1
|
Tan X, Jing Y, Wu J, Li J, Yang Z, Wu W, Ke Z, Jiang H. Palladium catalyzed ortho-C(sp 2)-H activation/cyclization of aryl amines assisted by imine and vinylacetic acid. Nat Commun 2024; 15:9877. [PMID: 39543115 PMCID: PMC11564760 DOI: 10.1038/s41467-024-54018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp2)-H activation of aryl amines because of the generation of a strained four-membered palladacycle. Herein, an imine directed palladium catalyzed C(sp2)-H functionalization of aryl amines assisted by vinylacetic acid is established, providing access to a variety of γ-lactone fused tetrahydroquinolines under mild reaction conditions. The methodology demonstrates broad substrate scope and good functional group tolerance, representing notable advancement in organic synthesis. Mechanistic experiments are performed to clarify how the C(sp2)-H activation occurs, indicating the crucial role of vinylacetic acid. DFT calculations supports the observations, elucidating the strained four-membered ring C-H activation barrier is overcome via coordination and hydrogen bond interaction of vinylacetic acid.
Collapse
Affiliation(s)
- Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jiatian Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhenjie Yang
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
3
|
Senhorães NR, Silva BF, Sousa R, Leite BP, Gonçalves JM, Almeida Paz FA, Pereira-Wilson C, Dias AM. Synthesis of 6,8-diaminopurines via acid-induced cascade cyclization of 5-aminoimidazole precursors and preliminary anticancer evaluation. Org Biomol Chem 2024; 22:1500-1513. [PMID: 38294067 DOI: 10.1039/d3ob01985c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Inspired by the pharmacological interest generated by 6-substituted purine roscovitine for cancer treatment, 5-aminoimidazole-4-carboxamidine precursors containing a cyanamide unit were prepared by condensation of 5-amino-N-cyanoimidazole-4-carbimidoyl cyanides with a wide range of primary amines. When these amidine precursors were combined with acids, a fast cascade cyclization occurred at room temperature, affording new 6,8-diaminopurines with the N-3 and N-6 substituents changed relatively to the original positions they occupied in the amidine and imidazole moieties of precursors. The efficacy and wide scope of this method was well demonstrated by an easy and affordable synthesis of 22 6,8-diaminopurines decorated with a wide diversity of substituents at the N-3 and N-6 positions of the purine ring. Preliminary in silico and in vitro assessments of these 22 compounds were carried out and the results showed that 13 of these tested compounds not only exhibited IC50 values between 1.4 and 7.5 μM against the colorectal cancer cell line HCT116 but also showed better binding energies than known inhibitors in docking studies with different cancer-related target proteins. In addition, good harmonization observed between in silico and in vitro results strengthens and validates this preliminary evaluation, suggesting that these novel entities are good candidates for further studies as new anticancer agents.
Collapse
Affiliation(s)
- Nádia R Senhorães
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bruna F Silva
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Raquel Sousa
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruna P Leite
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Jorge M Gonçalves
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina Pereira-Wilson
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057, Braga, Portugal
| | - Alice M Dias
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
4
|
de Sousa NF, de Araújo IMA, Rodrigues TCML, da Silva PR, de Moura JP, Scotti MT, Scotti L. Proposition of In silico Pharmacophore Models for Malaria: A Review. Comb Chem High Throughput Screen 2024; 27:2525-2543. [PMID: 37815185 DOI: 10.2174/0113862073247691230925062440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023]
Abstract
In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the "Web of Science" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Igor Mikael Alves de Araújo
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | | | - Pablo Rayff da Silva
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Jéssica Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
5
|
Verma K, Mishra M, Maharana PK, Bhattacharyya H, Saha S, Punniyamurthy T. Sc(OTf) 3-Catalyzed Domino C-C/C-N Bond Formation of Aziridines with Quinones via Radical Pathway. Org Lett 2023; 25:7933-7938. [PMID: 37874042 DOI: 10.1021/acs.orglett.3c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sc(III)-catalyzed domino C-C and C-N bond formation of N-sulfonyl aziridines with quinones has been accomplished to furnish functionalized indolines at a moderate temperature. The umpolung reactivity of aziridines, radical pathway, mild reaction conditions, substrate scope, and coupling of drug molecules in a postsynthetic application are the important practical features.
