1
|
Thangapandiyan S, Hema T, Miltonprabu S, Paulpandi M, Dutta U. Sulforaphane ameliorate Arsenic induced cardiotoxicity in rats: Role of PI3k/Akt mediated Nrf2 signaling pathway. J Biochem Mol Toxicol 2024; 38:e23576. [PMID: 37906532 DOI: 10.1002/jbt.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Arsenic (As) toxicity can generate reactive free radicals, which play an important role in the evolution of cardiomyopathy. The aim of this research is to see if sulforaphane (SFN) protects against As-induced heart damage, oxidative stress, and mitochondrial complex dysfunction via the PI3K/Akt/Nrf2 signaling pathway. The rats were placed into four groups, each with eight rats. Group 1: Normal rats (control group); Group 2: Treatment group (5 mg/kg body weight); Group 3: SFN+As-treatment group (80 mg/kg body weight + 5 mg/kg body weight); Group 4: SFN group only (80 mg/kg body weight). The swot will last 4 weeks. At the end of the intermission (28 days), all of the rats starved overnight and killed with cervical decapitation. As administration considerably (p < 0.05) inflated the extent of free radicals (O2-, OH-), lipoid peroxidation (malondialdehyde, 4-hydroxynonenal), lipoid profile (low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol (VLDL-C), total cholesterol, triglyceride, and phospholipids), cardiac Troponin (cTnT&I), and Mitochondrial complex III. A noteworthy (p < 0.05) diminish the level of HDL-C, Mitochondrial complex I and II, enzymatic (superoxide dismutase, catalase, and glutathione peroxidase), and nonenzymatic antioxidant (glutathione and total sulfhydryl groups) and PI3k, Akt, and Nrf2 sequence in As treated rats. The western blot, real-time polymerase chain reaction, flowcytometric, and histology studies all corroborated the biochemical findings which revealed significant heart damage in rats. Pretreatment with SFN significantly (p < 0.05) reduced the invitro free radicals, lipid oxidative indicators, mitochondrial complex, lipid profiles, and increased phase II antioxidants in the heart. This result shows that dietary supplementation of SFN protects against As-induced cardiotoxicity via PI3k/Akt/Nrf2 pathway in rats.
Collapse
Affiliation(s)
| | - Tamilselvan Hema
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Selvaraj Miltonprabu
- Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | - Manickam Paulpandi
- Molecular Proteomics Lab, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Uma Dutta
- Department of Zoology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
2
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
3
|
Abdulrahman N, Ibrahim M, Joseph JM, Elkoubatry HM, Al-Shamasi AA, Rayan M, Gadeau AP, Ahmed R, Eldassouki H, Hasan A, Mraiche F. Empagliflozin inhibits angiotensin II-induced hypertrophy in H9c2 cardiomyoblasts through inhibition of NHE1 expression. Mol Cell Biochem 2022; 477:1865-1872. [PMID: 35334035 PMCID: PMC9068664 DOI: 10.1007/s11010-022-04411-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM)-induced cardiac morbidities have been the leading cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2 (SGLT-2) inhibitors including empagliflozin (EMPA), which have been approved for the treatment of DM, have gained attention for their cardioprotective effect. The mechanism by which SGLT-2 inhibitors exert their cardioprotective effect remains unclear. Recent studies have suggested that EMPA exerts its cardioprotective effect by inhibiting the Na+/H+ exchanger (NHE), a group of membrane proteins that regulate intracellular pH and cell volume. Increased activity and expression of NHE isoform 1 (NHE1), the predominant isoform expressed in the heart, leads to cardiac hypertrophy. p90 ribosomal s6 kinase (p90 RSK) has been demonstrated to stimulate NHE1 activity. In our study, H9c2 cardiomyoblasts were treated with angiotensin II (ANG) to activate NHE1 and generate a hypertrophic model. We aimed to understand whether EMPA reverses the ANG-induced hypertrophic response and to elucidate the molecular pathway contributing to the cardioprotective effect of EMPA. Our study demonstrated that ANG-induced hypertrophy of H9c2 cardiomyoblasts is accompanied with increased SGLT-1 and NHE1 protein expression, an effect which is prevented in the presence of EMPA. EMPA reduces ANG-induced hypertrophy through the inhibition of SGLT-1 and NHE1 expression.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Meram Ibrahim
