1
|
Agrawal AA, Hastings AP, Lenhart PA, Blecher M, Duplais C, Petschenka G, Hawlena D, Wagschal V, Dobler S. Convergence and Divergence among Herbivorous Insects Specialized on Toxic Plants: Revealing Syndromes among the Cardenolide Feeders across the Insect Tree of Life. Am Nat 2024; 204:201-220. [PMID: 39179235 DOI: 10.1086/731277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.
Collapse
|
2
|
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2022; 28:molecules28010105. [PMID: 36615300 PMCID: PMC9822358 DOI: 10.3390/molecules28010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-β-allopyranosyl coroglaucigenin (1), 3-[4'-O-β-glucopyranosyl-β-allopyranosyl] coroglaucigenin (2), 3'-O-β-glucopyranosyl-15-β-hydroxycalotropin (3), and 3-O-β-glucopyranosyl-12-β-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-β-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| | - Shrikant Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| |
Collapse
|
3
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
4
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
5
|
Briolat ES, Gaston KJ, Bennie J, Rosenfeld EJ, Troscianko J. Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nat Commun 2021; 12:4163. [PMID: 34230463 PMCID: PMC8260664 DOI: 10.1038/s41467-021-24394-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The nighttime environment is being altered rapidly over large areas worldwide through introduction of artificial lighting, from streetlights and other sources. This is predicted to impact the visual ecology of many organisms, affecting both their intra- and interspecific interactions. Here, we show the effects of different artificial light sources on multiple aspects of hawkmoth visual ecology, including their perception of floral signals for pollination, the potential for intraspecific sexual signalling, and the effectiveness of their visual defences against avian predators. Light sources fall into three broad categories: some that prevent use of chromatic signals for these behaviours, others that more closely mimic natural lighting conditions, and, finally, types whose effects vary with light intensity and signal colour. We find that Phosphor Converted (PC) amber LED lighting – often suggested to be less harmful to nocturnal insects – falls into this third disruptive group, with unpredictable consequences for insect visual ecology depending on distance from the light source and the colour of the objects viewed. The diversity of impacts of artificial lighting on hawkmoth visual ecology alone argues for a nuanced approach to outdoor lighting in environmentally sensitive areas, employing intensities and spectra designed to limit those effects of most significant concern. Artificial light at night is a major way in which humans are altering the environment, impacting the ecology and behaviour of other species. Modelling how nocturnal hawkmoths see and are seen under multiple light sources suggests a range of potentially disruptive impacts on key behaviours.
Collapse
Affiliation(s)
| | - Kevin J Gaston
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Jonathan Bennie
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Emma J Rosenfeld
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK.
| |
Collapse
|
6
|
War AR, Buhroo AA, Hussain B, Ahmad T, Nair RM, Sharma HC. Plant Defense and Insect Adaptation with Reference to Secondary Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_60] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI, Aguilar JM, Hastings AP, Bernstein SL, Matsunaga T, Astourian M, Guerra G, Rico F, Dobler S, Agrawal AA, Whiteman NK. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 2019; 574:409-412. [PMID: 31578524 PMCID: PMC7039281 DOI: 10.1038/s41586-019-1610-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
Abstract
Identifying the genetic mechanisms of adaptation requires the elucidation of links between the evolution of DNA sequence, phenotype, and fitness1. Convergent evolution can be used as a guide to identify candidate mutations that underlie adaptive traits2-4, and new genome editing technology is facilitating functional validation of these mutations in whole organisms1,5. We combined these approaches to study a classic case of convergence in insects from six orders, including the monarch butterfly (Danaus plexippus), that have independently evolved to colonize plants that produce cardiac glycoside toxins6-11. Many of these insects evolved parallel amino acid substitutions in the α-subunit (ATPα) of the sodium pump (Na+/K+-ATPase)7-11, the physiological target of cardiac glycosides12. Here we describe mutational paths involving three repeatedly changing amino acid sites (111, 119 and 122) in ATPα that are associated with cardiac glycoside specialization13,14. We then performed CRISPR-Cas9 base editing on the native Atpα gene in Drosophila melanogaster flies and retraced the mutational path taken across the monarch lineage11,15. We show in vivo, in vitro and in silico that the path conferred resistance and target-site insensitivity to cardiac glycosides16, culminating in triple mutant 'monarch flies' that were as insensitive to cardiac glycosides as monarch butterflies. 'Monarch flies' retained small amounts of cardiac glycosides through metamorphosis, a trait that has been optimized in monarch butterflies to deter predators17-19. The order in which the substitutions evolved was explained by amelioration of antagonistic pleiotropy through epistasis13,14,20-22. Our study illuminates how the monarch butterfly evolved resistance to a class of plant toxins, eventually becoming unpalatable, and changing the nature of species interactions within ecological communities2,6-11,15,17-19.
