1
|
Zhu D, Ge C, Sun Y, Yu H, Wang J, Sun H. Identification of organic pollutants and heavy metals in natural rubber wastewater and evaluation its phytotoxicity and cytogenotoxicity. CHEMOSPHERE 2024; 349:140503. [PMID: 37939923 DOI: 10.1016/j.chemosphere.2023.140503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The natural rubber industry consumes large volumes of water and annually releases wastewater with rich organic and inorganic loads. This wastewater is allowed for soil irrigation in developing countries. However, the pollutant composition in wastewater and its environmental effects remain unclear. Therefore, we aimed to assess the wastewater's physicochemical parameters, toxic organic pollutants, heavy metals, and phytotoxic and cytogenotoxic. The result revealed that values of comprehensive wastewater parameters were recorded as chemical oxygen demand (187432.1 mg/L), pH (4.23), total nitrogen (1157.1 mg/L), ammonia nitrogen (1113.0 mg/L), total phosphorus (1181.2 mg/L), Zn (593.3 mg/L), Cr (0.6127 mg/L), and Ni (0.2986 mg/L). The organic compounds detected by LC-MS were salbostatin, sirolimus, Gibberellin A34-catabolite, 1-(sn-glycero-3-phospho)-1D-myo-inositol, and methyldiphenylsilane. The toxicity of the identified toxic chemicals and heavy metals was confirmed by onion and mung bean phytotoxicity characterization tests. The wastewater affected the germination of mung bean seeds, reduced or inhibited the growth of onions, and induced various chromosomal aberrations in root apical meristems. Our study shows that the treatment of natural rubber wastewater needs to be improved, and the feasibility of irrigating soil with wastewater needs to be reconsidered.
Collapse
Affiliation(s)
- Dayu Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Ying Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jun Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongfei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Liu Y, Luo SH, Hua J, Li DS, Ling Y, Luo Q, Li SH. Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum. THE NEW PHYTOLOGIST 2021; 229:1740-1754. [PMID: 32929734 DOI: 10.1111/nph.16925] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/29/2020] [Indexed: 05/25/2023]
Abstract
Eupatorium adenophorum is a malignant invasive plant possessing extraordinary defense potency, but its chemical weaponry and formation mechanism have not yet been extensively investigated. We identified six cadinene sesquiterpenes, including two volatiles (amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol) and four nonvolatiles (9-oxo-10,11-dehydroageraphorone, muurol-4-en-3,8-dione, 9-oxo-ageraphorone and 9β-hydroxy-ageraphorone), as the major constitutive and inducible chemicals of E. adenophorum. All cadinenes showed potent antifeedant activity against a generalist insect Spodoptera exigua, indicating that they have significant defensive roles. We cloned and functionally characterized a sesquiterpene synthase from E. adenophorum (EaTPS1), catalyzing the conversion of farnesyl diphosphate to amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, which were purified from engineered Escherichia coli and identified by extensive nuclear magnetic resonance (NMR) spectroscopy. EaTPS1 was highly expressed in the aboveground organs, which was congruent with the dominant distribution of cadinenes, suggesting that EaTPS1 is likely involved in cadinene biosynthesis. Mechanical wounding and methyl jasmonate negatively regulated EaTPS1 expression but caused the release of amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol. Nicotiana benthamiana transiently expressing EaTPS1 also produced amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, and showed enhanced defense function. The findings presented here uncover the role and formation of the chemical defense mechanism of E. adenophorum - which probably contributes to the invasive success of this plant - and provide a tool for manipulating the biosynthesis of biologically active cadinene natural products.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Zhang M, Ouyang JK, Xu QL, Liu SB, Qian T, Dong LM, Tan JW. Thymol derivatives with antibacterial and cytotoxic activity from the aerial parts of Ageratina adenophora. RSC Adv 2021; 11:5755-5761. [PMID: 35423101 PMCID: PMC8694738 DOI: 10.1039/d0ra08885d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/09/2021] [Indexed: 11/21/2022] Open
Abstract
Three new thymol derivatives, 7-formyl-9-isobutyryloxy-8-hydroxythymol (1), 7,9-di-isobutyryloxy-8,10-dehydrothymol (2) and 2α-methoxyl-3β-methyl-6-methylol-2,3-dihydrobenzofuran (3), along with five known ones (4-8), were isolated from the aerial parts of the invasive plant Ageratina adenophora. Their structures were elucidated by extensive spectroscopic analysis and they were all isolated from the aerial part of A. adenophora for the first time. These compounds, except 8, selectively showed in vitro antimicrobial activity against three Gram-(+) and two Gram-(-) bacterial strains. In particular, compounds 1 and 5 showed notable in vitro antimicrobial activity against all five bacterial strains with IC50 values ranging from 3.9 to 15.6 μg mL-1, as compared to reference compound kanamycin sulfate with a MIC value 1.9-3.9 μg mL-1. Compounds 1 and 5 were further revealed to show in vitro cytotoxic activity against three tested human tumor (MCF-7, NCI-H460 and HeLa) cell lines, with IC50 values ranging from 7.45 to 28.63 μM. Compounds 7 and 8 selectively showed slight but detectable in vitro cytotoxicity toward MCF-7 and NCI-H460 cell lines, with IC50 values 44.65-83.19 μM. No cytotoxic effects were detected in the bioassay of the other four thymol derivatives. The present results provide new data to support that the aerial parts of A. adenophora are a rich source of bioactive chemicals valuable in medicinal applications.