Collapse
Affiliation(s)
- Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
6
|
Krancewicz K, Nowicka-Bauer K, Fiedorowicz K, Marciniak B, Taras-Goslinska K. Thiopurines Analogues with Additional Ring: Synthesis, Spectroscopic Properties, and Anticancer Potency. Int J Mol Sci 2023; 24:ijms24108990. [PMID: 37240336 DOI: 10.3390/ijms24108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Purine scaffolds constitute a starting point for the synthesis of numerous chemotherapeutics used in treating cancer, viruses, parasites, as well as bacterial and fungal infections. In this work, we synthesized a group of guanosine analogues containing an additional five-membered ring and a sulfur atom at the C-9 position. The spectral, photophysical, and biological properties of the synthesized compounds were investigated. The spectroscopic studies revealed that a combination of the thiocarbonyl chromophore and the tricyclic structure of guanine analogues shifts the absorption region above 350 nm, allowing for selective excitation when present in biological systems. Unfortunately, due to the low fluorescence quantum yield, this process cannot be used to monitor the presence of these compounds in cells. The synthesized compounds were evaluated for their effect on the viability of human cervical carcinoma (HeLa) and mouse fibroblast (NIH/3T3) cells. It was found that all of them display anticancer activity. In vitro studies were preceded by in silico ADME and PASS analyses, which confirmed that the designed compounds are promising candidates for anticancer agents.
Collapse
Affiliation(s)
- Katarzyna Krancewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Karolina Nowicka-Bauer
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Fiedorowicz
- Nanobiomedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Bronislaw Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Taras-Goslinska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Siutkina A, Kalinina S, Liu R, Heitman LH, Junker A, Daniliuc CG, Kalinin DV. Microwave-Assisted Synthesis, Structure, and Preliminary Biological Evaluation of Novel 6-Methoxy-5,6-dihydro-5-azapurines. ACS OMEGA 2023; 8:14097-14112. [PMID: 37091407 PMCID: PMC10116508 DOI: 10.1021/acsomega.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
We herein disclose the microwave-assisted synthesis of previously unreported 6-methoxy-5,6-dihydro-5-azapurines, whose purine-like scaffold is promising for drug discovery. The method is simple, fast, and relies on easily accessible reagents such as trimethyl orthoformate, acetic acid, and aminotriazole-derived N,N'-disubstituted formamidines. The preliminary biological evaluation revealed that selected representatives of synthesized 6-methoxy-5,6-dihydro-5-azapurines dose-dependently reduce the viability of HepG2 and A549 cancer cells having little to no influence on five tested purinergic receptors.
Collapse
Affiliation(s)
- Alena
I. Siutkina
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Svetlana Kalinina
- Institute
of Food Chemistry, University of Münster, 48149 Münster, Germany
| | - Rongfang Liu
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 CC Leiden, The Netherlands
| | - Anna Junker
- European
Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany
| | | | - Dmitrii V. Kalinin
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Shatokhin SS, Tuskaev VA, Gagieva SC, Markova AA, Pozdnyakov DI, Denisov GL, Melnikova EK, Bulychev BM, Oganesyan ET. Synthesis, cytotoxicity and antioxidant activity of new 1,3-dimethyl-8-(chromon-3-yl)-xanthine derivatives containing 2,6-di- tert-butylphenol fragments. NEW J CHEM 2022. [DOI: 10.1039/d1nj03726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New xanthine analogs of isoflavone were synthesized and exhibited promising anticancer and antioxidant activities.
