1
|
Elkhamisy SA, Valentini C, Lattermann A, Radhakrishna G, Künzel LA, Löck S, Troost EGC. Normo- or Hypo-Fractionated Photon or Proton Radiotherapy in the Management of Locally Advanced Unresectable Pancreatic Cancer: A Systematic Review. Cancers (Basel) 2023; 15:3771. [PMID: 37568587 PMCID: PMC10416887 DOI: 10.3390/cancers15153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
LAPC is associated with a poor prognosis and requires a multimodal treatment approach. However, the role of radiation therapy in LAPC treatment remains controversial. This systematic review aimed to explore the role of proton and photon therapy, with varying radiation techniques and fractionation, in treatment outcomes and their respective toxicity profiles. METHODS Clinical studies published from 2012 to 2022 were systematically reviewed using PubMed, MEDLINE (via PubMed) and Cochrane databases. Different radiotherapy-related data were extracted and analyzed. RESULTS A total of 31 studies matched the inclusion criteria. Acute toxicity was less remarkable in stereotactic body radiotherapy (SBRT) compared to conventionally fractionated radiotherapy (CFRT), while in proton beam therapy (PBT) grade 3 or higher acute toxicity was observed more commonly with doses of 67.5 Gy (RBE) or higher. Late toxicity was not reported in most studies; therefore, comparison between groups was not possible. The range of median overall survival (OS) for the CFRT and SBRT groups was 9.3-22.9 months and 8.5-20 months, respectively. For the PBT group, the range of median OS was 18.4-22.3 months. CONCLUSION CFRT and SBRT showed comparable survival outcomes with a more favorable acute toxicity profile for SBRT. PBT is a promising new treatment modality; however, additional clinical studies are needed to support its efficacy and safety.
Collapse
Affiliation(s)
- Sally A. Elkhamisy
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Chiara Valentini
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annika Lattermann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Luise A. Künzel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01307 Dresden, Germany
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Esther G. C. Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (S.A.E.); (A.L.)
- The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
2
|
Vilalta-Lacarra A, Aldaz A, Sala-Elarre P, Urrizola A, Chopitea A, Arbea L, Rotellar F, Pardo F, Martí-Cruchaga P, Zozaya G, Subtil JC, Rodríguez-Rodríguez J, Ponz-Sarvise M. Therapeutic drug monitoring of neoadjuvant mFOLFIRINOX in resected pancreatic ductal adenocarcinoma. Pancreatology 2023:S1424-3903(23)00065-0. [PMID: 37169668 DOI: 10.1016/j.pan.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Despite a potentially curative treatment, the prognosis after upfront surgery and adjuvant chemotherapy for patients with resectable pancreatic ductal adenocarcinoma (PDAC) is poor. Modified FOLFIRINOX (mFOLFIRINOX) is a cornerstone in the systemic treatment of PDAC, including the neoadjuvant setting. Pharmacokinetic-guided (PKG) dosing has demonstrated beneficial effects in other tumors, but scarce data is available in pancreatic cancer. METHODS Forty-six patients with resected PDAC after mFOLFIRINOX neoadjuvant approach and included in an institutional protocol for anticancer drug monitoring were retrospectively analyzed. 5-Fluorouracil (5-FU) dosage was adjusted throughout neoadjuvant treatment according to pharmacokinetic parameters and Irinotecan (CPT-11) pharmacokinetic variables were retrospectively estimated. RESULTS By exploratory univariate analyses, a significantly longer progression-free survival was observed for patients with either 5-FU area under the curve (AUC) above 28 mcg·h/mL or CPT-11 AUC values below 10 mcg·h/mL. In the multivariate analyses adjusted by age, gender, performance status and resectability after stratification according to both pharmacokinetic parameters, the risk of progression was significantly reduced in patients with 5-FU AUC ≥28 mcg·h/mL [HR = 0.251, 95% CI 0.096-0.656; p = 0.005] and CPT-11 AUC <10 mcg·h/mL [HR = 0.189, 95% CI 0.073-0.486, p = 0.001]. CONCLUSIONS Pharmacokinetically-guided dose adjustment of standard chemotherapy treatments might improve survival outcomes in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
| | - Azucena Aldaz
- Pharmacy Service, Clinica Universidad de Navarra, Pamplona, Spain
| | - Pablo Sala-Elarre
- Department of Medical Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Amaia Urrizola
- Department of Medical Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ana Chopitea
- Department of Medical Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Leire Arbea
- Department of Radiation Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Fernando Rotellar
- Hepatobiliary Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Fernando Pardo
- Hepatobiliary Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Gabriel Zozaya
- Hepatobiliary Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jose Carlos Subtil
- Department of Gastroenterology, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clinica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Liermann J, Munter M, Naumann P, Abdollahi A, Krempien R, Debus J. Cetuximab, gemcitabine and radiotherapy in locally advanced pancreatic cancer: Long-term results of the randomized controlled phase II PARC trial. Clin Transl Radiat Oncol 2022; 34:15-22. [PMID: 35300246 PMCID: PMC8921472 DOI: 10.1016/j.ctro.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Final results of a randomized controlled phase II trial. OS and PFS data of neoadjuvant chemoradiation in pancreatic cancer. Combination of cetuximab, gemcitabine and IMRT is safe and feasible. Improvement of local tumor control and secondary resection rate by combined maintenance therapy with cetuximab and gemcitabine.
