|
3
|
Wang L, Fan W, Cui L, Yang N, Zhang X, Yu S, Li Y, Wang B. Synthesis and Biological Activity Evaluation of Novel Chalcone Analogues Containing a Methylxanthine Moiety and Their N-Acyl Pyrazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19343-19356. [PMID: 38047436 DOI: 10.1021/acs.jafc.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
On the basis of the structures of natural methylxanthines and chalcone, a series of novel chalcone analogues containing a methylxanthine moiety, Ia-Ig, and their N-acyl pyrazoline derivatives IIa-IIz and IIaa-IIaf were synthesized and identified through melting points, 1H NMR, 13C NMR, and HRMS. The single crystal of compound IId was obtained, which further illustrated the structural characteristics of the methylxanthine-acylpyrazoline compounds. The biological tests showed that some of them displayed favorable insecticidal activities toward Plutella xylostella L. and were superior to the natural methylxanthine compound caffeine while being comparable with the insecticide triflumuron (e.g., compound Ic: LC50 = 16.8508 mg/L, IIf: LC50 = 1.5721 mg/L, against P. xylostella). Of these compounds, Ic, IIf, and IIu could serve as novel insecticidal leading structures for further study. Some of the compounds showed good fungicidal activities (e.g., compound Ig: EC50 = 14.74 μg/mL, against Rhizoctonia cerealis; IIf: EC50 = 7.06 μg/mL, against Physalospora piricola; IIac: EC50 = 5.37 and 8.19 μg/mL, against Phytophthora capsici and Sclerotinia sclerotiorum, respectively); Ic, Ig, IIa, IIf, IIr, IIs, IIv, IIac, and IIaf could be novel fungicidal leading compounds for further exploration. Furthermore, most of the tested compounds exhibited apparent herbicidal activities against Brassica campestris at a concentration of 100 μg/mL; among others, compound IIa was the best one both toward Brassica campestris and Echinochloa crusgalli and deserves further investigation. The structure-activity relationships of these compounds were also summarized and discussed in detail. The contrast experiment results of compounds C-1 and C-2 showed a positive effect on the biological activity enhancement from the combination of the methylxanthine moiety with the N-dichloroacetyl phenylpyrazoline skeleton. In addition, two 3D-QSAR models with predictive capability were constructed based on the insecticidal and fungicidal activities to afford deep insight into the bioactivity profiles of these compounds. This research provides useful guidance and reference for the discovery and development of novel xanthine natural product-based pesticides.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Ghany LMAA, Beshay BY, Youssef Moustafa AM, Maghrabi AHA, Ali EHK, Saleem RM, Zaki I, Ryad N. Design, synthesis, anti-inflammatory evaluation, and molecular modelling of new coumarin-based analogs combined curcumin and other heterocycles as potential TNF-α production inhibitors via upregulating Nrf2/HO-1, downregulating AKT/mTOR signalling pathways and downregulating NF-κB in LPS induced macrophages. J Enzyme Inhib Med Chem 2023; 38:2243551. [PMID: 37558232 PMCID: PMC10413923 DOI: 10.1080/14756366.2023.2243551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Persistent inflammation contributes to various inflammatory conditions. Inflammation-related diseases may be treated by inhibiting pro-inflammatory mediators and cytokines. Curcumin and coumarin derivatives can target signalling pathways and cellular factors to address immune-related and inflammatory ailments. This study involved designing and synthesising three series of coumarin-based analogs that incorporated curcumin and other heterocycles. These analogs were evaluated for their potential as anti-inflammatory agents in LPS-induced macrophages. Among the fourteen synthesised coumarin derivatives, compound 14b, which contained 3,4-dimethoxybenzylidene hydrazinyl, demonstrated the highest anti-inflammatory activity with an EC50 value of 5.32 μM. The anti-inflammatory effects of 14b were achieved by modulating signalling pathways like AKT/mTOR and Nrf2/HO-1, and downregulating NF-kβ, resulting in reduced production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α. The modelling studies revealed that 14b and dexamethasone bind to the same TNF-α pocket, suggesting that 14b has potential as a therapeutic agent superior to dexamethasone for TNF-α.