Collapse
Affiliation(s)
- Marianthi Karageorgi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,These authors contributed equally: Marianthi Karageorgi, Simon C. Groen
| | - Simon C. Groen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA.,These authors contributed equally: Marianthi Karageorgi, Simon C. Groen
| | - Fidan Sumbul
- LAI, U1067 Aix-Marseille Université, Inserm, CNRS, Marseille, France
| | - Julianne N. Pelaez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kirsten I. Verster
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jessica M. Aguilar
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Susan L. Bernstein
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Astourian
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Geno Guerra
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Rico
- LAI, U1067 Aix-Marseille Université, Inserm, CNRS, Marseille, France
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel, Universität Hamburg, Hamburg, Germany
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,Correspondence and requests for materials should be addressed to N.K.W.
| |
Collapse
|
8
|
Agrawal AA, Ali A, Daisy Johnson M, Hastings AP, Burge D, Weber MG. Toxicity of the spiny thick-foot Pachypodium. AMERICAN JOURNAL OF BOTANY 2018; 105:677-686. [PMID: 29683473 DOI: 10.1002/ajb2.1057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Pachypodium (Apocynaceae) is a genus of iconic stem-succulent and poisonous plants endemic to Madagascar and southern Africa. We tested hypotheses about the mode of action and macroevolution of toxicity in this group. We further hypothesized that while monarch butterflies are highly resistant to cardenolide toxins (a type of cardiac glycoside) from American Asclepias, they may be negatively affected by Pachypodium defenses, which evolved independently. METHODS We grew 16 of 21 known Pachypodium spp. and quantified putative cardenolides by HPLC and also by inhibition of animal Na+ /K+ -ATPase (the physiological target of cardiac glycosides) using an in vitro assay. Pachypodium extracts were tested against monarch caterpillars in a feeding bioassay. We also tested four Asclepias spp. and five Pachypodium spp. extracts, contrasting inhibition of the cardenolide-sensitive porcine Na+ /K+ -ATPase to the monarch's resistant form. KEY RESULTS We found evidence for low cardenolides by HPLC, but substantial toxicity when extracts were assayed on Na+ /K+ -ATPases. Toxicity showed phylogenetic signal, and taller species showed greater toxicity (this was marginal after phylogenetic correction). Application of Pachypodium extracts to milkweed leaves reduced monarch growth, and this was predicted by inhibition of the sensitive Na+ /K+ -ATPase in phylogenetic analyses. Asclepias extracts were 100-fold less potent against the monarch compared to the porcine Na+ /K+ -ATPase, but this difference was absent for Pachypodium extracts. CONCLUSIONS Pachypodium contains potent toxicity capable of inhibiting sensitive and cardenolide-adapted Na+ /K+ -ATPases. Given the monarch's sensitivity to Pachypodium, we suggest that these plants contain novel cardiac glycosides or other compounds that facilitate toxicity by binding to Na+ /K+ -ATPases.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Aliya Ali
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - M Daisy Johnson
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Dylan Burge
- Southern Oregon University, 1250 Siskiyou Boulevard, Ashland, Oregon, 97520, USA
| | - Marjorie G Weber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| |
Collapse
|
9
|
Birnbaum SSL, Rinker DC, Gerardo NM, Abbot P. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol Ecol 2017; 26:6742-6761. [PMID: 29110382 DOI: 10.1111/mec.14401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023]
Abstract
Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.