Purpose Addressing the epidermal growth factor receptor (EGFR)-pathway by the competitive receptor ligand cetuximab is a promising strategy in pancreatic cancer. In the prospective randomized controlled phase II PARC-study (PARC: Pancreatic cancer treatment with radiotherapy (RT) and cetuximab), we evaluated safety and efficacy of a trimodal treatment scheme consisting of cetuximab, gemcitabine and RT in locally advanced pancreatic cancer (LAPC). Methods Between January 2005 and April 2007, 68 patients with inoperable pancreatic ductal adenocarcinoma were randomized in either trimodal therapy followed by gemcitabine maintenance (Arm A) or in trimodal therapy followed by gemcitabine plus cetuximab maintenance (Arm B). Intensity-modulated RT (IMRT) was performed with a total dose of 45 Gy in 25 fractions and with a simultaneous integrated boost to the gross tumor (54 Gy). Within the trimodal therapy, gemcitabine and cetuximab were administered weekly. Maintenance therapy consisted of gemcitabine only or gemcitabine plus cetuximab. Toxicity, overall survival (OS), secondary resection rate, local control and progression free survival (PFS) were evaluated. Results With a median followup time of 13 months (range: 2 – 184 months), one patient is still alive and one patient is lost to follow-up. Nausea and gastrointestinal hemorrhage were the most important higher-graded (>°II) acute and late non-hematological toxicity (13% and 7%). Median OS was 13.1 months without significant difference between both treatment arms (Arm A: 11.9 months; Arm B: 14.2 months). Compared to historical data, cetuximab did not improve OS. One- and two-year local control rates were 76.6% and 68.9%. Local tumor control and secondary resection rate (Arm A: 4%; Arm B: 16%) were significantly improved in Arm B. Median PFS was 6.8 months with distant metastasis as main treatment failure. Conclusion Trimodal therapy consisting of IMRT, gemcitabine and cetuximab can be considered safe and feasible. Compared to historical data, cetuximab does not improve treatment efficacy in LAPC patients treated with chemoradiation.
Collapse
Affiliation(s)
- Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Corresponding author at: Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Marc Munter
- Klinikum Stuttgart, Department of Radiation Oncology, Kriegsbergstraße 60, 70174 Stuttgart, Germany
| | - Patrick Naumann
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Robert Krempien
- Helios Clinic Berlin-Buch, Department of Radiation Oncology, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Juergen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg
| |
Collapse
|
4
|
Dobiasch S, Kampfer S, Steiger K, Schilling D, Fischer JC, Schmid TE, Weichert W, Wilkens JJ, Combs SE. Histopathological Tumor and Normal Tissue Responses after 3D-Planned Arc Radiotherapy in an Orthotopic Xenograft Mouse Model of Human Pancreatic Cancer. Cancers (Basel) 2021; 13:5656. [PMID: 34830813 PMCID: PMC8616260 DOI: 10.3390/cancers13225656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.
Collapse
Affiliation(s)
- Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
- Comparative Experimental Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julius C. Fischer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
| | - Thomas E. Schmid
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wilko Weichert
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
| | - Jan J. Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| |
Collapse
|
5
|
Nguyen L, Dobiasch S, Schneider G, Schmid RM, Azimzadeh O, Kanev K, Buschmann D, Pfaffl MW, Bartzsch S, Schmid TE, Schilling D, Combs SE. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiother Oncol 2021; 159:265-276. [PMID: 33839203 DOI: 10.1016/j.radonc.2021.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Radioresistance in pancreatic cancer patients remains a critical obstacle to overcome. Understanding the molecular mechanisms underlying radioresistance may achieve better response to radiotherapy and thereby improving the poor treatment outcome. The aim of the present study was to elucidate the mechanisms leading to radioresistance by detailed characterization of isogenic radioresistant and radiosensitive cell lines. METHODS The human pancreatic cancer cell lines, Panc-1 and MIA PaCa-2 were repeatedly exposed to radiation to generate radioresistant (RR) isogenic cell lines. The surviving cells were expanded, and their radiosensitivity was measured using colony formation assay. Tumor growth delay after irradiation was determined in a mouse pancreatic cancer xenograft model. Gene and protein expression were analyzed using RNA sequencing and Western blot, respectively. Cell cycle distribution and apoptosis (Caspase 3/7) were measured by FACS analysis. Reactive oxygen species generation and DNA damage were analyzed by detection of CM-H2DCFDA and γH2AX staining, respectively. Transwell chamber assays were used to investigate cell migration and invasion. RESULTS The acquired radioresistance of RR cell lines was demonstrated in vitro and validated in vivo. Ingenuity pathway analysis of RNA sequencing data predicted activation of cell viability in both RR cell lines. RR cancer cell lines demonstrated greater DNA repair efficiency and lower basal and radiation-induced reactive oxygen species levels. Migration and invasion were differentially affected in RR cell lines. CONCLUSIONS Our data indicate that repeated exposure to irradiation increases the expression of genes involved in cell viability and thereby leads to radioresistance. Mechanistically, increased DNA repair capacity and reduced oxidative stress might contribute to the radioresistant phenotype.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Günter Schneider
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Krebsforschungszentrum (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland M Schmid
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Omid Azimzadeh
- Institute of Radiation Biology (ISB), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
6
|
Liermann J, Naumann P, Hommertgen A, Pohl M, Kieser M, Debus J, Herfarth K. Carbon ion radiotherapy as definitive treatment in non-metastasized pancreatic cancer: study protocol of the prospective phase II PACK-study. BMC Cancer 2020; 20:947. [PMID: 33004046 PMCID: PMC7528272 DOI: 10.1186/s12885-020-07434-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Radiotherapy is known to improve local tumor control in locally advanced pancreatic cancer (LAPC), although there is a lack of convincing data on a potential overall survival benefit of chemoradiotherapy over chemotherapy alone. To improve efficacy of radiotherapy, new approaches need to be evolved. Carbon ion radiotherapy is supposed to be more effective than photon radiotherapy due to a higher relative biological effectiveness (RBE) and due to a steep dose-gradient making dose delivery highly conformal. Methods The present Phase II PACK-study investigates carbon ion radiotherapy as definitive treatment in LAPC as well as in locally recurrent pancreatic cancer. A total irradiation dose of 48 Gy (RBE) will be delivered in twelve fractions. Concurrent chemotherapy is accepted, if indicated. The primary endpoint is the overall survival rate after 12 months. Secondary endpoints are progression free survival, safety, quality of life and impact on tumor markers CA 19–9 and CEA. A total of twenty-five patients are planned for recruitment over 2 years. Discussion Recently, Japanese researches could show promising results in a Phase I/II-study evaluating chemoradiotherapy of carbon ion radiotherapy and gemcitabine in LAPC. The present prospective PACK-study investigates the efficacy of carbon ion radiotherapy in pancreatic cancer at Heidelberg Ion Beam Therapy Center (HIT) in Germany. Trial registration The trial is registered at ClinicalTrials.gov: NCT04194268 (Retrospectively registered on December, 11th 2019).