Collapse
Affiliation(s)
- Mei Zhang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Jin-Kui Ouyang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642 China +86-20-85280256
| | - Qiao-Lin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry Guangzhou 510520 China
| | - Shao-Bo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642 China +86-20-85280256
| | - Tao Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642 China +86-20-85280256
| | - Li-Mei Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642 China +86-20-85280256
| | - Jian-Wen Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642 China +86-20-85280256
| |
Collapse
|
4
|
Sánchez-Moreiras AM, Graña E, Reigosa MJ, Araniti F. Imaging of Chlorophyll a Fluorescence in Natural Compound-Induced Stress Detection. FRONTIERS IN PLANT SCIENCE 2020; 11:583590. [PMID: 33408728 PMCID: PMC7779684 DOI: 10.3389/fpls.2020.583590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/19/2020] [Indexed: 05/06/2023]
Abstract
Imaging of chlorophyll a fluorescence (CFI) represents an easy, precise, fast and non-invasive technique that can be successfully used for discriminating plant response to phytotoxic stress with reproducible results and without damaging the plants. The spatio-temporal analyses of the fluorescence images can give information about damage evolution, secondary effects and plant defense response. In the last years, some studies about plant natural compounds-induced phytotoxicity have introduced imaging techniques to measure fluorescence, although the analysis of the image as a whole is often missed. In this paper we, therefore, evaluated the advantages of monitoring fluorescence images, presenting the physiological interpretation of different possible combinations of the most relevant parameters linked to fluorescence emission and the images obtained.
Collapse
Affiliation(s)
- Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Elisa Graña
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Fabrizio Araniti
- Department AGRARIA, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
5
|
Bai L, Wang W, Hua J, Guo Z, Luo S. Defensive functions of volatile organic compounds and essential oils from northern white-cedar in China. BMC PLANT BIOLOGY 2020; 20:500. [PMID: 33143644 PMCID: PMC7607654 DOI: 10.1186/s12870-020-02716-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants are known to emit diverse volatile organic compounds (VOCs), which may function as signaling substances in plant communication with other organisms. Thuja occidentalis, which is widely cultivated throughout China, releases aromatic VOCs into the air in winter and early spring. The relationship of this cultivated plant with its neighboring plants is necessary for the conservation of biodiversity. RESULTS (-)-α-thujone (60.34 ± 5.58%) was found to be the major component in VOCs from the Shenyang population. The essential oils (EOs) from the Kunming and Shenyang populations included the major components (-)-α-thujone, fenchone, (+)-β-thujone, and (+)-hibaene, identified using GC-MS analyses. (-)-α-thujone and (+)-hibaene were purified and identified by NMR identification. EOs and (-)-α-thujone exhibited valuable phytotoxic activities against seed germination and seedling growth of the plants Taraxacum mongolicum and Arabidopsis thaliana. Moreover, the EOs displayed potent inhibitory activity against pathogenic fungi of maize, including Fusarium graminearum, Curvularia lunata, and Bipolaris maydis, as well as one human fungal pathogen, Candida albicans. Quantitative analyses revealed high concentrations of (-)-α-thujone in the leaves of T. occidentalis individuals from both the Shenyang and Kunming populations. However, (-)-α-thujone (0.18 ± 0.17 μg/g) was only detected in the rhizosphere soil to a distance of 0.5 m from the plant. CONCLUSIONS Taken together, our results suggest that the phytotoxic effects and antifungal activities of the EOs and (-)-α-thujone in T. occidentalis certainly increased the adaptability of this plant to the environment. Nevertheless, low concentrations of released (-)-α-thujone indicated that reasonable distance of T. occidentalis with other plant species will impair the effects of allelochemical of T. occidentalis.
