1
|
Ristau J, Hörner-Rieber J, Körber SA. MR-linac based radiation therapy in gastrointestinal cancers: a narrative review. J Gastrointest Oncol 2024; 15:1893-1907. [PMID: 39279945 PMCID: PMC11399841 DOI: 10.21037/jgo-22-961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/14/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Magnetic resonance guided radiotherapy (MRgRT) is an emerging technological innovation with more and more institutions gaining clinical experience in this new field of radiation oncology. The ability to better visualize both tumors and healthy tissues due to excellent soft tissue contrast combined with new possibilities regarding motion management and the capability of online adaptive radiotherapy might increase tumor control rates while potentially reducing the risk of radiation-induced toxicities. As conventional computed tomography (CT)-based image guidance methods are insufficient for adaptive workflows in abdominal tumors, MRgRT appears to be an optimal method for this tumor site. The aim of this narrative review is to outline the opportunities and challenges in magnetic resonance guided radiation therapy in gastrointestinal cancers. Methods We searched for studies, reviews and conceptual articles, including the general technique of MRgRT and the specific utilization in gastrointestinal cancers, focusing on pancreatic cancer, liver metastases and primary liver cancer, rectal cancer and esophageal cancer. Key Content and Findings This review is highlighting the innovative approach of MRgRT in gastrointestinal cancer and gives an overview of the currently available literature with regard to clinical experiences and theoretical background. Conclusions MRgRT is a promising new tool in radiation oncology, which can play off several of its beneficial features in the specific field of gastrointestinal cancers. However, clinical data is still scarce. Nevertheless, the available literature points out large potential for improvements regarding dose coverage and escalation as well as the reduction of dose exposure to critical organs at risk (OAR). Further prospective studies are needed to demonstrate the role of this innovative technology in gastrointestinal cancer management, in particular trials that randomly compare MRgRT with conventional CT-based image-guided radiotherapy (IGRT) would be of high value.
Collapse
Affiliation(s)
- Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Stefan A Körber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Buchele C, Renkamp CK, Regnery S, Behnisch R, Rippke C, Schlüter F, Hoegen-Saßmannshausen P, Debus J, Hörner-Rieber J, Alber M, Klüter S. Intrafraction organ movement in adaptive MR-guided radiotherapy of abdominal lesions - dosimetric impact and how to detect its extent in advance. Radiat Oncol 2024; 19:80. [PMID: 38918828 PMCID: PMC11202341 DOI: 10.1186/s13014-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Magnetic resonance guided radiotherapy (MRgRT) allows daily adaptation of treatment plans to compensate for positional changes of target volumes and organs at risk (OARs). However, current adaptation times are relatively long and organ movement occurring during the adaptation process might offset the benefit gained by adaptation. The aim of this study was to evaluate the dosimetric impact of these intrafractional changes. Additionally, a method to predict the extent of organ movement before the first treatment was evaluated in order to have the possibility to compensate for them, for example by adding additional margins to OARs. MATERIALS & METHODS Twenty patients receiving adaptive MRgRT for treatment of abdominal lesions were retrospectively analyzed. Magnetic resonance (MR) images acquired at the start of adaptation and immediately before irradiation were used to calculate adapted and pre-irradiation dose in OARs directly next to the planning target volume. The extent of organ movement was determined on MR images acquired during simulation sessions and adaptive treatments, and their agreement was evaluated. Correlation between the magnitude of organ movement during simulation and the duration of simulation session was analyzed in order to assess whether organ movement might be relevant even if the adaptation process could be accelerated in the future. RESULTS A significant increase in dose constraint violations was observed from adapted (6.9%) to pre-irradiation (30.2%) dose distributions. Overall, OAR dose increased significantly by 4.3% due to intrafractional organ movement. Median changes in organ position of 7.5 mm (range 1.5-10.5 mm) were detected within a median time of 17.1 min (range 1.6-28.7 min). Good agreement was found between the range of organ movement during simulation and adaptation (66.8%), especially if simulation sessions were longer and multiple MR images were acquired. No correlation was determined between duration of simulation sessions and magnitude of organ movement. CONCLUSION Intrafractional organ movement can impact dose distributions and lead to violations of OAR tolerance doses, which impairs the benefit of daily on-table plan adaptation. By application of simulation images, the extent of intrafractional organ movement can be predicted, which possibly allows to compensate for them.
Collapse
Affiliation(s)
- Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany.