Collapse
Affiliation(s)
- Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Adriane Hommertgen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Use of Machine-Learning Algorithms in Intensified Preoperative Therapy of Pancreatic Cancer to Predict Individual Risk of Relapse. Cancers (Basel) 2019; 11:cancers11050606. [PMID: 31052270 PMCID: PMC6562932 DOI: 10.3390/cancers11050606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Although surgical resection is the only potentially curative treatment for pancreatic cancer (PC), long-term outcomes of this treatment remain poor. The aim of this study is to describe the feasibility of a neoadjuvant treatment with induction polychemotherapy (IPCT) followed by chemoradiation (CRT) in resectable PC, and to develop a machine-learning algorithm to predict risk of relapse. Methods: Forty patients with resectable PC treated in our institution with IPCT (based on mFOLFOXIRI, GEMOX or GEMOXEL) followed by CRT (50 Gy and concurrent Capecitabine) were retrospectively analyzed. Additionally, clinical, pathological and analytical data were collected in order to perform a 2-year relapse-risk predictive population model using machine-learning techniques. Results: A R0 resection was achieved in 90% of the patients. After a median follow-up of 33.5 months, median progression-free survival (PFS) was 18 months and median overall survival (OS) was 39 months. The 3 and 5-year actuarial PFS were 43.8% and 32.3%, respectively. The 3 and 5-year actuarial OS were 51.5% and 34.8%, respectively. Forty-percent of grade 3-4 IPCT toxicity, and 29.7% of grade 3 CRT toxicity were reported. Considering the use of granulocyte colony-stimulating factors, the number of resected lymph nodes, the presence of perineural invasion and the surgical margin status, a logistic regression algorithm predicted the individual 2-year relapse-risk with an accuracy of 0.71 (95% confidence interval [CI] 0.56–0.84, p = 0.005). The model-predicted outcome matched 64% of the observed outcomes in an external dataset. Conclusion: An intensified multimodal neoadjuvant approach (IPCT + CRT) in resectable PC is feasible, with an encouraging long-term outcome. Machine-learning algorithms might be a useful tool to predict individual risk of relapse. A small sample size and therapy heterogeneity remain as potential limitations.
Collapse
|
8
|
Clinical assessment of palliative radiotherapy for pancreatic cancer. Cancer Radiother 2018; 22:778-783. [PMID: 30401617 DOI: 10.1016/j.canrad.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
|
9
|
MRI-based high-precision irradiation in an orthotopic pancreatic tumor mouse model. Strahlenther Onkol 2018; 194:944-952. [DOI: 10.1007/s00066-018-1326-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
|
10
|
Schneider S, Jølck RI, Troost EGC, Hoffmann AL. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med Phys 2017; 45:37-47. [DOI: 10.1002/mp.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sergej Schneider
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
| | - Rasmus Irming Jølck
- Nanovi Radiotherapy A/S; DK-2800 Kongens Lyngby Denmark
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 DK-2800 Kongens. Lyngby Denmark
| | - Esther Gera Cornelia Troost
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
- German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ); Heidelberg Germany
- National Center for Tumor Diseases (NCT), partner site Dresden; Dresden Germany
| | - Aswin Louis Hoffmann
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
11
|
Essential role of radiation therapy for the treatment of pancreatic cancer. Strahlenther Onkol 2017; 194:185-195. [DOI: 10.1007/s00066-017-1227-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
|
12
|
Regnier A, Ulbrich J, Münch S, Oechsner M, Wilhelm D, Combs SE, Habermehl D. Comparative Analysis of Efficacy, Toxicity, and Patient-Reported Outcomes in Rectal Cancer Patients Undergoing Preoperative 3D Conformal Radiotherapy or VMAT. Front Oncol 2017; 7:225. [PMID: 28979889 PMCID: PMC5611394 DOI: 10.3389/fonc.2017.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Background Locally advanced rectal cancer (LARC) patients are usually treated within a multimodal therapy regime, in which the tumor resection plays the major role. This treatment ideally includes 5-fluorouracile (5FU)-based chemoradiation (CRT) leading to significantly improved local control rates. Local therapy as radiotherapy (RT) is required to be adapted referring to side effects and efficacy. Purpose of this study is the comparison of dosimetric parameters, acute and late toxicity, and quality of life in terms of patient-reported outcome (PRO) in patients treated with VMAT or 3D conformal radiotherapy (3DCRT) for LARC. Methods Pelvic RT for LARC was performed with a prescription dose of 45 Gy in 1.8 Gy per fraction, 50.4 Gy in 1.8 Gy per fraction, or 50 Gy in 2 Gy per fraction. Chemotherapy included 5FU or 5FU/Oxaliplatin or Capecitabine-based RT. Acute and late toxicity were evaluated via National Institute Common Terminology Criteria for Adverse Events version (CTCAE) v4.03 and the Scoring System Late effects of Normal Tissue. Quality of life was established via EORTC QLQCR29. Results After a median follow-up of 38 months (VMAT) and 78 months (3DCRT) there was no significant difference in progression-free survival (p = 0,85) but a significant difference in overall survival (p = 0.032). Regarding dose–volume parameters, patients treated with VMAT plans had a lower V20 of the bladder than 3DCRT-treated patients (p = 0.004). VMAT plans can also reduce Dmean of the right (p = 0.002) and left (p < 0.001) femoral head. Acute side effects between the VMAT and 3DCRT patients showed no significant difference. But concerning long-term effects, VMAT-treated patients had a significant lower appearance of high grade anal incontinence (p = 0.032). Quality of life (PRO) showed no significant different between the patients except of hair loss and worrying about weight. Conclusion VMAT treatment of LARC in preoperative CRT revealed a reduction of dose to organs at risk (OARs) as bladder and femoral heads. However, no changes in acute and long-term toxicity profiles were detectable. For late toxicity and quality of life data longer follow-up times are required.