Collapse
Affiliation(s)
- Liping Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Wenjia Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Zhifu Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, 110866, Liaoning Province, China.
| |
Collapse
|
6
|
Rawat LS, Maikhuri RK, Bahuguna YM, Maletha A, Phondani PC, Jha NK, Pharswan DS. Interference of
Eupatorium adenophorum
(Spr.) and its allelopathic effect on growth and yield attributes of traditional food crops in Indian Himalayan Region. Ecol Res 2019. [DOI: 10.1111/1440-1703.12042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lakhpat S. Rawat
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre Upper Bhaktiyana Srinagar Uttarakhand India
| | - Rakesh K. Maikhuri
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre Upper Bhaktiyana Srinagar Uttarakhand India
| | - Yateesh M. Bahuguna
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre Upper Bhaktiyana Srinagar Uttarakhand India
| | - Ajay Maletha
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre Upper Bhaktiyana Srinagar Uttarakhand India
| | | | - Nabi K. Jha
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre Upper Bhaktiyana Srinagar Uttarakhand India
| | - Dalbeer S. Pharswan
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development Almora Uttarakhand India
| |
Collapse
|
7
|
Jia Y, Li W. Phospholipase D antagonist 1-butanol inhibited the mobilization of triacylglycerol during seed germination in Arabidopsis. PLANT DIVERSITY 2018; 40:292-298. [PMID: 30740576 PMCID: PMC6317489 DOI: 10.1016/j.pld.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. 1-Butanol, a specific inhibitor of phospholipase D (PLD)-dependent production of the signalling molecule phosphatidic acid (PA), inhibited Arabidopsis seed germination. N-Acylethanolamines (NAEs), which have been shown to inhibits PLDα1 activity, have no effect on seed germination. However, mobilization profile of triacylglycerols (TAG) that induced by each compound has not been reported. To gain deeper insights into the mode of mobilization of TAG during NAE 12:0 or 1-butanol treatment, we conducted a detailed comparative analysis of the effect of NAE 12:0, DMSO, 1-butanol and tert-butanol on Arabidopsis seed germination and fatty acid composition, tert-butanol and DMSO served as the corresponding controls treatment respectively. Our data show that 1-butanol, but not the inactive tert-butanol isomer, inhibited Arabidopsis seed germination, which is accompanied by a with retardation of the mobilization of triacylglycerols (TAG). In contrast, NAE 12:0 did not affect mobilization of TAG, nor did it significantly delay seed germination as monitored by radicle and cotyledon emergence. 1-Butanol induced RNA degradation in seeds and seedlings. We speculate that the large-scale degradation of RNA under the induction of 1-butanol may lead to abnormal gene expression in genes necessary for seed germination, including the genes needed for the mobilization of oil bodies, and thus cause a delay of seed germination. To the best of our knowledge, we report for the first time that 1-butanol delays the mobilization of TAG.