Collapse
Affiliation(s)
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S. Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance. Am Nat 2017; 190:S29-S43. [DOI: 10.1086/691711] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Groen SC, LaPlante ER, Alexandre NM, Agrawal AA, Dobler S, Whiteman NK. Multidrug transporters and organic anion transporting polypeptides protect insects against the toxic effects of cardenolides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:51-61. [PMID: 28011348 PMCID: PMC5428987 DOI: 10.1016/j.ibmb.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 05/10/2023]
Abstract
In the struggle against dietary toxins, insects are known to employ target site insensitivity, metabolic detoxification, and transporters that shunt away toxins. Specialized insects across six taxonomic orders feeding on cardenolide-containing plants have convergently evolved target site insensitivity via specific amino acid substitutions in the Na/K-ATPase. Nonetheless, in vitro pharmacological experiments have suggested a role for multidrug transporters (Mdrs) and organic anion transporting polypeptides (Oatps), which may provide a basal level of protection in both specialized and non-adapted insects. Because the genes coding for these proteins are evolutionarily conserved and in vivo genetic evidence in support of this hypothesis is lacking, here we used wildtype and mutant Drosophila melanogaster (Drosophila) in capillary feeder (CAFE) assays to quantify toxicity of three chemically diverse, medically relevant cardenolides. We examined multiple components of fitness, including mortality, longevity, and LD50, and found that, while the three cardenolides each stimulated feeding (i.e., no deterrence to the toxin), all decreased lifespan, with the most apolar cardenolide having the lowest LD50 value. Flies showed a clear non-monotonic dose response and experienced high levels of toxicity at the cardenolide concentration found in plants. At this concentration, both Mdr and Oatp knockout mutant flies died more rapidly than wildtype flies, and the mutants also experienced more adverse neurological effects on high-cardenolide-level diets. Our study further establishes Drosophila as a model for the study of cardenolide pharmacology and solidifies support for the hypothesis that multidrug and organic anion transporters are key players in insect protection against dietary cardenolides.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Erika R LaPlante
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Nicolas M Alexandre
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel, Universität Hamburg, Martin-Luther-King Pl. 3, 20146 Hamburg, Germany
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Dalla S, Dobler S. Gene duplications circumvent trade-offs in enzyme function: Insect adaptation to toxic host plants. Evolution 2016; 70:2767-2777. [DOI: 10.1111/evo.13077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Safaa Dalla
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel; University of Hamburg; 20146 Hamburg Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel; University of Hamburg; 20146 Hamburg Germany
| |
Collapse
|
13
|
Tarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs. Mol Biol Evol 2016; 33:1068-81. [DOI: 10.1093/molbev/msv350] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype–phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least five times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses.
Collapse
Affiliation(s)
| | - Juan C Santos
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Department of Biology, Brigham Young University, Provo
| | | | - Harold H Zakon
- Department of Integrative Biology, University of Texas—Austin
| | - David C Cannatella
- Department of Integrative Biology, University of Texas—Austin
- Biodiversity Collections, University of Texas—Austin
| |
Collapse
|
14
|
Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. STEPWISE EVOLUTION OF RESISTANCE TO TOXIC CARDENOLIDES VIA GENETIC SUBSTITUTIONS IN THE NA+/K+-ATPASE OF MILKWEED BUTTERFLIES (LEPIDOPTERA: DANAINI). Evolution 2013; 67:2753-61. [DOI: 10.1111/evo.12152] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Georg Petschenka
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Steffi Fandrich
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Nils Sander
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Vera Wagschal
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Michael Boppré
- Forstzoologisches Institut; Albert-Ludwigs-Universität; 79085; Freiburg; Germany
| | - Susanne Dobler
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| |
Collapse
|
15
|
Petschenka G, Pick C, Wagschal V, Dobler S. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. Proc Biol Sci 2013; 280:20123089. [PMID: 23516239 DOI: 10.1098/rspb.2012.3089] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because cardenolides specifically inhibit the Na(+)K(+)-ATPase, insects feeding on cardenolide-containing plants need to circumvent this toxic effect. Some insects such as the monarch butterfly rely on target site insensitivity, yet other cardenolide-adapted lepidopterans such as the oleander hawk-moth, Daphnis nerii, possess highly sensitive Na(+)K(+)-ATPases. Nevertheless, larvae of this species and the related Manduca sexta are insensitive to injected cardenolides. By radioactive-binding assays with nerve cords of both species, we demonstrate that the perineurium surrounding the nervous tissue functions as a diffusion barrier for a polar cardenolide (ouabain). By contrast, for non-polar cardenolides such as digoxin an active efflux carrier limits the access to the nerve cord. This barrier can be abolished by metabolic inhibitors and by verapamil, a specific inhibitor of P-glycoproteins (PGPs). This supports that a PGP-like transporter is involved in the active cardenolide-barrier of the perineurium. Tissue specific RT-PCR demonstrated expression of three PGP-like genes in hornworm nerve cords, and immunohistochemistry further corroborated PGP expression in the perineurium. Our results thus suggest that the lepidopteran perineurium serves as a diffusion barrier for polar cardenolides and provides an active barrier for non-polar cardenolides. This may explain the high in vivo resistance to cardenolides observed in some lepidopteran larvae, despite their highly sensitive Na(+)K(+)-ATPases.