Collapse
Affiliation(s)
- Antonia Regnier
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Jana Ulbrich
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Stefan Münch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Dirk Wilhelm
- Department of Surgery, Klinikum rechts der Isar, TU München, München, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
13
|
BioXmark for high-precision radiotherapy in an orthotopic pancreatic tumor mouse model : Experiences with a liquid fiducial marker. Strahlenther Onkol 2017; 193:1039-1047. [PMID: 28808749 DOI: 10.1007/s00066-017-1193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE High-precision radiotherapy (RT) requires precise positioning, particularly with high single doses. Fiducial markers in combination with onboard imaging are excellent tools to support this. The purpose of this study is to establish a pancreatic cancer mouse model for high-precision image-guided RT (IGRT) using the liquid fiducial marker BioXmark (Nanovi, Kongens Lyngby, Denmark). METHODS In an animal-based cancer model, different volumes of BioXmark (10-50 µl), application forms, and imaging modalities-cone-beam computer tomography (CBCT) incorporated in either the Small Animal Radiation Research Platform (SARRP) or the small-animal micro-CT Scanner (SkyScan; Bruker, Brussels, Belgium)-as well as subsequent RT with the SARRP system were analyzed to derive recommendations for BioXmark. RESULTS Even small volumes (10 µl) of BioXmark could be detected by CBCT (SARRP and Skyscan). Larger volumes (50 µl) led to hardening artefacts. The position of BioXmark was monitored at least weekly by CBCT and was stable over 4 months. BioXmark was shown to be well tolerated; no changes in physical condition or toxic side effects were observed in comparison to control mice. BioXmark enabled an exact fusion with the original treatment plan with less hardening artefacts, and minimized the application of contrast agent for fractionated RT. CONCLUSION An orthotopic pancreatic tumor mouse model was established for high-precision IGRT using a fiducial marker. BioXmark was successfully tested and provides the perfect basis for improved imaging in high-precision RT. BioXmark enables a unique application method and optimal targeted precision in fractionated RT. Therefore, preclinical trials evaluating novel fractionation regimens and/or combination treatment with high-end RT can be performed.
Collapse
|
14
|
Dehne S, Fritz C, Rieken S, Baris D, Brons S, Haberer T, Debus J, Weber KJ, Schmid TE, Combs SE, Habermehl D. Combination of Photon and Carbon Ion Irradiation with Targeted Therapy Substances Temsirolimus and Gemcitabine in Hepatocellular Carcinoma Cell Lines. Front Oncol 2017; 7:35. [PMID: 28348976 PMCID: PMC5346564 DOI: 10.3389/fonc.2017.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
Background This work investigates on putative cytotoxic effects in four different hepatocellular carcinoma (HCC) cell lines after irradiation with photons or carbon ions in combination with new targeted molecular therapy using either Temsirolimus (TEM) or Gemcitabine (GEM). Methods and materials The HCC cell lines HepG2, Hep3B, HuH7, and PLC were cultured and irradiated with photons or carbon ions at the Heidelberg Ion Beam Therapy Center using the raster-scanning method. For combination experiments, cell lines were first treated with Temsirolimus or GEM before irradiation. Cytotoxicity was measured by a clonogenic survival assay. The evaluation of the experiments and the obtained survival curves were based on the concept of additivity defined by Steel and Peckham. Results The results for the combination of carbon ions and both tested systemic substances TEM and GEM showed independent toxicities in all four cell lines. Supra-additive effects were observed in PLC cells for photon irradiation combined either with TEM or GEM and in HuH7 cells for the combination of photons with TEM. Conclusion Addition of targeted therapy substances Temsirolimus and GEM to photon irradiation showed additive cytotoxicity in HCC cell lines, whereas independent toxicities where reached by the combination of carbon ions to these substances. It can be assumed that combining 12C with systemic substances only has independent effects because heavy ions cause direct damage because of their high-LET character resulting in complex and clustered double-strand breaks. Nonetheless, further investigations are warranted in order to determine whether addition of systemic therapy allows a reduction of radiation doses in combination therapy. This could possibly lead to better responses and tolerances in patients with HCC.
Collapse
Affiliation(s)
- Sarah Dehne
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Clarissa Fritz
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Daniela Baris
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT) , Heidelberg , Germany
| | - Thomas Haberer
- Heidelberg Ion Beam Therapy Center (HIT) , Heidelberg , Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University Hospital of Heidelberg , Heidelberg , Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| |
Collapse
|
15
|
Belfiore G, Belfiore MP, Reginelli A, Capasso R, Romano F, Ianniello GP, Cappabianca S, Brunese L. Concurrent chemotherapy alone versus irreversible electroporation followed by chemotherapy on survival in patients with locally advanced pancreatic cancer. Med Oncol 2017; 34:38. [DOI: 10.1007/s12032-017-0887-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 01/20/2023]
|
16
|
Habermehl D, Habl G, Eckstein HH, Meisner F, Combs SE. [Radiotherapeutic management of lymphatic fistulas : An effective but disregarded therapy option]. Chirurg 2017; 88:311-316. [PMID: 28083600 DOI: 10.1007/s00104-016-0352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lymphatic fistulas and lymphoceles are known complications after vascular surgery of the groin and after extended surgical interventions in the pelvic region. Unfortunately, conservative standard therapies are not always successful. OBJECTIVES Evaluation of the therapeutic efficacy and related side effects of percutaneous low-dose irradiation in patients with lymphorrhea and definition of its importance. MATERIAL AND METHODS Current presentation of previously published case series, reviews and guidelines. RESULTS The use of low-dose irradiation therapy with single doses of 0.3-0.5 Gy leads to a cessation of the lymphatic flow in a high percentage of patients when standard therapies do not show a sufficient effect. With cessation of lymphorrhea irradiation should be terminated. Acute side effects have not been reported and the risk of tumor induction is almost negligible. CONCLUSION Low-dose irradiation is an effective and very well-tolerated therapeutic alternative in the treatment of lymphatic fistulas and lymphorrhea when conservative therapies are unsuccessful.