Collapse
Affiliation(s)
- Stanislav S. Shatokhin
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| | - Vladislav A. Tuskaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Svetlana Ch. Gagieva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
| | - Alina A. Markova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
- N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, 119334, Moscow, Russian Federation
| | - Dmitry I. Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Elizaveta K. Melnikova
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Boris M. Bulychev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
| | - Eduard T. Oganesyan
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| |
Collapse
|
9
|
Vinuesa A, Viñas M, Jahani D, Ginard J, Mur N, Pujol MD. Regioselective alkylation reaction of purines under microwave irradiation. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arturo Vinuesa
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| | - Miquel Viñas
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| | - Daniel Jahani
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| | - Jaume Ginard
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| | - Nuria Mur
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| | - Maria Dolors Pujol
- Laboratory of Pharmaceutical Chemistry. Faculty of Pharmacy University of Barcelona Barcelona Spain
| |
Collapse
|
10
|
Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
11
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|
12
|
Cortes Vazquez J, Davis J, Nesterov VN, Wang H, Luo W. Sc(OTf) 3-Catalyzed Formal [3 + 3] Cycloaddition Reaction of Diaziridines and Quinones for the Synthesis of Benzo[ e][1,3,4]oxadiazines. Org Lett 2021; 23:3136-3140. [PMID: 33819425 DOI: 10.1021/acs.orglett.1c00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A formal [3 + 3] cyclization reaction of diaziridines and quinones has been developed offering 1,3,4-oxadiazinanes in generally high yields (up to 96%). The reaction was catalyzed by Sc(OTf)3 with a large substrate scope for both diaziridines and quinones. The synergistic activation of 1,3-dipolar diaziridines and the dipolar quinones was found to be essential to enable this reaction.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Weiwei Luo
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
13
|
Frydrych J, Keough DT, Chavchich M, Travis J, Dračínský M, Edstein MD, Guddat LW, Hocková D, Janeba Z. Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur J Med Chem 2021; 219:113416. [PMID: 33887682 DOI: 10.1016/j.ejmech.2021.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/27/2023]
Abstract
Parasites of the Plasmodium genus are unable to produce purine nucleotides de novo and depend completely on the salvage pathway. This fact makes plasmodial hypoxanthine-guanine-(xanthine) phosphoribosyltransferase [HG(X)PRT] a valuable target for development of antimalarial agents. A series of nucleotide analogues was designed, synthesized and evaluated as potential inhibitors of Plasmodium falciparum HGXPRT, P. vivax HGPRT and human HGPRT. These novel nucleoside phosphonates have a pyrrolidine, piperidine or piperazine ring incorporated into the linker connecting the purine base to a phosphonate group(s) and exhibited a broad range of Ki values between 0.15 and 72 μM. The corresponding phosphoramidate prodrugs, able to cross cell membranes, have been synthesized and evaluated in a P. falciparum infected human erythrocyte assay. Of the eight prodrugs evaluated seven exhibited in vitro antimalarial activity with IC50 values within the range of 2.5-12.1 μM. The bis-phosphoramidate prodrug 13a with a mean (SD) IC50 of 2.5 ± 0.7 μM against the chloroquine-resistant P. falciparum W2 strain exhibited low cytotoxicity in the human hepatocellular liver carcinoma (HepG2) and normal human dermal fibroblasts (NHDF) cell lines at a concentration of 100 μM suggesting good selectivity for further structure-activity relationship investigations.
Collapse
Affiliation(s)
- Jan Frydrych
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16610 Prague 6, Czech Republic
| | - Dianne T Keough
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4068, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, Brisbane, Queensland 4051, Australia
| | - Jye Travis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4068, Australia; Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, Brisbane, Queensland 4051, Australia
| | - Martin Dračínský
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16610 Prague 6, Czech Republic
| | - Michael D Edstein
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, Brisbane, Queensland 4051, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4068, Australia
| | - Dana Hocková
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16610 Prague 6, Czech Republic
| | - Zlatko Janeba
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16610 Prague 6, Czech Republic.