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry (IMBI), Heidelberg University, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
3
|
Gonzalez BD, Choo S, Janssen JJ, Hazelton J, Latifi K, Leach CR, Bailey S, Jim HS, Oswald LB, Woolverton M, Murphy M, Schilowitz EL, Frakes JM, Robinson EJ, Hoffe S. Novel Virtual Reality App for Training Patients on MRI-guided Radiation Therapy. Adv Radiat Oncol 2024; 9:101477. [PMID: 38681889 PMCID: PMC11043805 DOI: 10.1016/j.adro.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Patients receiving respiratory gated magnetic resonance imaging-guided radiation therapy (MRIgRT) for abdominal targets must hold their breath for ≥25 seconds at a time. Virtual reality (VR) has shown promise for improving patient education and experience for diagnostic MRI scan acquisition. We aimed to develop and pilot-test the first VR app to educate, train, and reduce anxiety and discomfort in patients preparing to receive MRIgRT. Methods and Materials A multidisciplinary team iteratively developed a new VR app with patient input. The app begins with minigames to help orient patients to using the VR device and to train patients on breath-holding. Next, app users are introduced to the MRI linear accelerator vault and practice breath-holding during MRIgRT. In this quality improvement project, clinic personnel and MRIgRT-eligible patients with pancreatic cancer tested the VR app for feasibility, acceptability, and potential efficacy for training patients on using breath-holding during MRIgRT. Results The new VR app experience was tested by 19 patients and 67 clinic personnel. The experience was completed on average in 18.6 minutes (SD = 5.4) by patients and in 14.9 (SD = 3.5) minutes by clinic personnel. Patients reported the app was "extremely helpful" (58%) or "very helpful" (32%) for learning breath-holding used in MRIgRT and "extremely helpful" (28%) or "very helpful (50%) for reducing anxiety. Patients and clinic personnel also provided qualitative feedback on improving future versions of the VR app. Conclusion The VR app was feasible and acceptable for training patients on breath-holding for MRIgRT. Patients eligible for MRIgRT for pancreatic cancer and clinic personnel reported on future improvements to the app to enhance its usability and efficacy.
Collapse
Affiliation(s)
- Brian D. Gonzalez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Sylvia Choo
- Morsani College of Medicine, University of South Florida, Tampa, FL
| | | | | | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | | | - Shannon Bailey
- Morsani College of Medicine, University of South Florida, Tampa, FL
- Center for Advanced Medical Learning and Simulation, University of South Florida, Tampa, FL
| | - Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Laura B. Oswald
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | | | | | | | | | | | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
4
|
de Mol van Otterloo S, Westerhoff J, Leer T, Rutgers R, Meijers L, Daamen L, Intven M, Verkooijen H. Patient expectation and experience of MR-guided radiotherapy using a 1.5T MR-Linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100224. [PMID: 38162695 PMCID: PMC10755768 DOI: 10.1016/j.tipsro.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Purpose Online adaptive MR-guided radiotherapy (MRgRT) is a relatively new form of radiotherapy treatment, delivered using a MR-Linac. It is unknown what patients expect from this treatment and whether these expectations are met. This study evaluates whether patients' pre-treatment expectations of MRgRT are met and reports patients' on-table experience on a 1.5 T MR-Linac. Materials and methods All patients treated on the MR-Linac from November 2020 until April 2021, were eligible for inclusion. Patient expectation and experience were captured through questionnaires before, during, and three months after treatment. The on-table experience questionnaire included patient' physical and psychological coping. Patient-expected side effects, participation in daily and social activity, disease outcome and, disease related symptoms were compared to post-treatment experience. Results We included 113 patients who were primarily male (n = 100, 89 %), with a median age of 69 years (range 52-90). For on-table experience, ninety percent of patients (strongly) agreed to feeling calm during their treatment. Six and eight percent of patients found the treatment position or bed uncomfortable respectively. Twenty-eight percent of patients felt tingling sensations during treatment. After treatment, 79 % of patients' expectations were met. Most patients experienced an (better than) expected level of side effects (75 %), participation in daily- (83 %) and social activity (86 %) and symptoms (78 %). However, 33 % expected more treatment efficacy than experienced. Conclusion Treatment on the 1.5 T MR-Linac is well tolerated and meets patient expectations. Despite the fact that some patients expected greater treatment efficacy and the frequent occurrence of tingling sensations during treatment, most patient experiences were comparable or better than previously expected.