Collapse
Affiliation(s)
- D Habermehl
- Klinik für RadioOnkologie und Strahlentherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland. .,Institut für Innovative Radiotherapie (IRT), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Deutschland.
| | - G Habl
- Klinik für RadioOnkologie und Strahlentherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland
| | - H-H Eckstein
- Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland
| | - F Meisner
- Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland
| | - S E Combs
- Klinik für RadioOnkologie und Strahlentherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland.,Institut für Innovative Radiotherapie (IRT), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Deutschland
| |
Collapse
|
17
|
Lee KJ, Yoon HI, Chung MJ, Park JY, Bang S, Park SW, Seong JS, Song SY. A Comparison of Gastrointestinal Toxicities between Intensity-Modulated Radiotherapy and Three-Dimensional Conformal Radiotherapy for Pancreatic Cancer. Gut Liver 2016; 10:303-9. [PMID: 26470767 PMCID: PMC4780462 DOI: 10.5009/gnl15186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Concurrent chemoradiotherapy (CCRT) is considered the treatment option for locally advanced pancreatic cancer, but accompanying gastrointestinal toxicities are the most common complication. With the introduction of three-dimensional conformal radiotherapy (3-D CRT) and intensity-modulated radiotherapy (IMRT), CCRT-related adverse events are expected to diminish. Here, we evaluated the benefits of radiation modalities by comparing gastrointestinal toxicities between 3-D CRT and IMRT. Methods Patients who received CCRT between July 2010 and June 2012 in Severance Hospital, Yonsei University College of Medicine, were enrolled prospectively. The patients underwent upper endoscopy before and 1 month after CCRT. Results A total of 84 patients were enrolled during the study period. The radiotherapy modalities delivered included 3D-CRT (n=40) and IMRT (n=44). The median follow-up period from the start of CCRT was 10.6 months (range, 3.8 to 29.9 months). The symptoms of dyspepsia, nausea/vomiting, and diarrhea did not differ between the groups. Upper endoscopy revealed significantly more gastroduodenal ulcers in the 3-D CRT group (p=0.003). The modality of radiotherapy (3D-CRT; odds ratio [OR], 11.67; p=0.011) and tumor location (body of pancreas; OR, 11.06; p=0.009) were risk factors for gastrointestinal toxicities. Conclusions IMRT is associated with significantly fewer gastroduodenal injuries among patients treated with CCRT for pancreatic cancer.
Collapse
Affiliation(s)
- Kyong Joo Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sil Seong
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, Debus J, Jäkel O, Combs SE, Habermehl D. Optimization of Carbon Ion Treatment Plans by Integrating Tissue Specific α/β-Values for Patients with Non-Resectable Pancreatic Cancer. PLoS One 2016; 11:e0164473. [PMID: 27736917 PMCID: PMC5063341 DOI: 10.1371/journal.pone.0164473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background The aim of the thesis is to improve treatment plans of carbon ion irradiation by integrating the tissues’ specific αβ-values for patients with locally advanced pancreatic cancer (LAPC). Material and Methods Five patients with LAPC were included in this study. By the use of the treatment planning system Syngo RT Planning (Siemens, Erlangen, Germany) treatment plans with carbon ion beams have been created. Dose calculation was based on αβ-values for both organs at risk (OAR) and the tumor. Twenty-five treatment plans and thirty-five forward calculations were created. With reference to the anatomy five field configurations were included. Single Beam Optimization (SBO) and Intensity Modulated Particle Therapy (IMPT) were used for optimization. The plans were analyzed with respect to both dose distributions and individual anatomy. The plans were evaluated using a customized index. Results With regard to the target, a field setup with one single posterior field achieves the highest score in our index. Field setups made up of three fields achieve good results in OAR sparing. Nevertheless, the field setup with one field is superior in complex topographic conditions. But, allocating an αβ-value of 2 Gy to the spinal cord leads to critical high maximum doses in the spinal cord. The evaluation of dose profiles showed significant dose peaks at borders of the αβ-gradient, especially in case of a single posterior field. Conclusion Optimization with specific αβ-values allows a more accurate view on dose distribution than previously. A field setup with one single posterior field achieves good results in case of difficult topographic conditions, but leads to high maximum doses to the spinal cord. So, field setups with multiple fields seem to be more adequate in case of LAPC, being surrounded by highly radiosensitive normal tissues.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- * E-mail:
| | - Christian Scholz
- Imaging & Therapy Division, Healthcare Sector, Siemens AG, Mannheim, Germany
| | - Mira Pommer
- Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Prokesch
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Swantje Ecker
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Jäkel
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, München, Germany
| | - Daniel Habermehl
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, München, Germany
| |
Collapse
|
19
|
Leung HWC, Chan ALF, Muo CH. Cost-effectiveness of Gemcitabine Plus Modern Radiotherapy in Locally Advanced Pancreatic Cancer. Clin Ther 2016; 38:1174-83. [PMID: 27033672 DOI: 10.1016/j.clinthera.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the cost-effectiveness of gemcitabine plus modern radiotherapy versus gemcitabine alone in the treatment of locally advanced pancreatic cancer in Taiwan. METHODS A Markov decision-analytic model was performed to compare the cost-effectiveness of 3 treatment regimens; gemcitabine alone (gem-alone), gemcitabine plus intensity-modulated radiotherapy (gem-IMRT), and gemcitabine plus stereotactic body radiotherapy (gem-SBRT). Patients transitioned between 5 health states: stable disease, local progression, distant metastasis, local and distant metastasis, and death. FINDINGS The incremental cost-effectiveness ratio for gem-IMRT and gem-SBRT compared with gem-alone were NT$27,120,168 and NT$2,145,683 per quality-adjusted life-year gained, respectively. A willingness to pay threshold of 3 times the per capita gross domestic product was adopted according to the definition of the World Health Organization. The Taiwan per capita gross domestic product in 2015 was NT$673,920 (US$22,464; 1 NT$ = US$0.03333 in Taiwan); thus, a threshold was considered as NT$2,021,760 (US$67,392). The Monte-Carlo simulation found that the probability of cost-effectiveness at a willingness to pay threshold of NT$2,021,760 per quality-adjusted life-year was 0% chance for gem-IMRT and 50% for gem-SBRT. IMPLICATIONS This study indicated that gem-IMRT or gem-SBRT in locally advanced pancreatic cancer is not cost-effective at a willingness to pay as defined by World Health Organization guideline in Taiwan.