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
| | - Jensa Mariam Joseph
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
| | - Hanan Mahmoud Elkoubatry
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
| | - Al-Anood Al-Shamasi
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
| | - Menatallah Rayan
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar
| | | | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hussein Eldassouki
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
- Biomedical and Pharmaceutical Research Unit, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Alves-Silva JM, Zuzarte M, Marques C, Viana S, Preguiça I, Baptista R, Ferreira C, Cavaleiro C, Domingues N, Sardão VA, Oliveira PJ, Reis F, Salgueiro L, Girão H. 1,8-cineole Ameliorates Right Ventricle Dysfunction Associated With Pulmonary Arterial Hypertension by Restoring Connexin 43 and Mitochondrial Homeostasis. Pharmacol Res 2022; 180:106151. [PMID: 35247601 DOI: 10.1016/j.phrs.2022.106151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated discs and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| | - Carla Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês Preguiça
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Rui Baptista
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Cardiology Department, Hospital Centre of Entre Douro and Vouga, Santa Maria da Feira, Portugal
| | - Cátia Ferreira
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Carlos Cavaleiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Vilma A Sardão
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal; Univ Coimbra, Faculty of Sport Science and Physical Education, Coimbra, Portugal
| | - Paulo J Oliveira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| | - Flávio Reis
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
5
|
Yang C, Wen K. Predictive value and regulatory mechanism of serum miR-499a-5p on myocardial dysfunction in sepsis. J Cardiothorac Surg 2021; 16:301. [PMID: 34654440 PMCID: PMC8518260 DOI: 10.1186/s13019-021-01679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study sought to investigate the predictive value and regulatory mechanism of serum miR-499a-5p in sepsis-induced myocardial dysfunction (SIMD). Methods A total of 60 patients with sepsis and 60 healthy volunteers were enrolled in this study. The serum levels of miRNAs (miR-451, miR-378 and miR-499a-5p) were detected. Receiver operating characteristic curve and logistic regression analysis were used to evaluate the diagnostic and prognostic value of miR-499a-5p in SIMD patients. AC16 cells were used to establish SIMD model in vitro using lipopolysaccharide (LPS). An analysis was conducted for miR-499a-5p expression, cell viability, and the concentration of creatine kinase-MB isoform (CK-MB), brain natriuretic peptide (BNP), superoxide dismutase (SOD) and cytochrome C oxidase IV (COX IV). The downstream target of miR-499a-5p was verified. Results Our results revealed a poor expression of miR-499a-5p in the serum of SIMD patients, while no significant difference was evident for miR-451 and miR-378. The level of miR-499a-5p in the survival group was higher than the non-survival group. miR-499a-5p elicited good diagnostic and prognostic value for SIMD. Our findings revealed that miR-499a-5p was decreased significantly in LPS-treated cardiomyocytes. After overexpression of miR-499a-5p, the cell viability increased, and the concentrations of CK-MB and BNP were decreased, while the concentrations of SOD and COX IV were increased. EIF4E was validated as the target of miR-499a-5p. After overexpression of EIF4E, the cell viability was decreased and the concentrations of CK-MB and BNP were increased while the concentrations of SOD and COX IV were decreased. Conclusion The level of miR-499a-5p is weak in SIMD patients. miR-499a-5p has a good diagnostic and prognostic value for SIMD by inhibiting EIF4E transcription.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China
| | - Kun Wen
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China.