Collapse
Affiliation(s)
- Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Botros Y. Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | | | | | | | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
5
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Aksenov NA, Aksenov DA, Kurenkov IA, Aksenov AV, Skomorokhov AA, Prityko LA, Rubin M. Preparation of 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2 H-pyrrol-2-ones via base-assisted cyclization of 3-cyanoketones. RSC Adv 2021; 11:16236-16245. [PMID: 35479147 PMCID: PMC9032200 DOI: 10.1039/d1ra02279b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
A convenient preparative method is developed allowing for expeditious assembly of 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones from routinely available inexpensive synthetic precursors. These compounds could not be prepared via the previously known protocols, as 2-aminofuran derivatives were produced instead.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Anton A Skomorokhov
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Lidiya A Prityko
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University 1a Pushkin St. Stavropol 355009 Russian Federation
- Department of Chemistry, University of Kansas 1567 Irving Hill Rd Lawrence KS 66045-7582 USA +1-785-864-5071
| |
Collapse
|
7
|
Pinto P, Machado CM, Moreira J, Almeida JDP, Silva PMA, Henriques AC, Soares JX, Salvador JAR, Afonso C, Pinto M, Bousbaa H, Cidade H. Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity. Eur J Med Chem 2019; 184:111752. [PMID: 31610374 DOI: 10.1016/j.ejmech.2019.111752] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
This study describes the synthesis of a series of chalcones, including pyrazole and α,β-epoxide derivatives, and evaluation of their cell growth inhibitory activity in three human tumor cell lines, as well as their lipophilicity using liposomes as a biomimetic membrane model. Structure-activity and structure-lipophilicity relationships were established for the synthetized chalcones. From this work, nine chalcones (3, 5, 9, 11, 15-19) showing suitable drug-like lipophilicity with potent growth inhibitory activity were identified, being the growth inhibitory effect of compounds 15-17 associated with a pronounced antimitotic effect. Compounds 15-17 affected spindle assembly and, as a consequence, arrested cells at metaphase in NCI-H460 cells, culminating in cell death. Amongst the compounds tested, compound 15 exhibited the highest antimitotic activity as revealed by mitotic index calculation. Moreover, 15 was able to enhance chemosensitivity of tumor cells to low doses of paclitaxel in NCI-H460 cells. The results indicate that 15 exerts its antiproliferative activity by affecting microtubules and causing cell death subsequently to a mitotic arrest, and thus has the potential for antitumor activity.
Collapse
Affiliation(s)
- Patricia Pinto
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Carmen Mariana Machado
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - José Diogo P Almeida
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Jorge A R Salvador
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Coimbra, Portugal
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal.
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
8
|
Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur J Med Chem 2019; 174:142-158. [DOI: 10.1016/j.ejmech.2019.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/22/2022]
|
9
|
Mellado M, Espinoza L, Madrid A, Mella J, Chávez-Weisser E, Diaz K, Cuellar M. Design, synthesis, antifungal activity, and structure-activity relationship studies of chalcones and hybrid dihydrochromane-chalcones. Mol Divers 2019; 24:603-615. [PMID: 31161394 DOI: 10.1007/s11030-019-09967-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
A series of ten chalcones (7a-j) and five new dihydrochromane-chalcone hybrids (7k-o) were synthesized and identified using spectroscopic techniques (IR, NMR, and MS). All compounds were evaluated in vitro against the B. cinerea and M. fructicola phytopathogens that affect a wide range of crops of commercial interest. All compounds were tested against both phytopathogens using the mycelial growth inhibition test, and it was found that two and five compounds had similar activity to that of the positive control for B. cinerea (7a = 43.9, 7c = 45.5, and Captan®= 24.8 µg/mL) and M. fructicola (7a = 48.5, 7d = 78.2, 7e = 56.1, 7f = 51.8, 7n = 63.2, and Mystic®= 21.6 µg/mL), respectively. To understand the key chalcone structural features for the antifungal activity on B. cinerea and M. fructicola, we developed structure-activity models with good statistical values (r2 and q2 higher than 0.8). For B. cinerea, the hydrogen bonding donor and acceptor and the atomic charge on C5 modulate the mycelial growth inhibition activity. In contrast, dipole moment and atomic charge on C1' and the carbonyl carbon modify the inhibition activity for M. fructicola. These results allow the design of other compounds with activities superior to those of the compounds obtained in this study.