| |
Collapse
|
14
|
Thapa Magar TB, Hee Seo S, Shrestha A, Kim JA, Kunwar S, Bist G, Kwon Y, Lee ES. Synthesis and structure-activity relationships of hydroxylated and halogenated 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols as selective topoisomerase IIα inhibitors. Bioorg Chem 2021; 111:104884. [PMID: 33872925 DOI: 10.1016/j.bioorg.2021.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to discover potential topoisomerase (topo) targeting anticancer agents. Novel series of hydroxylated and halogenated(-F, -Cl, and -CF3) 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols were systematically designed and synthesized by faster, economic, and environmentally friendly l-proline catalyzed and microwave-assisted one pot reaction method. The synthesized compounds were assessed for topo I and IIα inhibitory and anti-proliferative activities. The in vitroevaluation displayed that most of the compounds have selective topo IIα inhibitoryactivity as well as selectivity towards T47D human cancer cell line. Structure-activity relationship study suggested that the introduction of additional hydroxyl functionality at 7-positon of benzofuro[3,2-b]pyridine skeleton is crucial for selective topo IIα inhibitory activity. Placement of phenolic moiety on the 4-position of the tricyclic system imparts better topo IIα inhibitory and anti-proliferative activity.
Collapse
Affiliation(s)
| | - Seung Hee Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong-Ahn Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ganesh Bist
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
15
|
Qiu Y, Yuan H, Zhang X, Zhang J. Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. J Org Chem 2021; 86:4121-4130. [PMID: 33617248 DOI: 10.1021/acs.joc.0c02956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational studies of chiral phosphoric acid (CPA)-catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes show that the reaction proceeds through a catalytic asymmetric model involving a highly reactive π-allylic carbocationic intermediate, generated from a racemic allene through an intermolecular proton transfer mediated by CPA, which also results in a high E/Z selectivity. Moreover, the distortion-interaction, atom in molecule, and electrostatic interaction analyses and space-filling models are employed on the basis of the DyKAH catalyzed by (S)-A5 (reaction 1) or (R)-A2 (reaction 2) to explain the high enantioselectivity and the controlling effects of SPINOL scaffolds on the signs of enantioselectivity. Our calculations indicate that the enantioselectivity of reactions 1 and 2 can be mainly ascribed to the favorable noncovalent interactions within the stronger chiral electrostatic environment created by the phosphoric acid in the preferential transition states. Finally, the effect of (S/R)-SPINOL-based CPAs on the signs of enantioselectivity can be explained by the different combination modes of substrates into the chiral binding pocket of the catalyst controlled by the chirality of SPINOL backbones. Overall, the new insights into the reaction rationalize the outcome and these key factors that affect the product enantioselectivity are important to guide the DyKAHs.
Collapse
Affiliation(s)
- Yuting Qiu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoying Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Synthesis of tetrazolo[1,5-a]pyrimidine-6-carbonitriles using HMTA-BAIL@MIL-101(Cr) as a superior heterogeneous catalyst. Sci Rep 2021; 11:5109. [PMID: 33658548 PMCID: PMC7930133 DOI: 10.1038/s41598-021-84379-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
A one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.
Collapse
|
17
|
Joshi G, Sharma M, Kalra S, Gavande NS, Singh S, Kumar R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg Chem 2021; 107:104620. [PMID: 33454509 DOI: 10.1016/j.bioorg.2020.104620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Xanthine oxidase (XO) has been primarily targeted for the development of anti-hyperuriciemic /anti-gout agents as it catalyzes the conversion of xanthine and hypoxanthine into uric acid. XO overexpression in various cancer is very well correlated due to reactive oxygen species (ROS) production and metabolic activation of carcinogenic substances during the catalysis. Herein, we report the design and synthesis of a series of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehyde derivatives (2a-2x) as xanthine oxidase inhibitors (XOIs). A docking model was developed for the prediction of XO inhibitory activity of our novel compounds. Furthermore, our compounds anticancer activity results in low XO expression and XO-harboring cancer cells both in 2D and 3D-culture models are presented and discussed. Among the array of synthesized compounds, 2b and 2m emerged as potent XO inhibitors having IC50 values of 9.32 ± 0.45 µM and 10.03 ± 0.43 µM, respectively. Both compounds induced apoptosis, halted the cell cycle progression at the G1 phase, elevated ROS levels, altered mitochondrial membrane potential, and inhibited antioxidant enzymes. The levels of miRNA and expression of redox sensors in cells were also altered due to increase oxidative stress induced by our compounds. Compounds 2b and 2m hold a great promise for further development of XOIs for the treatment of XO-harboring tumors.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Manisha Sharma
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Sourav Kalra
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India.