| |
Collapse
|
6
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
7
|
Zhao Z, Liu H, Guo D. Aliskiren attenuates cardiac dysfunction by modulation of the mTOR and apoptosis pathways. ACTA ACUST UNITED AC 2020; 53:e8793. [PMID: 31994601 PMCID: PMC6984373 DOI: 10.1590/1414-431x20198793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Aliskiren (ALS) is well known for its antihypertensive properties. However, the potential underlying the molecular mechanism and the anti-hypertrophic effect of ALS have not yet been fully elucidated. The aim of the present study was to investigate the role of ALS in mammalian target of rapamycin (mTOR) and apoptosis signaling using in vivo and in vitro models of cardiac hypertrophy. A rat model of cardiac hypertrophy was induced by isoproterenol treatment (5 mg·kg-1·day-1) for 4 weeks, with or without ALS treatment at 20 mg·kg-1·day-1. The expression of hypertrophic, fibrotic, and apoptotic markers was determined by RT-qPCR. The protein expression of apoptotic markers mTOR and p-mTOR was assessed by western blot analysis. The proliferation of H9C2 cells was monitored using the MTS assay. Cell apoptosis was analyzed using flow cytometry. In vivo, isoproterenol-treated rats exhibited worse cardiac function, whereas ALS treatment reversed these dysfunctions, which were associated with changes in p-mTOR, Bcl-2, Bax, and cleaved caspase-3 expression, as well as the number of apoptotic cells. In vitro, H9C2 cardiomyocyte viability was significantly inhibited and cardiac hypertrophy was induced by Ang II administration, but ALS reversed Ang II-induced H9C2 cardiomyocyte hypertrophy and death. Furthermore, Ang II triggered the activation of the mTOR and apoptosis pathways in hypertrophic cardiomyocytes that were inhibited by ALS treatment. These results indicated that ALS alleviated cardiac hypertrophy through inhibition of the mTOR and apoptosis pathways in cardiomyocytes.
Collapse
Affiliation(s)
- Zhengbo Zhao
- Department of Cardiovascular Medicine, Jiulongpo District People's Hospital, Chongqing, China
| | - Han Liu
- Department of Neurology, Jiulongpo District People's Hospital, Chongqing, China
| | - Dongmei Guo
- Department of Cardiovascular Medicine, Nanchuan District People's Hospital, Chongqing, China
| |
Collapse
|
8
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Peng N, Jin L, He A, Deng C, Wang X. Effect of sulphoraphane on newborn mouse cardiomyocytes undergoing ischaemia/reperfusion injury. PHARMACEUTICAL BIOLOGY 2019; 57:753-759. [PMID: 31686558 PMCID: PMC6844446 DOI: 10.1080/13880209.2019.1680705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 05/30/2023]
Abstract
Context: Sulphoraphane (SFN) is an isothiocyanate, having antioxidant activity, antitumor, and therapeutic effects on cardiovascular disease.Objective: This study explores the mechanisms of SFN preconditioning on ischaemia/reperfusion injury (IRI).Materials and methods: Cardiomyocytes were divided into four groups as follows: control group (normoxic condition), SFN group (5 μmol/L), hypoxia/reoxygenation (H/R) group (1 h, 3 h) and SFN + H/R group. Cell viability was determined by MTT method. Levels of creatine kinase (CK), nitric oxide (NO), superoxide dismutase (SOD) and maleic dialdehyde (MDA) were determined by colorimetric method. Cell apoptosis, levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry. Levels of Bax, Bcl-2, C caspase-3, NF-E2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) were detected by Western blot.Results: H/R model inhibited cell viability, increased the levels of LDH, CK, Bax and C caspase-3, and decreased the levels of NO, Bcl-2, while the effect of H/R was partially reversed by SFN. SFN treatment reduced ROS, MDA (from 4.9 nM to 2.8 nM) production, elevated SOD level (from 39.5 U/mL to 61.7 U/mL) and improved MMP damage. Under the effect of SFN, up-regulation of nuclear Nrf2 expression and down-regulation of cytosolic Nrf2 expression were observed, which led to Nrf2 nuclear translocation and enhanced the expression of HO-1.Conclusion: These results suggested that SFN had a protective effect on cardiomyocytes undergoing IRI, and its mechanism may be realized via activating the Nrf2/HO-1 pathway, thereby inhibiting apoptosis. This might provide a new approach for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Na Peng