Collapse
Affiliation(s)
- Marco Mellado
- Facultad de Ciencias, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaiso, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnico Federico Santa María, Av. España 1680, Valparaiso, Chile
| | - Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Valparaiso, Chile
| | - Jaime Mella
- Facultad de Ciencias, Instituto de Química, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaiso, Chile
| | - Eduardo Chávez-Weisser
- Departamento Laboratorios y Estaciones Cuarentenarias, Servicio Agrícola y Ganadero, Ruta 68 #19100 (Km. 12), Pudahuel, Santiago, Chile
| | - Katy Diaz
- Departamento de Química, Universidad Técnico Federico Santa María, Av. España 1680, Valparaiso, Chile.
| | - Mauricio Cuellar
- Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaiso, Chile
| |
Collapse
|
10
|
Liu H, Guo C, Guo S, Wang L, Shi D. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells. Molecules 2019; 24:molecules24020375. [PMID: 30669672 PMCID: PMC6359167 DOI: 10.3390/molecules24020375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
A turn-on florescent probe (probe-KCP) was developed for highly selective detection of thiophenols based on a donor-excited photo-induced electron transfer mechanism. Herein, the synthesis of the probe, a chalcone derivative, through a simple straightforward combination of a carbazole-chalcone fluorophore with a 2,4-dinitrophenyl functional group. In a kinetic study of the probe-KCP for thiophenols, the probe displayed a short response time (~30 min) and significant fluorescence enhancement. In selection and competition experiments, the probe-KCP exhibited excellent selectivity for thiophenols over glutathione (GSH), cysteine (Cys), sodium hydrosulfide (NaSH), and ethanethiol (C2H5SH) in addition to common anions and metal ions. Using the designed probe, we successfully monitored and quantified thiophenols, which are highly toxic. This turn-on fluorescence probe features a remarkably large Stokes shift (130 nm) and a short response time (30 min), and it is highly selective and sensitive (~160-fold) in the detection of thiophenols, with marked fluorescence in the presence of thiophenols. probe-KCP responds to thiophenols with a good range of linearity (0–15 μM) and a detection limit of 28 nM (R2 = 0.9946) over other tested species mentioned including aliphatic thiols, thiophenol analogues, common anions, and metal ions. The potential applications of this carbazole-chalcone fluorescent probe was successfully used to determine of thiophenols in real water samples and living cells with good performance and low cytotoxicity. Therefore, this probe has great potential application in environment and biological samples.
Collapse
Affiliation(s)
- Hua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Wang YJ, Zhou DG, He FC, Chen JX, Chen YZ, Gan XH, Hu DY, Song BA. Synthesis and antiviral bioactivity of novel chalcone derivatives containing purine moiety. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Gross AD, Tabanca N, Islam R, Ali A, Khan IA, Kaplancikli ZA, Altintop MD, Ozdemir A, Bloomquist JR. Toxicity and Synergistic Activities of Chalcones Against Aedes aegypti (Diptera: Culicidae) and Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:382-386. [PMID: 28011724 DOI: 10.1093/jme/tjw183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Mosquito-borne illnesses are of great concern throughout the world, and chemical insecticides are commonly employed to decrease mosquito populations. However, the developmental insecticide pipeline for vector control has primarily been filled by repurposed agricultural products, and is hampered by their widespread use and insecticide resistance. The present study was performed in the search for new chemical insecticides or insecticide synergists. Screening of 31 chalcone analogs was performed using Aedes aegypti (Linnaeus) first-instar larval toxicity assay, and oral feeding to Drosophila melanogaster's proper authority should be (Meigen). Synergism studies were performed by topically applying chalcones to adult female Ae. aegypti mosquitoes to examine its impact on activity of carbaryl, which was compared to piperonyl butoxide alone. Fourteen chalcone analogs had LC50 values in the range of 0.4-38 ppm against first-instar Ae. aegypti larvae, and three chalcones displayed toxicity against D. melanogaster via feeding (LC50 values ranged from 146-214 μg/ml). Two chalcones synergized carbaryl toxicity against adult Ae. aegypti with efficacy similar to piperonyl butoxide. As a result, it is concluded that chalcones may serve as novel insecticides and synergists after further structural optimization.