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
18
|
Nathaniel CR, Neetha M, Anilkumar G. Silver‐catalyzed pyrrole synthesis: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
19
|
Yang L, Zhao JQ, You Y, Wang ZH, Yuan WC. Organocatalytic enantioselective tandem sulfa-Michael/aldol reaction to access dihydrothiopyran-fused benzosulfolane skeletons bearing three contiguous stereocenters. Chem Commun (Camb) 2020; 56:12363-12366. [PMID: 32930199 DOI: 10.1039/d0cc04840b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first organocatalytic diastereo- and enantioselective tandem sulfa-Michael/aldol reaction of 2-mercaptoindole-3-carbaldehydes and 2-mercaptobenzaldehydes with benzo[b]thiophene sulfones was developed. With multiple hydrogen-bonding thiourea as a catalyst, a wide range of polycyclic dihydrothiopyran-fused benzosulfolanes were smoothly obtained with excellent results (up to 99% yield, >20 : 1 dr and 99% ee) under mild reaction conditions.
Collapse
Affiliation(s)
- Lei Yang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | | | | | | | | |
Collapse
|
20
|
Wang Y, Zhang WX, Xi Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem Soc Rev 2020; 49:5810-5849. [PMID: 32658233 DOI: 10.1039/c9cs00478e] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbodiimides are a unique class of heterocumulene compounds that display distinctive chemical properties. The rich chemistry of carbodiimides has drawn increasing attention from chemists in recent years and has made them exceedingly useful compounds in modern organic chemistry, especially in the synthesis of N-heterocycles. This review has outlined the extensive application of carbodiimides in the synthesis of N-heterocycles from the 1980s to today. A wide range of reactions for the synthesis of various types of N-heterocyclic systems (three-, four-, five-, six-, seven-, larger-membered and fused heterocycles) have been developed on the basis of carbodiimides and their derivatives.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Campestre C, Keglevich G, Kóti J, Scotti L, Gasbarri C, Angelini G. Microwave-assisted simple synthesis of 2-anilinopyrimidines by the reaction of 2-chloro-4,6-dimethylpyrimidine with aniline derivatives. RSC Adv 2020; 10:12249-12254. [PMID: 35497585 PMCID: PMC9050660 DOI: 10.1039/d0ra00833h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023] Open
Abstract
A series of 2-anilinopyrimidines including novel derivatives has been obtained from 2-chloro-4,6-dimethylpyrimidine by aromatic nucleophilic substitution with differently substituted anilines under microwave conditions. The substituents had a significant impact on the course and efficiency of the reaction. The results reported herein demonstrate the efficacy of microwaves in the synthesis of the title heterocyclic compounds as compared to the results obtained with conventional heating. The 2-anilinopyrimidines described are of potential bioactivity. A rapid, one pot, green approach by microwave heating in ethanol provides a new method to obtain active and new potentially active compounds in high yields.![]()
Collapse
Affiliation(s)
- Cristina Campestre
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara via dei Vestini 66100 Chieti Italy +39-0871-3554785
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| | - János Kóti
- Spectroscopic Research Division, Gedeon Richter Plc. 1475 Budapest Hungary
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara via dei Vestini 66100 Chieti Italy
| | - Carla Gasbarri
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara via dei Vestini 66100 Chieti Italy +39-0871-3554785
| | - Guido Angelini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara via dei Vestini 66100 Chieti Italy +39-0871-3554785
| |
Collapse
|
22
|
Liu Y, Wang K, Ling B, Chen G, Li Y, Liu L, Bi S. Theoretical elucidation of the multi-functional synthetic methodology for switchable Ni(0)-catalyzed C–H allylations, alkenylations and dienylations with allenes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00965b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms and origins of switchable Ni(0)-catalyzed C–H allylations, alkenylations and dienylations with allenes are theoretically elucidated.