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Luping Jin
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Aizhen He
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Changjin Deng
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Xiaoqin Wang
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| |
Collapse
|
10
|
Gu Y, Geng J, Xu Z, Chen Y, Zhang XW. Neutrophil Gelatinase-Associated Lipocalin2 Exaggerates Cardiomyocyte Hypoxia Injury by Inhibiting Integrin β3 Signaling. Med Sci Monit 2019; 25:5426-5434. [PMID: 31327865 PMCID: PMC6668495 DOI: 10.12659/msm.915108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The neutrophil inflammatory protein, lipocalin-2 (NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, the specific role of NGAL in cardiac hypoxia injury is unclear. This study aimed to elucidate the functional role of NGAL in cardiomyocyte hypoxia injury. Material/Methods Neonatal rat cardiomyocytes were transfected with adenovirus [(Ad-NGAL] to overexpress human-NGAL and then were exposed to hypoxia for 24 h to establish a hypoxia model. Cell inflammation was detected by RT-PCT and ELISA assay. Cell apoptosis was detected by TUNEL assay. Oxidative stress was also detected by commercial kits. Results An increased inflammatory response, apoptosis, and augmented oxidative stress were observed after exposure to hypoxia, while NGAL overexpression in cells increased the expression and release of inflammatory cytokines. NGAL overexpression also increased the number of apoptotic cells and the imbalance of Bax/Bcl-2 protein expression. Moreover, NGAL overexpression increased the levels of reactive oxygen species and oxidase activity, but reduced anti-oxidase activity. Mechanistically, we found that NGAL decreased the expression of integrin β3, but not the expression of integrin avβ3 and avβ5, thus inhibiting the downstream protein AKT. When we used the constitutively activated AKT overexpression adenovirus to activate AKT, the deteriorated phenotype by NGAL was counteracted. Conclusions NGAL can directly affect cardiomyocytes and cause cardiomyocyte deteriorated hypoxia injury through inhibiting integrin β3 signaling.
Collapse
Affiliation(s)
- Yang Gu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jin Geng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Zhuo Xu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yu Chen
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xi-Wen Zhang
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
11
|
Li R, Shan Y, Gao L, Wang X, Wang X, Wang F. The Glp-1 Analog Liraglutide Protects Against Angiotensin II and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling. Front Pharmacol 2019; 10:537. [PMID: 31231210 PMCID: PMC6560159 DOI: 10.3389/fphar.2019.00537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The Glp-1 analog, liraglutide (Lir), has been shown to reduce infarct size and improve cardiac function after myocardial ischemia in rodents with or without diabetes. However, the effect of Lir on angiotensin II (AngII) and pressure overload induced cardiac hypertrophy in nondiabetic mice and the underlying mechanisms are unclear. The aim of this study was to investigate the effect of Lir on cardiac hypertrophy induced by AngII infusion and pressure overload and to explore its possible mechanism. Mice were subjected to AngII as well as thoracic aorta coarctation (TAC) to induce a cardiac hypertrophy model. Mice were daily injected with either liraglutide or saline for 2 weeks after AngII infusion. Mice were also subjected to either liraglutide or saline for 25 days after TAC surgery. Neonatal rat cardiomyocytes and human AC cell lines were stimulated with AngII to induce a cardiomyocytes hypertrophy model. The results indicated Lir significantly inhibited cardiac hypertrophy and fibrosis and improved cardiac function in both the AngII and pressure overload induced model. The in vitro study showed that Lir inhibits AngII induced cell hypertrophy. Mechanistically, Lir directly suppressing the activation of PI3K/Akt1 and stimulated AMPKα signaling pathways in cardiomyocytes, which was confirmed by use of an mTOR activator (MHY1485), overexpression of constitutively active Akt, and the knockdown of AMPKa2 expression. Moreover, the protective effects of Lir were lost in AMPKa2 knockout mice. Taken together, Lir inhibits AngII and pressure overload induced cardiac remodeling via regulating PI3K/Akt1 and AMPKα signaling.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingguang Shan
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xule Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Jahanifar F, Astani A, Shekarforoosh S, Jamhiri M, Safari F, Zarei F, Safari F. 1.25 Dihydroxyvitamin D3 Attenuates Hypertrophy Markers in Cardiomyoblast H9c2 Cells: Evaluation of Sirtuin3 mRNA and Protein Level. INT J VITAM NUTR RES 2019; 89:144-151. [PMID: 30856082 DOI: 10.1024/0300-9831/a000469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: The cellular and molecular mechanisms of cardioprotective effects of Vitamin D are poorly understood. Given the essential role of sirtuin-3 (SIRT3) as an endogenous negative regulator of cardiac hypertrophy, this study was designed to investigate the effect of 1, 25-dihydroxyvitamin D3 (calcitriol) on hypertrophy markers and SIRT3 mRNA and protein levels following angiotensin II induced - hypertrophy in cardiomyoblast H9c2 cells. Methods: Rat cardiomyoblast H9c2 cells were treated for 48 hr with angiotensin II alone (Ang group) or in combination with 1, 10 and 100 nM of calcitriol (C + Ang groups). Intact cells served as control (Ctl). The cell area was measured using methylene blue staining. Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and SIRT3 transcription levels were measured by real time RT-PCR. SIRT3 protein expression was evaluated using western blot technique. Results: The results showed that in Ang group cell size was increase by 128.4 ± 15% (P < 0.001 vs. Ctl) whereas in C100 + Ang group it was increased by 21.3 ± 6% (P < 0.001 vs. Ang group). Calcitriol pretreatment decreased ANP mRNA level significantly (P < 0.05) in comparison with Ang group (Ang: 75.5 ± 15%, C100 + Ang: 19.2 ± 9%). There were no significant differences between Ang group and cells pretreated with 1 and 10 nM of calcitriol. SIRT3 at mRNA and protein levels did not change significantly among the experimental groups. Conclusions: In conclusion, pretreatment with calcitriol (100 nM) prevents Ang II-induced hypertrophy in cardiomyoblast H9c2 cells. This probably occurs through other pathways except SIRT3 upregulation.
Collapse
Affiliation(s)
- Fatemeh Jahanifar
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohabbat Jamhiri
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farideh Zarei
- Premature Neonates Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Fix C, Carver-Molina A, Chakrabarti M, Azhar M, Carver W. Effects of the isothiocyanate sulforaphane on TGF-β1-induced rat cardiac fibroblast activation and extracellular matrix interactions. J Cell Physiol 2019; 234:13931-13941. [PMID: 30609032 DOI: 10.1002/jcp.28075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022]
Abstract
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.