Collapse
Affiliation(s)
- Georg Petschenka
- Molekulare Evolutionsbiologie, Biozentrum Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|
16
|
Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc Natl Acad Sci U S A 2012; 109:13040-5. [PMID: 22826239 DOI: 10.1073/pnas.1202111109] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The extent of convergent molecular evolution is largely unknown, yet is critical to understanding the genetics of adaptation. Target site insensitivity to cardenolides is a prime candidate for studying molecular convergence because herbivores in six orders of insects have specialized on these plant poisons, which gain their toxicity by blocking an essential transmembrane carrier, the sodium pump (Na,K-ATPase). We investigated gene sequences of the Na,K-ATPase α-subunit in 18 insects feeding on cardenolide-containing plants (spanning 15 genera and four orders) to screen for amino acid substitutions that might lower sensitivity to cardenolides. The replacement N122H that was previously shown to confer resistance in the monarch butterfly (Danaus plexippus) and Chrysochus leaf beetles was found in four additional species, Oncopeltus fasciatus and Lygaeus kalmii (Heteroptera, Lygaeidae), Labidomera clivicollis (Coleoptera, Chrysomelidae), and Liriomyza asclepiadis (Diptera, Agromyzidae). Thus, across 300 Myr of insect divergence, specialization on cardenolide-containing plants resulted in molecular convergence for an adaptation likely involved in coevolution. Our screen revealed a number of other substitutions connected to cardenolide binding in mammals. We confirmed that some of the particular substitutions provide resistance to cardenolides by introducing five distinct constructs of the Drosophila melanogaster gene into susceptible eucaryotic cells under an ouabain selection regime. These functional assays demonstrate that combined substitutions of Q(111) and N(122) are synergistic, with greater than twofold higher resistance than either substitution alone and >12-fold resistance over the wild type. Thus, even across deep phylogenetic branches, evolutionary degrees of freedom seem to be limited by physiological constraints, such that the same molecular substitutions confer adaptation.
Collapse
|
17
|
Selective sequestration of cardenolide isomers by two species of Danaus butterflies (Lepidoptera: Nymphalidae: Danainae). CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0109-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Petschenka G, Offe JK, Dobler S. Physiological screening for target site insensitivity and localization of Na(+)/K(+)-ATPase in cardenolide-adapted Lepidoptera. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:607-12. [PMID: 22343317 DOI: 10.1016/j.jinsphys.2011.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/25/2023]
Abstract
Cardenolides are toxic plant compounds which specifically inhibit Na(+)/K(+)-ATPase, an animal enzyme which is essential for many physiological processes, such as the generation of action potentials. Several adapted insects feeding on cardenolide-containing plants sequester these toxins for their own defence. Some of these insects were shown to possess Na(+)/K(+)-ATPases with a reduced sensitivity towards cardenolides (target site insensitivity). In the present study we screened five species of arctiid moths feeding on cardenolide-containing plants for target site insensitivity towards cardenolides using an in vitro enzyme assay. The derived dose response curves of the respective Na(+)/K(+)-ATPases were compared to the insensitive Na(+)/K(+)-ATPase of the monarch butterfly (Danaus plexippus). Na(+)/K(+)-ATPases of all arctiid species tested were highly sensitive to ouabain, a water-soluble cardenolide which is most widely used in laboratory studies. Nevertheless, we detected substantial amounts of cardenolides in the haemolymph of two of the arctiid species. In caterpillars of the sequestering arctiid Empyreuma pugione and of D. plexippus we localized Na(+)/K(+)-ATPase by immunohistochemistry and western blot (in D. plexippus). Both techniques revealed strong expression of the enzyme in the nervous tissue and indicated weak expression or even absence in other tissues tested. We conclude that instead of target site insensitivity the investigated arctiid species use a different strategy to tolerate cardenolides. Most plausibly, the perineurium surrounding the nervous tissue functions as a barrier which prevents cardenolides from reaching Na(+)/K(+)-ATPase in the ventral nerve cord.