Collapse
Affiliation(s)
- Yuxia Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
| | - Kaifeng Wang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Guang Chen
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Science
- Xining 810001
- P. R. China
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|
23
|
Sreedevi R, Saranya S, Anilkumar G. Recent Trends in the Silver‐Catalyzed Synthesis of Nitrogen Heterocycles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Radhakrishnan Sreedevi
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P. O. Kottayam, Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P. O. Kottayam, Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P. O. Kottayam, Kerala 686560 India
| |
Collapse
|
24
|
Bhilare S, Murthy Bandaru SS, Shah J, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. Pd/PTABS: Low Temperature Etherification of Chloroheteroarenes. J Org Chem 2018; 83:13088-13102. [DOI: 10.1021/acs.joc.8b01840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Siva Sankar Murthy Bandaru
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Jagrut Shah
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Nicolas Chrysochos
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Carola Schulzke
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
25
|
Colomer JP, Sciú ML, Ramirez CL, Soria-Castro SM, Vera DMA, Moyano EL. Thermal Ring-Opening of Pyrazolo[3,4-d
][1,2,3]triazin-4-ones: An Experimental and Theoretical Study. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan P. Colomer
- INFIQC; Department of Organic Chemistry; National University of Córdoba; Córdoba Argentina
| | - María L. Sciú
- INFIQC; Department of Organic Chemistry; National University of Córdoba; Córdoba Argentina
| | - Cristina L. Ramirez
- QUIAMM-INBIOTEC; Dept. of Chemistry; School of Exact and Natural Sciences; National University of Mar del Plata; Mar del Plata Argentina
| | - Silvia M. Soria-Castro
- INFIQC; Department of Organic Chemistry; National University of Córdoba; Córdoba Argentina
| | - D. Mariano A. Vera
- QUIAMM-INBIOTEC; Dept. of Chemistry; School of Exact and Natural Sciences; National University of Mar del Plata; Mar del Plata Argentina
| | - Elizabeth L. Moyano
- INFIQC; Department of Organic Chemistry; National University of Córdoba; Córdoba Argentina
| |
Collapse
|
26
|
Wang Q, Zhang L, Yao J, Qiu G, Li X, Zhou H. Silver-Catalyzed Stereoselective Cyclization to Polysubstituted (Z)-1,2-Dihydrobenzo[cd]indoles. J Org Chem 2018; 83:4092-4098. [DOI: 10.1021/acs.joc.7b03257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiqi Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Lianpeng Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Jinzhong Yao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| |
Collapse
|
27
|
Harada M, Kato S, Haraguchi R, Fukuzawa SI. Metal Complex-Controlled Regio-, Diastero- and Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides with Benzo[b
]thiophene Sulfones. Chemistry 2018; 24:2580-2583. [DOI: 10.1002/chem.201706033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Masato Harada
- Department of Applied Chemistry; Institute of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Shuma Kato
- Department of Applied Chemistry; Institute of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry; Institute of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Shin-ichi Fukuzawa
- Department of Applied Chemistry; Institute of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
28
|
Murthy Bandaru SS, Bhilare S, Chrysochos N, Gayakhe V, Trentin I, Schulzke C, Kapdi AR. Pd/PTABS: Catalyst for Room Temperature Amination of Heteroarenes. Org Lett 2018; 20:473-476. [PMID: 29303597 DOI: 10.1021/acs.orglett.7b03854] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild and highly efficient catalytic amination procedure for chloroheteroarenes at ambient temperature using the Pd/PTABS catalytic system is reported. The protocol is selective for the amination of chloroheteroarenes using secondary amines such as piperidine, pyrrolidine, and several others. The exceptional mildness of the developed protocol is beneficial for the synthesis of a crucial Buparlisib intermediate as well as the formal synthesis of Alogliptin in competitive yields.