Collapse
Affiliation(s)
- Henry W C Leung
- Department of Radiation Therapy, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Information Management, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Agnes L F Chan
- Department of Pharmacy, An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan.
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Eskander MF, Bliss LA, Tseng JF. Pancreatic adenocarcinoma. Curr Probl Surg 2016; 53:107-54. [DOI: 10.1067/j.cpsurg.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
|
21
|
Combs SE, Nüsslin F, Wilkens JJ. Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 2016; 192:209-15. [PMID: 26852244 DOI: 10.1007/s00066-016-0944-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany. .,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Fridtjof Nüsslin
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany.,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
22
|
Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jäkel O, Debus J, Combs SE. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol 2015; 10:237. [PMID: 26590103 PMCID: PMC4654923 DOI: 10.1186/s13014-015-0538-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
Background The aim of the thesis is to improve radiation plans of patients with locally advanced, unresectable pancreatic cancer by using carbon ion and proton beams. Patients and methods Using the treatment planning system Syngo RT Planning (Siemens, Erlangen, Germany) a total of 50 treatment plans have been created for five patients with the dose schedule 15 × 3 Gy(RBE). With reference to the anatomy, five field configurations were considered to be relevant. The plans were analyzed with respect to dose distribution and individual anatomy, and compared using a customized index. Results Within the index the three-field configurations yielded the best results, though with a high variety of score points (field setup 5, carbon ion: median 74 (range 48–101)). The maximum dose in the myelon is low (e.g. case 3, carbon ion: 21.5 Gy(RBE)). A single posterior field generally spares the organs at risk, but the maximum dose in the myelon is high (e.g. case 3, carbon ion: 32.9 Gy(RBE)). Two oblique posterior fields resulted in acceptable maximum doses in the myelon (e.g. case 3, carbon ion: 26.9 Gy(RBE)). The single-field configuration and the two oblique posterior fields had a small score dispersion (carbon ion: median 66 and 58 (range 62–72 and 40–69)). In cases with topographic proximity of the organs at risk to the target volume, the single-field configuration scored as well as the three-field configurations. Conclusion In summary, the three-field configurations showed the best dose distributions. A single posterior field seems to be robust and beneficial in case of difficult topographical conditions and topographical proximity of organs at risk to the target volume. A setup with two oblique posterior fields is a reasonable compromise between three-field and single-field configurations.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital of Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Daniel Habermehl
- Department of Radiooncology, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Swantje Ecker
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120, Heidelberg, Germany.
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120, Heidelberg, Germany.
| | - Rami El-Shafie
- Department of Radiation Oncology, University Hospital of Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120, Heidelberg, Germany. .,Department of Medical Physics in Radiation Oncology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany.
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Stephanie E Combs
- Department of Radiooncology, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
23
|
Boyle J, Czito B, Willett C, Palta M. Adjuvant radiation therapy for pancreatic cancer: a review of the old and the new. J Gastrointest Oncol 2015; 6:436-44. [PMID: 26261730 DOI: 10.3978/j.issn.2078-6891.2015.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
Surgery represents the only potential curative treatment option for patients diagnosed with pancreatic adenocarcinoma. Despite aggressive surgical management for patients deemed to be resectable, rates of local recurrence and/or distant metastases remain high, resulting in poor long-term outcomes. In an effort to reduce recurrence rates and improve survival for patients having undergone resection, adjuvant therapies (ATs) including chemotherapy and chemoradiation therapy (CRT) have been explored. While adjuvant chemotherapy has been shown to consistently improve outcomes, the data regarding adjuvant radiation therapy (RT) is mixed. Although the ability of radiation to improve local control has been demonstrated, it has not always led to improved survival outcomes for patients. Early trials are flawed in their utilization of sub-optimal radiation techniques, limiting their generalizability. Recent and ongoing trials incorporate more optimized RT approaches and seek to clarify its role in treatment strategies. At the same time novel radiation techniques such as intensity modulated RT (IMRT) and stereotactic body RT (SBRT) are under active investigation. It is hoped that these efforts will lead to improved disease-related outcomes while reducing toxicity rates.