Collapse
Affiliation(s)
- Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Amanda Carver-Molina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
14
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
15
|
Zhao Y, Li Y, Tong L, Liang X, Zhang H, Li L, Fan G, Wang Y. Analysis of microRNA Expression Profiles Induced by Yiqifumai Injection in Rats with Chronic Heart Failure. Front Physiol 2018; 9:48. [PMID: 29467665 PMCID: PMC5808162 DOI: 10.3389/fphys.2018.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Yiqifumai Injection (YQFM) is clinically used to treat various cardiovascular diseases including chronic heart failure (CHF). The efficacy of YQFM for treating heart failure has been suggested, but the mechanism of action for pharmacological effects of YQFM is unclear. Methods: Echocardiography detection, left ventricular intubation evaluation, histopathology and immunohistochemical examination were performed in CHF rats to evaluate the cardioprotective effect of YQFM. Rat miRNA microarray and bioinformatics analysis were employed to investigate the differentially expressed microRNAs. In vitro models of AngII-induced hypertrophy and t-BHP induced oxidative stress in H9c2 myocardial cells were used to validate the anti-hypertrophy and anti-apoptosis effects of YQFM. Measurement of cell surface area, ATP content and cell viability, Real-time PCR and Western blot were performed. Results: YQFM significantly improved the cardiac function of CHF rats by increasing left ventricular ejection fraction and fractional shortening, decreasing left ventricular internal diameter and enhancing cardiac output. Seven microRNAs which have a reversible regulation by YQFM treatment were found. Among them, miR-21-3p and miR-542-3p are related to myocardial hypertrophy and cell proliferation, respectively and were further verified by RT-PCR. Target gene network was established and potential related signaling pathways were predicted. YQFM could significantly alleviate AngII induced hypertrophy in cellular model. It also significantly increased cell viabilities and ATP content in t-BHP induced apoptotic cell model. Western blot analysis showed that YQFM could increase the phosphorylation of Akt. Conclusion: Our findings provided scientific evidence to uncover the mechanism of action of YQFM on miRNAs regulation against CHF by miRNA expression profile technology. The results indicated that YQFM has a potential effect on alleviate cardiac hypertrophy and apoptosis in chronic heart failure.
Collapse
Affiliation(s)
- Yu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunfei Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ling Tong
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Xinying Liang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Chen Y, Yu S, Zhang N, Li Y, Chen S, Chang Y, Sun G, Sun Y. Atorvastatin prevents Angiotensin II induced myocardial hypertrophy in vitro via CCAAT/enhancer-binding protein β. Biochem Biophys Res Commun 2017; 486:423-430. [DOI: 10.1016/j.bbrc.2017.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
|
17
|
Li C, Zhang C, Wang T, Xuan J, Su C, Wang Y. Heme oxygenase 1 induction protects myocardiac cells against hypoxia/reoxygenation-induced apoptosis : The role of JNK/c-Jun/Caspase-3 inhibition and Akt signaling enhancement. Herz 2016; 41:715-724. [PMID: 27220977 DOI: 10.1007/s00059-016-4424-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although recent studies have found that heme oxygenase (HO)-1 plays an important role in myocardiac cell survival, the precise mechanisms occurring during hypoxia/reoxygenation (H/R) injury remain unclear. Therefore, the aim of this study was to investigate the cytoprotective mechanisms of HO-1 against H/R-induced myocardiac cell apoptosis and to explore whether the Akt signaling pathway contributed to the protection provided by HO-1. METHODS Cobalt protoporphyrin (CoPP, a pharmacologic inducer of HO-1) was employed to induce the over-expression of HO-1 before H/R in H9c2 cells. Hoechst staining and flow cytometry were used to examine the extent of apoptosis. Furthermore, the effect of HO-1 on Akt, JNK, and the expression of apoptosis-related proteins (c-JUN and Caspase-3) was determined by Western blotting. RESULTS The results showed that over-expressed HO-1 could significantly protect myocardiac cells against H/R-induced apoptosis in H9c2 cells. Furthermore, the protein expression of p‑Akt increased and of p‑JNK decreased in the H/R injury H9c2 cells when treated with CoPP. The apoptosis-related proteins c‑Jun and caspase-3 were both inhibited by over-expression of HO-1. At the same time, retreatment with zinc protoporphyrin (ZnPP, a specific inhibitor of HO-1 enzymatic activity) or LY294002 (an inhibitor of Akt1) reversed the HO-1-induced changes. CONCLUSION In summary, our results suggest that HO-1 can decrease H/R-induced myocardiac cell apoptosis; the mechanism may be related to the activation of the Akt signaling pathway and, furthermore, to the inhibition of the JNK/c-Jun/caspase-3 signaling pathway.