Collapse
Affiliation(s)
- S.R. de Mol van Otterloo
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - J.M. Westerhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - T. Leer
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - R.H.A. Rutgers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.T.C. Meijers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.A. Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - M.P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - H.M. Verkooijen
- Division of Imaging, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Moreira A, Li W, Berlin A, Carpino-Rocca C, Chung P, Conroy L, Dang J, Dawson LA, Glicksman RM, Hosni A, Keller H, Kong V, Lindsay P, Shessel A, Stanescu T, Taylor E, Winter J, Yan M, Letourneau D, Milosevic M, Velec M. Prospective evaluation of patient-reported anxiety and experiences with adaptive radiation therapy on an MR-linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100240. [PMID: 38445180 PMCID: PMC10912905 DOI: 10.1016/j.tipsro.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose An integrated magnetic resonance scanner and linear accelerator (MR-linac) was implemented with daily online adaptive radiation therapy (ART). This study evaluated patient-reported experiences with their overall hospital care as well as treatment in the MR-linac environment. Methods Patients pre-screened for MR eligibility and claustrophobia were referred to simulation on a 1.5 T MR-linac. Patient-reported experience measures were captured using two validated surveys. The 15-item MR-anxiety questionnaire (MR-AQ) was administered immediately after the first treatment to rate MR-related anxiety and relaxation. The 40-item satisfaction with cancer care questionnaire rating doctors, radiation therapists, the services and care organization and their outpatient experience was administered immediately after the last treatment using five-point Likert responses. Results were analyzed using descriptive statistics. Results 205 patients were included in this analysis. Multiple sites were treated across the pelvis and abdomen with a median treatment time per fraction of 46 and 66 min respectively. Patients rated MR-related anxiety as "not at all" (87%), "somewhat" (11%), "moderately" (1%) and "very much so" (1%). Positive satisfaction responses ranged from 78 to 100% (median 93%) across all items. All radiation therapist-specific items were rated positively as 96-100%. The five lowest rated items (range 78-85%) were related to general provision of information, coordination, and communication. Overall hospital care was rated positively at 99%. Conclusion In this large, single-institution prospective cohort, all patients had low MR-related anxiety and completed treatment as planned despite lengthy ART treatments with the MR-linac. Patients overall were highly satisfied with their cancer care involving ART using an MR-linac.
Collapse
Affiliation(s)
- Amanda Moreira
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Cathy Carpino-Rocca
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Leigh Conroy
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Laura A. Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rachel M. Glicksman
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Teo Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Yan
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Velec
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Weykamp F, Hoegen P, Regnery S, Katsigiannopulos E, Renkamp CK, Lang K, König L, Sandrini E, Meixner E, Rippke C, Buchele C, Liermann J, Debus J, Klüter S, Hörner-Rieber J. Long-Term Clinical Results of MR-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers (Basel) 2023; 15:2786. [PMID: 37345123 DOI: 10.3390/cancers15102786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Background: Magnetic-resonance (MR)-guided stereotactic body radiotherapy (SBRT) allows for ablative, non-invasive treatment of liver metastases. However, long-term clinical outcome data are missing. (2) Methods: Patients received MR-guided SBRT with a MRIdian Linac between January 2019 and October 2021 and were part of an ongoing prospective observational registry. Local hepatic control (LHC), distant hepatic control (DHC), progression free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Meier method. Toxicity was documented according to CTCAE (v.5.0). (3) Results: Forty patients were treated for a total of 54 liver metastases (56% with online plan adaptation). Median prescribed dose was 50 Gy in five fractions equal to a biologically effective dose (BED) (alpha/beta = 10 Gy) of 100 Gy. At 1 and 2 years, LHC was 98% and 75%, DHC was 34% and 15%, PFS was 21% and 5% and OS was 83% and 57%. Two-year LHC was higher in case of BED > 100 Gy (100% vs. 57%; log-rank p = 0.04). Acute grade 1 and 2 toxicity (mostly nausea) occurred in 26% and 7% of the patients, with no grade ≥ 3 event. (4) Conclusions: To our knowledge, this is the largest cohort of MR-guided liver SBRT. Long-term local control was promising and underscores the aim of achieving >100 Gy BED. Nonetheless, distant tumor control remains challenging.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Hoegen P, Katsigiannopulos E, Buchele C, Regnery S, Weykamp F, Sandrini E, Ristau J, Liermann J, Meixner E, Forster T, Renkamp CK, Schlüter F, Rippke C, Debus J, Klüter S, Hörner-Rieber J. Stereotactic magnetic resonance-guided online adaptive radiotherapy of adrenal metastases combines high ablative doses with optimized sparing of organs at risk. Clin Transl Radiat Oncol 2023; 39:100567. [PMID: 36935853 PMCID: PMC10014324 DOI: 10.1016/j.ctro.2022.100567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose/Objective To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR). Materials and methods In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy. Baseline plans were re-calculated to the anatomy of the day. These predicted plans were reoptimized to generate adapted plans. Baseline, predicted and adapted plans were compared with regard to PTV objectives, OAR constraints and published dose recommendations. Results The cohort comprised patients with large GTV (median 36.0 cc) and PTV (median 66.6 cc) and predominantly left-sided metastases. 179 of 181 fractions (98.9 %) were adapted because of PTV and/or OAR violations. Predicted plans frequently violated PTV coverage (99.4 %) and adjacent OAR constraints (bowel: 32.9 %, stomach: 32.8 %, duodenum: 10.4 %, kidneys: 10.8 %). In the predicted plans, the volume exposed to the maximum dose was exceeded up to 16-fold in the duodenum and up to 96-fold in the spinal cord. Adapted plans significantly reduced OAR violations by 96.4 % for the bowel, 98.5 % for the stomach, 85.6 % for the duodenum and 83.3 % for the kidneys. Plan adaptation improved PTV coverage from 82.7 ± 8.1 % to 90.6 ± 4.9 % (p < 0.001). Furthermore, recently established target volume thresholds could easily be fulfilled with SMART. No toxicities > grade II occurred. Conclusion SMART fulfills established GTV and PTV dose recommendations while simultaneously sparing organs at risk even in a challenging cohort.