Collapse
Affiliation(s)
- Georg Petschenka
- Biozentrum Grindel Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
19
|
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. THE NEW PHYTOLOGIST 2012; 194:28-45. [PMID: 22292897 DOI: 10.1111/j.1469-8137.2011.04049.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Petschenka
- Biozentrum Grindel, Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Robin A Bingham
- Department of Natural and Environmental Sciences, Western State College of Colorado, Gunnison, CO 81231, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sergio Rasmann
- Department of Ecology and Evolution, Bâtiment Biophore, University of Lausanne, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Aardema ML, Zhen Y, Andolfatto P. The evolution of cardenolide-resistant forms of Na⁺,K⁺ -ATPase in Danainae butterflies. Mol Ecol 2011; 21:340-9. [PMID: 22126595 DOI: 10.1111/j.1365-294x.2011.05379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cardenolides are a class of plant secondary compounds that inhibit the proper functioning of the Na(+) , K(+) -ATPase enzyme in susceptible animals. Nonetheless, many insect species are able to sequester cardenolides for their own defence. These include butterflies in the subfamily Danainae (Family: Nymphalidae) such as the monarch (Danaus plexippus). Previous studies demonstrated that monarchs harbour an asparagine (N) to histidine (H) substitution (N122H) in the α subunit of Na(+) , K(+) -ATPase (ATPα) that reduces this enzyme's sensitivity to cardenolides. More recently, it has been suggested that at ATPα position 111, monarchs may also harbour a leucine (L)/glutamine (Q) polymorphism. This later amino acid could also contribute to cardenolide insensitivity. However, here we find that incorrect annotation of the initially reported DNA sequence for ATPα has led to several erroneous conclusions. Using a population genetic and phylogenetic analysis of monarchs and their close relatives, we show that an ancient Q111L substitution occurred prior to the radiation of all Danainae, followed by a second substitution at the same site to valine (V), which arose before the diversification of the Danaus genus. In contrast, N122H appears to be a recent substitution specific to monarchs. Surprisingly, examination of a broader insect phylogeny reveals that the same progression of amino acid substitutions (Q111L → L111V + N122H) has also occurred in Chyrsochus beetles (Family: Chrysomelidae, Subfamily: Eumolpinae) that feed on cardenolide-containing host plants. The parallel pattern of amino acid substitution in these two distantly related lineages is consistent with an adaptive role for these substitutions in reducing cardenolide sensitivity and suggests that their temporal order may be limited by epistatic interactions.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
21
|
Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. PHYTOCHEMISTRY 2011; 72:1510-30. [PMID: 21450319 DOI: 10.1016/j.phytochem.2011.02.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 05/20/2023]
Abstract
Plant latex and other exudates are saps that are exuded from the points of plant damage caused either mechanically or by insect herbivory. Although many (ca. 10%) of plant species exude latex or exudates, and although the defensive roles of plant latex against herbivorous insects have long been suggested by several studies, the detailed roles and functions of various latex ingredients, proteins and chemicals, in anti-herbivore plant defenses have not been well documented despite the wide occurrence of latex in the plant kingdom. Recently, however, substantial progress has been made. Several latex proteins, including cysteine proteases and chitin-related proteins, have been shown to play important defensive roles against insect herbivory. In the mulberry (Morus spp.)-silkworm (Bombyx mori) interaction, an old and well-known model system of plant-insect interaction, plant latex and its ingredients--sugar-mimic alkaloids and defense protein MLX56--are found to play key roles. Complicated molecular interactions between Apocynaceae species and its specialist herbivores, in which cardenolides and defense proteins in latex play key roles, are becoming more and more evident. Emerging observations suggested that plant latex, analogous to animal venom, is a treasury of useful defense proteins and chemicals that has evolved through interspecific interactions. On the other hand, specialist herbivores developed sophisticated adaptations, either molecular, physiological, or behavioral, against latex-borne defenses. The existence of various adaptations in specialist herbivores itself is evidence that latex and its ingredients function as defenses at least against generalists. Here, we review molecular and structural mechanisms, ecological roles, and evolutionary aspects of plant latex as a general defense against insect herbivory and we discuss, from recent studies, the unique characteristics of latex-borne defense systems as transport systems of defense substances are discussed based on recent studies.
Collapse
Affiliation(s)
- Kotaro Konno
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
22
|
Dobler S, Petschenka G, Pankoke H. Coping with toxic plant compounds--the insect's perspective on iridoid glycosides and cardenolides. PHYTOCHEMISTRY 2011; 72:1593-1604. [PMID: 21620425 DOI: 10.1016/j.phytochem.2011.04.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 05/27/2023]
Abstract
Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.
Collapse
Affiliation(s)
- Susanne Dobler
- Biocenter Grindel, Hamburg University, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
23
|
Rasmann S, Agrawal AA. Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol Lett 2011; 14:476-83. [DOI: 10.1111/j.1461-0248.2011.01609.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|