Collapse
Affiliation(s)
- Siva Sankar Murthy Bandaru
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald , Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology , Nathalal Road, Matunga, Mumbai 400019, India
| | - Nicolas Chrysochos
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald , Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Vijay Gayakhe
- Department of Chemistry, Institute of Chemical Technology , Nathalal Road, Matunga, Mumbai 400019, India
| | - Ivan Trentin
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald , Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Carola Schulzke
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald , Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology , Nathalal Road, Matunga, Mumbai 400019, India
| |
Collapse
|
29
|
Vitale RM, Antenucci L, Gavagnin M, Raimo G, Amodeo P. Structure-activity relationships of fraxamoside as an unusual xanthine oxidase inhibitor. J Enzyme Inhib Med Chem 2017; 32:345-354. [PMID: 28097900 PMCID: PMC6009875 DOI: 10.1080/14756366.2016.1252758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/24/2016] [Accepted: 10/21/2016] [Indexed: 01/02/2023] Open
Abstract
Fraxamoside, a macrocyclic secoiridoid glucoside featuring a hydroxytyrosol group, was recently identified as a xanthine oxidase inhibitor (XOI) comparable in potency in vitro to the standard antigout drug allopurinol. However, this activity and its considerably higher value than its derivatives oleuropein, oleoside 11-methyl ester, and hydroxytyrosol are not explained by structure-activity relationships (SARs) of known XOIs. To exclude allosteric mechanisms, we first determined the inhibition kinetic of fraxamoside. The resulting competitive mechanism prompted a computational SAR characterization, combining molecular docking and dynamics, which fully explained the behavior of fraxamoside and its derivatives, attributed the higher activity of the former to conformational properties of its macrocycle, and showed a substantial contribution of the glycosidic moiety to binding, in striking contrast with glycoside derivatives of most other XOIs. Overall, fraxamoside emerged as a lead compound for a new class of XOIs potentially characterized by reduced interference with purine metabolism.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB), National Council Research (CNR) of Italy, Pozzuoli, Italy
| | - Lina Antenucci
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Margherita Gavagnin
- Institute of Biomolecular Chemistry (ICB), National Council Research (CNR) of Italy, Pozzuoli, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB), National Council Research (CNR) of Italy, Pozzuoli, Italy
| |
Collapse
|
30
|
Nakanowatari S, Müller T, Oliveira JCA, Ackermann L. Bifurcated Nickel-Catalyzed Functionalizations: Heteroarene C−H Activation with Allenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachiyo Nakanowatari
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
31
|
Nakanowatari S, Müller T, Oliveira JCA, Ackermann L. Bifurcated Nickel-Catalyzed Functionalizations: Heteroarene C−H Activation with Allenes. Angew Chem Int Ed Engl 2017; 56:15891-15895. [DOI: 10.1002/anie.201709087] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sachiyo Nakanowatari
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
32
|
Xu Y, Sun P, Song Q, Lai X, Liu W, Xia T, Huang Y, Shen Y. Enantioselective Synthesis of Chiral Pyrazolo[3,4-d
]azepin-7(2H
,4H
,8H
)-one Derivatives through a Sequential Michael Addition and Reductive Ring-Closing Strategy. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Xu
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Panpan Sun
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Qing Song
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Xiaoyan Lai
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Wei Liu
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Tao Xia
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Yiyong Huang
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| | - Yongcun Shen
- School of Chemistry; Chemical Engineering & Life Sciences; Wuhan University of Technology; 205, Ruoshi Road Wuhan City Hongshan District China
| |
Collapse
|
33
|
Liu MM, Mei Q, Zhang YX, Bai P, Guo XH. Palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines with amines. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Marcantoni E, Petrini M. Recent Developments in the Stereoselective Synthesis of Nitrogen-Containing Heterocycles usingN-Acylimines as Reactive Substrates. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600644] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology; Chemistry Division; Università di Camerino; via S. Agostino 1 62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology; Chemistry Division; Università di Camerino; via S. Agostino 1 62032 Camerino Italy
| |
Collapse
|
35
|
|
36
|
Chen C, Lü JM, Yao Q. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview. Med Sci Monit 2016; 22:2501-12. [PMID: 27423335 PMCID: PMC4961276 DOI: 10.12659/msm.899852] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uric acid is the final oxidation product of purine metabolism in humans. Xanthine oxidoreductase (XOR) catalyzes oxidative hydroxylation of hypoxanthine to xanthine to uric acid, accompanying the production of reactive oxygen species (ROS). Uric acid usually forms ions and salts known as urates and acid urates in serum. Clinically, overproduction or under-excretion of uric acid results in the elevated level of serum uric acid (SUA), termed hyperuricemia, which has long been established as the major etiologic factor in gout. Accordingly, urate-lowering drugs such as allopurinol, an XOR-inhibitor, are extensively used for the treatment of gout. In recent years, the prevalence of hyperuricemia has significantly increased and more clinical investigations have confirmed that hyperuricemia is an independent risk factor for cardiovascular disease, hypertension, diabetes, and many other diseases. Urate-lowering therapy may also play a critical role in the management of these diseases. However, current XOR-inhibitor drugs such as allopurinol and febuxostat may have significant adverse effects. Therefore, there has been great effort to develop new XOR-inhibitor drugs with less or no toxicity for the long-term treatment or prevention of these hyperuricemia-related diseases. In this review, we discuss the mechanism of uric acid homeostasis and alterations, updated prevalence, therapeutic outcomes, and molecular pathophysiology of hyperuricemia-related diseases. We also summarize current discoveries in the development of new XOR inhibitors.