Collapse
Affiliation(s)
- John Boyle
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | - Brian Czito
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | | | - Manisha Palta
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Individualized radiotherapy (iRT) concepts for locally advanced pancreatic cancer (LAPC): indications and prognostic factors. Langenbecks Arch Surg 2015; 400:749-56. [DOI: 10.1007/s00423-015-1309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
|
25
|
Extended field intensity modulated radiation therapy for gynecologic cancers: Is the risk of duodenal toxicity high? Pract Radiat Oncol 2015; 5:e291-7. [DOI: 10.1016/j.prro.2014.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022]
|
26
|
Chu KY, Eccles CL, Brunner TB. Endobiliary Stent Position Changes during External-beam Radiotherapy. J Med Imaging Radiat Sci 2015; 46:57-64. [PMID: 26090069 PMCID: PMC4467517 DOI: 10.1016/j.jmir.2014.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
PURPOSE Endobiliary stents can be used as surrogates for pancreatic localization when using cone-beam computed tomography (CBCT) during external-beam radiotherapy (EBRT). This work reports on interfraction stent position changes during EBRT for locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Six patients with endobiliary stents who underwent EBRT for LAPC were assessed. Measurements from the most superior aspect of the stent (sup stent) and the most inferior aspect of the stent (inf stent) to the most inferior, posterior aspect of the L1 vertebra central spinous process were determined from daily treatment CBCTs and compared with those determined from the planning computed tomography (CT) scan. Changes in stent-L1 measurements were interpreted as changes in relative stent position. RESULTS Three patients showed mean interfraction stent position changes of ≥1 cm when treatment measurements were compared with planning measurements. The sup stent for patient A moved to the right (2.66 ± 2.77 cm) and inferiorly (3.0 ± 3.12 cm), and the inf stent moved to the right (1.92 ± 2.02 cm) inferiorly (3.23 ± 3.34 cm) and posteriorly (1.41 ± 1.43 cm). The inf stent for patient B moved superiorly (2.23 ± 0.49 cm) and posteriorly (1.72 ± 0.59 cm). The sup and inf stent for patient F moved inferiorly (0.98 ± 0.35 cm and 1.21 ± 0.38 cm, respectively). The remaining three patients C, D, and E showed interfraction position changes of <1 cm. CONCLUSION Endobiliary stent migration and deformation were observed in a small subset of patients. Further investigation is required before confirming their use as surrogates for LAPC target localization during image-guided EBRT.
Collapse
Affiliation(s)
- Kwun-Ye Chu
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom ; Radiotherapy Department, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Cynthia L Eccles
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom ; Radiotherapy Department, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Thomas B Brunner
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom ; Department of Radiation Oncology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
27
|
Kessel KA, Jäger A, Habermehl D, Rüppell J, Bendl R, Debus J, Combs SE. Changes in Gross Tumor Volume and Organ Motion Analysis During Neoadjuvant Radiochemotherapy in Patients With Locally Advanced Pancreatic Cancer Using an In-House Analysis System. Technol Cancer Res Treat 2015; 15:348-54. [PMID: 25824268 DOI: 10.1177/1533034615577515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/14/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE During radiation treatment, movement of the target and organs at risks as well as tumor response can significantly influence dose distribution. This is highly relevant in patients with pancreatic cancer, where organs at risk lie in close proximity to the target. MATERIAL AND METHODS Data sets of 10 patients with locally advanced pancreatic cancer were evaluated. Gross tumor volume deformation was analyzed. Dose changes to organs at risk were determined with focus on kidneys both without adaptive radiotherapy compensation and with replanning based on weekly acquired computed tomography scans. RESULTS During irradiation, gross tumor volume changes between 0% and 26% and moves within a radius of 5 to 16 mm. Required maximal dose to organs at risk for kidneys can be met with the current practice of matching computed tomography scans during treatment and adjusting patient position accordingly. Comparison of the mean doses and V15, V20 volumes demonstrated that weekly replanning could bring a significant dose sparing of the left kidney. CONCLUSION Manual matching with focus on bony structures can lead to overall acceptable positioning of patients during treatment. Thus, tolerance doses of organs at risk, such as the kidneys, can be met. With adequate margins, normal tissue constraints to organs at risk can be kept as well. Adaptive radiotherapy approaches (in this case with weekly rescanning) reduced dose to organs at risk, which may be especially important for hypofractionated approaches.
Collapse
Affiliation(s)
- Kerstin A Kessel
- Department of Radiation Oncology, Technische Universität München (TUM), Munich, Germany
| | - Andreas Jäger
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, Technische Universität München (TUM), Munich, Germany
| | - Jan Rüppell
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
| | - Rolf Bendl
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany Department of Medical Informatics, Heilbronn University, Heilbronn, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
28
|
Golcher H, Brunner TB, Witzigmann H, Marti L, Bechstein WO, Bruns C, Jungnickel H, Schreiber S, Grabenbauer GG, Meyer T, Merkel S, Fietkau R, Hohenberger W. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther Onkol 2014; 191:7-16. [PMID: 25252602 PMCID: PMC4289008 DOI: 10.1007/s00066-014-0737-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
Background In nonrandomized trials, neoadjuvant treatment was reported to prolong survival in patients with pancreatic cancer. As neoadjuvant chemoradiation is established for the treatment of rectal cancer we examined the value of neoadjuvant chemoradiotherapy in pancreatic cancer in a randomized phase II trial. Radiological staging defining resectability was basic information prior to randomization in contrast to adjuvant therapy trials resting on pathological staging. Patients and methods Patients with resectable adenocarcinoma of the pancreatic head were randomized to primary surgery (Arm A) or neoadjuvant chemoradiotherapy followed by surgery (Arm B), which was followed by adjuvant chemotherapy in both arms. A total of 254 patients were required to detect a 4.33-month improvement in median overall survival (mOS). Results The trial was stopped after 73 patients; 66 patients were eligible for analysis. Twenty nine of 33 allocated patients received chemoradiotherapy. Radiotherapy was completed in all patients. Chemotherapy was changed in 3 patients due to toxicity. Tumor resection was performed in 23 vs. 19 patients (A vs. B). The R0 resection rate was 48 % (A) and 52 % (B, P = 0.81) and (y)pN0 was 30 % (A) vs. 39 % (B, P = 0.44), respectively. Postoperative complications were comparable in both groups. mOS was 14.4 vs. 17.4 months (A vs. B; intention-to-treat analysis; P = 0.96). After tumor resection, mOS was 18.9 vs. 25.0 months (A vs. B; P = 0.79). Conclusion This worldwide first randomized trial for neoadjuvant chemoradiotherapy in pancreatic cancer showed that neoadjuvant chemoradiation is safe with respect to toxicity, perioperative morbidity, and mortality. Nevertheless, the trial was terminated early due to slow recruiting and the results were not significant. ISRCTN78805636; NCT00335543. Electronic supplementary material The online version of this article (doi: 10.1007/s00066-014-0737-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Golcher