Collapse
Key Words
- 1-butanol
- DGDG, digalactosyldiacylglycerol
- DMSO, dimethyl sulfoxide
- FA, fatty acid
- Fatty acid
- GC-MS, gas chromatography-mass spectrometry
- Germination
- MGDG, monogalactosyldiacylglycerol
- N-Acylethanolamines
- NAE, N-Acylethanolamines
- PC, Phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PLD, phospholipase D
- TAG, triacylglycerols
- Triacylglycerols
- lysoPC, lysophosphatidylcholine
Collapse
|
8
|
Zheng G, Luo S, Li S, Hua J, Li W, Li S. Specialized metabolites from Ageratina adenophora and their inhibitory activities against pathogenic fungi. PHYTOCHEMISTRY 2018; 148:57-62. [PMID: 29421511 DOI: 10.1016/j.phytochem.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 05/14/2023]
Abstract
The Asteraceae plant Ageratina adenophora (also called Eupatorium adenophorum) has became the most destructive invasive species in China, especially the southwestern region, and is gravely threatening the native biodiversity. Its high reproductive capacity is partly due to the developed root system. From the roots of A. adenophora, ten compounds including three previously undescribed benzofuran derivatives (7-hydroxy-dehydrotremetone, 7,10,11-trihydroxy dehydrotremetone, 10-oxo-7-hydroxy-nordehydrotremetone), a previously undescribed chromene derivative (5-β-glucosyl-7-demethoxy-encecalin) and a previously undescribed monoterpene glucoside (8-hydroxy-8-β-glucosyl-2-carene) were isolated and identified. The previously undescribed structures were established by spectroscopic studies including 1D and 2D-NMR and HR-MS analyses. Antifungal activity of six compounds against one strain of pathogenic fungus of A. adenophora, Alternaria alternata, and other four strains of agricultural pathogenic fungi, Colletotrichum gloeosporioides, C. musae, Rhizoctonia solani and Fusarium oxysporum f. sp. niveum were investigated. The most abundant compound we isolated from A. adenophora roots was 7-hydroxy-dehydrotremetone, which showed significant broad-spectral inhibitory activity against the growth of all tested fungal strains, with diameter of inhibitory zones ranging from 13.90 ± 1.05 mm to 17.28 ± 0.46 mm at 50 μg/disk (nystatin: 24.76 ± 1.19 mm to 36.64 ± 0.85 mm). Encecalin also showed weak inhibitory activity against F. oxysporum f. sp. niveum, while other compounds were not active. Our results suggested that 7-hydroxy-dehydrotremetone might function as a constitutive defense compound in the roots of A. adenophora against pathogenic fungi.
Collapse
Affiliation(s)
- Guowei Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
| | - Shihong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Shifei Li
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China.
| | - Shenghong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
9
|
Dong LM, Zhang M, Xu QL, Zhang Q, Luo B, Luo QW, Liu WB, Tan JW. Two New Thymol Derivatives from the Roots of Ageratina adenophora. Molecules 2017; 22:molecules22040592. [PMID: 28397757 PMCID: PMC6154539 DOI: 10.3390/molecules22040592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/28/2022] Open
Abstract
Two new thymol derivatives, 7,9-diisobutyryloxy-8-ethoxythymol (1) and 7-acetoxy-8-methoxy-9-isobutyryloxythymol (2), were isolated from fresh roots of Ageratina adenophora, together with four known compounds, 7,9-di-isobutyryloxy-8-methoxythymol (3), 9-oxoageraphorone (4), (−)-isochaminic acid (5) and (1α,6α)-10-hydroxycar-3-ene-2-one (6). Their structures were established on the basis of detailed spectroscopic analysis, and they were all isolated from the roots of A. adenophora for the first time. All the compounds were tested for their in vitro antibacterial activity toward three Gram-positive and two Gram-negative bacterial strains. Thymol derivatives 1–3 only selectively showed slight in vitro bacteriostatic activity toward three Gram-positive bacteria. The two known carene-type monoterpenes 5 and 6 were found to show moderate in vitro antibacterial activity against all five tested bacterial strains, with MIC values from 15.6 to 62.5 μg/mL. In addition, compounds 5 and 6 were further revealed to show in vitro cytotoxicity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 18.36 to 41.87 μM. However, their cytotoxic activities were inferior to those of reference compound adriamycin.
Collapse
Affiliation(s)
- Li-Mei Dong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Qiao-Lin Xu
- Guangdong Provincial Key Laboratory of Bio-Control for the Forest Disease and Pest, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Qiang Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bi Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing-Wen Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wen-Bin Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Wen Tan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Chen J, Zheng G, Zhang Y, Aisa HA, Hao XJ. Phytotoxic Terpenoids from Ligularia cymbulifera Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:2033. [PMID: 28119715 PMCID: PMC5221121 DOI: 10.3389/fpls.2016.02033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Ligularia cymbulifera is one of the predominant species in the Hengduan Mountains, China, and has led to a decrease in the amount of forage grass in this area. However, little is known about the mechanism behind its predominance. In this study, two novel eremophilane sesquiterpenes, ligulacymirin A and B (1 and 2), together with seven other known terpenoids (3-9), were isolated from the roots of L. cymbulifera. The structures of 1 and 2 were determined by spectroscopic methods and single-crystal X-ray diffraction. Each compound showed phytotoxic activities against Arabidopsis thaliana, and each was detected and identified in rhizosphere soil by UHPLC-MS. Compound 3 was the most potent phytotoxin, showing remarkable inhibition against both seedling growth (EC50 = 30.33 ± 0.94 μg/mL) and seed germination (EC50 = 155.13 ± 0.52 μg/mL), with an average content in rhizosphere soil of 3.44 μg/g. These results indicate that terpenoids in L. cymbulifera roots might be released as phytotoxins in rhizosphere soil to interfere with neighboring plants.