Collapse
Affiliation(s)
- C Li
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China.
| | - C Zhang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - T Wang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - J Xuan
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - C Su
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - Y Wang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| |
Collapse
|
18
|
Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol Sin 2016; 37:344-53. [PMID: 26775664 DOI: 10.1038/aps.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM Sulforaphane (SFN), a natural dietary isothiocyanate, is found to exert beneficial effects for cardiovascular diseases. This study aimed to investigate the mechanisms underlying the protective effects of SFN in a model of myocardial hypoxia/reoxygenation (H/R) injury in vitro. METHODS Cultured neonatal rat cardiomyocytes pretreated with SFN were subjected to 3-h hypoxia followed by 3-h reoxygenation. Cell viability and apoptosis were detected. Caspase-3 activity and mitochondrial membrane potential (ΔΨm) was measured. The expression of ER stress-related apoptotic proteins were analyzed with Western blot analyses. Silent information regulator 1 (SIRT1) activity was determined with SIRT1 deacetylase fluorometric assay kit. RESULTS SFN (0.1-5 μmol/L) dose-dependently improved the viability of cardiomyocytes, diminished apoptotic cells and suppressed caspase-3 activity. Meanwhile, SFN significantly alleviated the damage of ΔΨm and decreased the expression of ER stress-related apoptosis proteins (GRP78, CHOP and caspase-12), elevating the expression of SIRT1 and Bcl-2/Bax ratio in the cardiomyocytes. Co-treatment of the cardiomyocytes with the SIRT1-specific inhibitor Ex-527 (1 μmol/L) blocked the SFN-induced cardioprotective effects. CONCLUSION SFN prevents cardiomyocytes from H/R injury in vitro most likely via activating SIRT1 pathway and subsequently inhibiting the ER stress-dependent apoptosis.
Collapse
|
19
|
Yin Z, Wang X, Zhang L, Zhou H, Wei L, Dong X. Aspirin Attenuates Angiotensin II-induced Cardiomyocyte Hypertrophy by Inhibiting the Ca2+/Calcineurin-NFAT Signaling Pathway. Cardiovasc Ther 2016; 34:21-9. [PMID: 26506219 DOI: 10.1111/1755-5922.12164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Zheyu Yin
- Department of Ultrasonography; The Fourth Hospital of Harbin Medical University; Nangang District Harbin China
| | - Xiaoyun Wang
- Department of Cardiology; The Fourth Hospital of Harbin Medical University; Nangang District Harbin China
| | - Lan Zhang
- Department of Cardiology; The Fourth Hospital of Harbin Medical University; Nangang District Harbin China
| | - Hongfeng Zhou
- The Third Affiliated Hospital of Harbin Medical University; Harbin China
| | - Li Wei
- Department of Cardiology; The Fourth Hospital of Harbin Medical University; Nangang District Harbin China
| | - Xiaoqiu Dong
- Department of Ultrasonography; The Fourth Hospital of Harbin Medical University; Nangang District Harbin China
| |
Collapse
|
20
|
Shen DF, Wu QQ, Ni J, Deng W, Wei C, Jia ZH, Zhou H, Zhou MQ, Bian ZY, Tang QZ. Shensongyangxin protects against pressure overload‑induced cardiac hypertrophy. Mol Med Rep 2015; 13:980-8. [PMID: 26648261 DOI: 10.3892/mmr.2015.4598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 10/05/2015] [Indexed: 11/05/2022] Open
Abstract