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Combs SE, Habermehl D, Kessel KA, Bergmann F, Werner J, Naumann P, Jäger D, Büchler MW, Debus J. Prognostic impact of CA 19-9 on outcome after neoadjuvant chemoradiation in patients with locally advanced pancreatic cancer. Ann Surg Oncol 2014; 21:2801-7. [PMID: 24916745 DOI: 10.1245/s10434-014-3607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND To asses the impact of CA 19-9 and weight loss/gain on outcome after neoadjuvant chemoradiation (CRT) in patients with locally advanced pancreatic cancer (LAPC). METHODS We analyzed 289 patients with LAPC treated with CRT for LAPC. All patients received concomitant chemotherapy parallel to radiotherapy and adjuvant treatments. CA 19-9 and body weight were collected as prognostic and predictive markers. All patients were included into a regular follow-up with reassessment of resectability. RESULTS Median overall survival in all patients was 14 months. Actuarial overall survival was 37 % at 12 months, 12 % at 24 months, and 4 % at 36 months. Secondary resectability was achieved in 35 % of the patients. R0/R1 resection was significantly associated with increase in overall survival (p = 0.04). Intraoperative radiotherapy was applied in 50 patients, but it did not influence overall survival (p = 0.05). Pretreatment CA 19-9 significantly influenced overall survival using different cutoff values. With increase in CA 19-9 levels, the possibility of secondary surgical resection decreased from 46 % in patients with CA 19-9 levels below 90 U/ml to 31 % in the group with CA 19-9 levels higher than 269 U/ml. DISCUSSION This large group of patients with LAPC treated with neoadjuvant CRT confirms that CA 19-9 and body weight are strong predictive and prognostic factors of outcome. In the future, individual patient factors should be taken into account to tailor treatment.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kessel KA, Bohn C, Engelmann U, Oetzel D, Bougatf N, Bendl R, Debus J, Combs SE. Five-year experience with setup and implementation of an integrated database system for clinical documentation and research. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 114:206-217. [PMID: 24629596 DOI: 10.1016/j.cmpb.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/30/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
In radiation oncology, where treatment concepts are elaborated in interdisciplinary collaborations, handling distributed, large heterogeneous amounts of data efficiently is very important, yet challenging, for an optimal treatment of the patient as well as for research itself. This becomes a strong focus, as we step into the era of modern personalized medicine, relying on various quantitative data information, thus involving the active contribution of multiple medical specialties. Hence, combining patient data from all involved information systems is inevitable for analyses. Therefore, we introduced a documentation and data management system integrated in the clinical environment for electronic data capture. We discuss our concept and five-year experience of a precise electronic documentation system, with special focus on the challenges we encountered. We specify how such a system can be designed and implemented to plan, tailor and conduct (multicenter) clinical trials, ultimately reaching the best clinical performance, and enhancing interdisciplinary and clinical research.
Collapse
Affiliation(s)
- Kerstin A Kessel
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Christian Bohn
- CHILI GmbH, Friedrich-Ebert-Str. 2, 69221 Dossenheim, Germany
| | - Uwe Engelmann
- CHILI GmbH, Friedrich-Ebert-Str. 2, 69221 Dossenheim, Germany
| | - Dieter Oetzel
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Nina Bougatf
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Rolf Bendl
- Heilbronn University, Department of Medical Informatics, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stephanie E Combs
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Technical University of Munich (TUM), Department of Radiation Oncology, Ismaninger Straße 122, Munich, Germany
| |
Collapse
|
31
|
Nakamura A, Itasaka S, Takaori K, Kawaguchi Y, Shibuya K, Yoshimura M, Matsuo Y, Mizowaki T, Uemoto S, Hiraoka M. Radiotherapy for patients with isolated local recurrence of primary resected pancreatic cancer. Prolonged disease-free interval associated with favorable prognosis. Strahlenther Onkol 2014; 190:485-90. [PMID: 24599344 DOI: 10.1007/s00066-014-0610-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE To evaluate the treatment outcomes of radiotherapy and prognostic factors for recurrent pancreatic cancer. PATIENTS AND METHODS The study comprised 30 patients who developed a locoregional recurrence of primarily resected pancreatic cancer and received radiotherapy between 2000 and 2013 with a median dose of 54 Gy (range, 39-60 Gy). Concurrent chemotherapy included gemcitabine for 18 patients and S-1 for seven patients. The treatment outcomes and prognostic factors were retrospectively analyzed. RESULTS The median follow-up after radiotherapy was 14.6 months. The 1-year overall survival, local control, and progression-free survival rates were 69%, 67%, and 32%, respectively. The median overall survival and progression-free survival rates were 15.9 and 6.9 months, respectively. Tumor marker reduction and ≥ 50% reduction were observed in 18 and two patients, respectively. Of the seven patients who exhibited pain symptoms, four and two patients were partly and completely relieved, respectively. Late grade 3 ileus and gastroduodenal bleeding were observed in one patient each. Among the clinicopathological factors evaluated, only a disease-free interval of greater than 18.9 months exhibited a significant association with improved overall survival (p = 0.017). CONCLUSIONS Radiotherapy for isolated locally recurrent pancreatic cancer resulted in encouraging local control, overall survival, and palliative effects with mild toxicity, particularly in patients with a prolonged disease-free interval. This treatment strategy should be prospectively evaluated.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 606-8507, Kyoto, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|