Collapse
Affiliation(s)
- Changyi Chen
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jian-Ming Lü
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Driowya M, Saber A, Marzag H, Demange L, Benhida R, Bougrin K. Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and Their Fused Analogues. Molecules 2016; 21:492. [PMID: 27089315 PMCID: PMC6273482 DOI: 10.3390/molecules21040492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022] Open
Abstract
This review describes the formation of six-membered heterocyclic compounds and their fused analogues under microwave activation using modern organic transformations including cyclocondensation, cycloaddition, multicomponents and other modular reactions. The review is divided according to the main heterocycle types in order of increasing complexity, starting with heterocyclic systems containing one, two and three heteroatoms and their fused analogues. Recent microwave applications are reviewed, with special focus on the chemistry of bioactive compounds. Selected examples from the 2006 to 2015 literature are discussed.
Collapse
Affiliation(s)
- Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Aziza Saber
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Hamid Marzag
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Luc Demange
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
- Department of Chemistry, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France.
| | - Rachid Benhida
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| |
Collapse
|
38
|
Kumarswamyreddy N, Kesavan V. Enantioselective Synthesis of Dihydrospiro[indoline-3,4′-pyrano[2,3-c]pyrazole] Derivatives via Michael/Hemiketalization Reaction. Org Lett 2016; 18:1354-7. [DOI: 10.1021/acs.orglett.6b00287] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Chemical Biology Laboratory,
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory,
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
39
|
Rodrigues MVN, Barbosa AF, da Silva JF, dos Santos DA, Vanzolini KL, de Moraes MC, Corrêa AG, Cass QB. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors. Bioorg Med Chem 2015; 24:226-31. [PMID: 26712096 DOI: 10.1016/j.bmc.2015.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/23/2015] [Accepted: 12/05/2015] [Indexed: 11/28/2022]
Abstract
A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein.
Collapse
Affiliation(s)
- Marili V N Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, 13148-218 Paulínia, SP, Brazil; Separare-Nucleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Alexandre F Barbosa
- Laboratório de Síntese de Produtos Naturais-LSPN, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Júlia F da Silva
- Laboratório de Síntese de Produtos Naturais-LSPN, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Deborah A dos Santos
- Laboratório de Síntese de Produtos Naturais-LSPN, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Kenia L Vanzolini
- Separare-Nucleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marcela C de Moraes
- Separare-Nucleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
| | - Arlene G Corrêa
- Laboratório de Síntese de Produtos Naturais-LSPN, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Quezia B Cass
- Separare-Nucleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
40
|
Singh PK, Negi A, Gupta PK, Chauhan M, Kumar R. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations. Arch Toxicol 2015; 90:1785-802. [PMID: 26341667 DOI: 10.1007/s00204-015-1587-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023]
Abstract
Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Arvind Negi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Pawan Kumar Gupta
- Centre for Computational Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Monika Chauhan
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151 001, India.
| |
Collapse
|