Shensongyangxin (SSYX) is a medicinal herb, which has long been used in traditional Chinese medicine. Various pharmacological activities of SSYX have been identified. However, the role of SSYX in cardiac hypertrophy remains to be fully elucidated. In present study, aortic banding (AB) was performed to induce cardiac hypertrophy in mice. SSYX (520 mg/kg) was administered by daily gavage between 1 and 8 weeks following surgery. The extent of cardiac hypertrophy was then evaluated by pathological and molecular analyses of heart tissue samples. In addition, in vitro experiments were performed to confirm the in vivo results. The data of the present study demonstrated that SSYX prevented the cardiac hypertrophy and fibrosis induced by AB, as assessed by measurements of heart weight and gross heart size, hematoxylin and eosin staining, cross‑sectional cardiomyocyte area and the mRNA expression levels of hypertrophic markers. SSYX also inhibited collagen deposition and suppressed the expression of transforming growth factor β (TGFβ), connective tissue growth factor, fibronectin, collagen Ⅰα and collagen Ⅲα, which was mediated by the inhibition of the TGFβ/small mothers against decapentaplegic (Smad) signaling pathway. The inhibitory action of SSYX on cardiac hypertrophy was mediated by the inhibition of Akt signaling. In vitro investigations in the rat H9c2 cardiac cells also demonstrated that SSYX attenuated angiotensin II‑induced cardiomyocyte hypertrophy. These findings suggested that SSYX attenuated cardiac hypertrophy and fibrosis in the pressure overloaded mouse heart. Therefore, the cardioprotective effect of SSYX is associated with inhibition of the Akt and TGFβ/Smad signaling pathways.
Collapse
Affiliation(s)
- Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong Wei
- The Integration of Traditional and Western Medical Research Academy of Hebei, Shijiazhuang, Hebei 050035, P.R. China
| | - Zhen-Hua Jia
- The Integration of Traditional and Western Medical Research Academy of Hebei, Shijiazhuang, Hebei 050035, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Fernandes RO, Bonetto JHP, Baregzay B, de Castro AL, Puukila S, Forsyth H, Schenkel PC, Llesuy SF, Brum IS, Araujo ASR, Khaper N, Belló-Klein A. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts. Mol Cell Biochem 2014; 401:61-70. [PMID: 25481685 DOI: 10.1007/s11010-014-2292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.
Collapse
Affiliation(s)
- Rafael O Fernandes
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kee HJ, Kim GR, Kim IK, Jeong MH. Sulforaphane suppresses cardiac hypertrophy by inhibiting GATA4/GATA6 expression and MAPK signaling pathways. Mol Nutr Food Res 2014; 59:221-30. [PMID: 25332186 DOI: 10.1002/mnfr.201400279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023]
Abstract
SCOPE Sulforaphane (SFN) is a naturally occurring isothiocynate compound found in cruciferous vegetables. Here, we report the effect of SFN on cardiac hypertrophy and propose an underlying mechanism. METHODS AND RESULTS SFN suppresses cardiomyocyte hypertrophy induced by hypertrophic stimuli in vitro and in vivo. SFN suppresses the expression of fetal genes, including atrial natriuretic peptide, brain natriuretic peptide, and beta myosin heavy chain. We used an siRNA technique and atrial natriuretic peptide promoter with mutated GATA binding sites to demonstrate that SFN mediates cardiac hypertrophy by modulating transcription factors GATA4/6. CONCLUSION These results suggest that SFN has the potential to prevent cardiac hypertrophy by downregulating GATA4/6 and mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Hae Jin Kee
- Cardiovascular Convergence Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | | | | | | |
Collapse
|
23
|
Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev A. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol Life Sci 2005; 61:3100-3. [PMID: 15583871 DOI: 10.1007/s00018-004-4424-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fragments of mitochondrial DNA are released from mitochondria upon opening of the mitochondrial permeability transition pore. Cyclosporin A, an inhibitor of pore opening, completely prevented the release of mitochondrial fragments. Induction of mitochondrial permeability transition and subsequent release of the fragments of mitochondrial DNA could be one cause of genomic instability in the cell.
Collapse
Affiliation(s)
- M Patrushev
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | | | | | | | | | | |
Collapse
|