Collapse
Affiliation(s)
- Aaron D Gross
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL (; ; ; )
| | - Nurhayat Tabanca
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL (; ; ; )
- National Center for Natural Products Research, University of Mississippi, University, MS (; )
| | - Rafique Islam
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL (; ; ; )
| | - Abbas Ali
- National Center for Natural Products Research, University of Mississippi, University, MS (; )
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, University, MS (; )
| | - Zafer A Kaplancikli
- Department of Pharmaceutical Chemistry, Anadolu University, Faculty of Pharmacy, Eskisehir, Turkey (; ; )
| | - Mehlika D Altintop
- Department of Pharmaceutical Chemistry, Anadolu University, Faculty of Pharmacy, Eskisehir, Turkey (; ; )
| | - Ahmet Ozdemir
- Department of Pharmaceutical Chemistry, Anadolu University, Faculty of Pharmacy, Eskisehir, Turkey (; ; )
| | - Jeffrey R Bloomquist
- Neurotoxicology Laboratory, Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL (; ; ; )
| |
Collapse
|
13
|
Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Appl Microbiol Biotechnol 2016; 100:8371-84. [PMID: 27209040 DOI: 10.1007/s00253-016-7607-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.
Collapse
|
14
|
Stompor M, Dancewicz K, Gabryś B, Anioł M. Insect Antifeedant Potential of Xanthohumol, Isoxanthohumol, and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6749-6756. [PMID: 26176501 DOI: 10.1021/acs.jafc.5b02025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthohumol (14) and isoxanthohumol (6) derived from hop (Humulus lupulus L., Cannabaceae) and selected chalcone and chromene derivatives, obtained by chemical synthesis, were studied for antifeedant activity against the peach-potato aphid (Myzus persicae [Sulz.]). The study used also commercially available 4-chromanone (1), flavanone (4), naringenin (5), chromone (7), flavone (8), 7-aminoflavone (9), trans-chalcone (10), and 4-methoxychalcone (12). For chromone derivatives it was observed that the presence of a phenyl substituent at C-2 in the chromone (7) skeleton increased the insect antifeedant activity, and this activity was observed for a longer time. Also, the introduction of an amino group at C-7 of flavone (8) considerably increased the insect antifeedant activity, which was observed for the whole test time. Among the compounds examined, the strongest deterrents were isoxanthohumol (6), 7-methoxy-2,2-dimethylchroman-4-one (3), 7-aminoflavone (9), and 4-ethyl-4'-methoxychalcone (13).
Collapse
Affiliation(s)
- Monika Stompor
- †Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Dancewicz
- §Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Beata Gabryś
- §Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Mirosław Anioł
- †Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
15
|
Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1415-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Abbas A, Kalsoom S, Hadda TB, Naseer MM. Evaluation of 4-alkoxychalcones as a new class of antiglycating agents: a combined experimental and docking study. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1752-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Kitawat BS, Singh M, Kathalupant Kale R. Solvent free synthesis, characterization, anticancer, antibacterial, antifungal, antioxidant and SAR studies of novel (E)-3-aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone. NEW J CHEM 2013. [DOI: 10.1039/c3nj00308f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|