Collapse
Affiliation(s)
- Jia Chen
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqi, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Graduate School of Chinese Academy of SciencesBeijing, China
| | - Guowei Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Haji A. Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqi, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiao-Jiang Hao
| |
Collapse
|
11
|
Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11792-11799. [PMID: 24180556 DOI: 10.1021/jf400876j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2), 7,8-dihydroxythymol 9-O-trans-ferulate (3), 7,8-dihydroxythymol 9-O-cis-ferulate (4), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-trans-p-coumarate (5), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-cis-p-coumarate (6), and 3-(2-hydroxyphenyl)propyl methyl malonate (7), were isolated from a bioactive subfraction of the ethanol extract of the roots of A. adenophora. The new structures were established on the basis of detailed spectroscopic analysis. The potential phytotoxic effects of these compounds on the germination of Arabidopsis thaliana seeds were tested by a filter paper assay. Compound 7 and known compounds 3-(2-hydroxyphenyl)-1-propanol (8) and o-coumaric acid (9) remarkably showed inhibition activity against Arabidopsis seed germination at a concentration of 1.0 mM. Compounds 1, 2, 5, 6, and 10 showed slight inhibitory activity at the test concentration after treatment for 3 days, while the other compounds showed no obvious inhibitory effects. Moreover, 7-9 were further found to show obvious inhibitory activity on retarding the seedling growth of Ar. thaliana cultured in soil medium.
Collapse
Affiliation(s)
- Zhong-Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 2013; 18:14096-104. [PMID: 24241153 PMCID: PMC6269784 DOI: 10.3390/molecules181114096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 12/02/2022] Open
Abstract
A novel quinic acid derivative, 5-O-trans-o-coumaroylquinic acid methyl ester (1), together with three known ones, chlorogenic acid methyl ester (2), macranthoin F (3) and macranthoin G (4), were isolated from the aerial parts of the invasive plant Ageratina adenophora (Spreng.). The structure of new compound 1 was elucidated on the basis of extensive spectroscopic analysis, including 1D- and 2D-NMR techniques. Compounds 2–4 were isolated from plant A. adenophora for the first time. All the compounds showed in vitro antibacterial activity toward five assayed bacterial strains, especially 3 and 4, which showed in vitro antibacterial activity against Salmonella enterica with MIC values of 7.4 and 14.7 μM, respectively. Compound 1 was further found to display in vitro anti-fungal activity against spore germination of Magnaporthe grisea with an IC50 value 542.3 µM. These four compounds were also tested for their antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical.
Collapse
|
13
|
Xu Q, Xie H, Xiao H, Wei X. Phenolic constituents from the roots of Mikania micrantha and their allelopathic effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7309-14. [PMID: 23822807 DOI: 10.1021/jf4017652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Four new thymol derivatives, 8,10-dihydroxy-9-benzoyloxythymol (1), 9-isobutyryloxy-10-hydroxythymol (2), 7,8,9,10-tetrahydroxythymol (3), and 7,8,10-trihydroxy-9-E-feruloyloxythymol (4), were isolated from the fresh roots of Mikania micrantha , along with 8,9,10-trihydroxythymol (5), 8,10-dihydroxy-9-acetoxythymol (6), 8,10-dihydroxy-9-isobutyryloxythymol (7), 8,10-dihydroxy-9-(2-methylbutyryloxy)thymol (8), 8,9-dehydro-10-hydroxythymol (9), 8-methoxy-9-hydroxythymol (10), ethyl caffeate (11), ethyl ferulate (12), 3,5-di-O-caffeoylquinic acid (13), and mikanin (14). Their structures were determined by spectroscopic methods. The known thymol derivatives (5-10) were obtained from the genus Mikania for the first time. Allelopathic effects of these compounds on Arabidopsis thaliana seeds were evaluated by a filter paper assay. After the treatment at 0.1 mM for 4 days, the seed germination rate with compound 8 was 48% and the inhibitory rates of shoot growth with compounds 1, 2, 7-10, and 12 were over 40%. The IC50 values of compounds 1 and 8 on shoot growth were 342.5 and 625 μM, respectively.
Collapse
Affiliation(s)
- Qiaolin Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|