Collapse
Affiliation(s)
- Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Morabito A, Mercadante E, Muto P, Palumbo G, Manzo A, Montanino A, Sandomenico C, Sforza V, Costanzo R, Damiano S, La Manna C, Martucci N, La Rocca A, De Luca G, Totaro G, De Cecio R, Picone C, Piccirillo MC, De Feo G, Tracey M, D'Auria S, Normanno N, Capasso A, Pascarella G. Risk Management Activities in a Lung Cancer Multidisciplinary Team at a Comprehensive Cancer Center: Results of a Prospective Analysis. JCO Oncol Pract 2023; 19:e315-e325. [PMID: 36383923 DOI: 10.1200/op.22.00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The objective of the study was to highlight sources of harm that could negatively affect the lung cancer multidisciplinary team (MDT) activities to reduce the level of risk of each factor. METHODS A modified Delphi approach was used by a board of multi-health care professionals of the lung cancer MDT to identify the main processes, subprocesses, and risk factors of the multidisciplinary pathway of patients with lung cancer. A semiquantitative matrix was built with a five-point scale for probability of harm (likelihood) and severity of harm (consequences) according to the international risk management standards (ISO 31000-2018). The risk level was calculated by multiplying likelihood × consequences. Mitigation strategies have been identified and applied by the MDT to reduce risks to acceptable levels. RESULTS Three main processes (outpatient specialist visit, MDT discussion, and MDT program implementation), eight related subprocesses, and 16 risk factors were identified. Four risk factors (25%) were related to outpatient specialist visit, seven (43.75%) to case discussion, and five (31.25%) to program implementation. Overall, two risk factors were assigned a low-risk level (12.5%), 11 a moderate-risk level (68.75%), one (6.25%) a high-risk level, and two (12.5%) a very high-risk level. After the implementation of mitigation measures, the new semiquantitative risk analysis showed a reduction in almost all hazardous situations: two risk factors (12.5%) were given a very low level, six (37.5%) a low level, seven (43.75%) a moderate level, and one (6.25%) a very high level. CONCLUSION An interdisciplinary risk assessment analysis is applicable to MDT activities by using an ad hoc risk matrix: if the hazard is identified and monitored, the risk could be reduced and managed in a short time.
Collapse
Affiliation(s)
- Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Edoardo Mercadante
- Thoracic Surgery, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Paolo Muto
- Radiotherapy, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Giuliano Palumbo
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Anna Manzo
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Agnese Montanino
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Claudia Sandomenico
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Vincenzo Sforza
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Raffaele Costanzo
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Simona Damiano
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale," Napoli, Italy
| | - Carmine La Manna
- Thoracic Surgery, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Nicola Martucci
- Thoracic Surgery, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Antonello La Rocca
- Thoracic Surgery, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Giuseppe De Luca
- Thoracic Surgery, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Giuseppe Totaro
- Radiotherapy, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Rossella De Cecio
- Pathology, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Carmine Picone
- Radiology, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | | | - Gianfranco De Feo
- Scientific Directorate, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Maura Tracey
- Rehabilitative Medicine Unit, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Stefania D'Auria
- Department of Health Management, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Nicola Normanno
- Scientific Directorate, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Napoli, Italy.,Cellular Biology and Biotherapy, Istituto Nazionale Tumori, "Fondazione G. Pascale," IRCCS, Napoli, Italy
| | - Arturo Capasso
- Wroclaw School of Banking Wyższa Szkoła Bankowa, Wrocalw, Poland
| | - Giacomo Pascarella
- Scientific Directorate, Istituto Nazionale Tumori "Fondazione G. Pascale," IRCCS, Napoli, Italy
| |
Collapse
|
9
|
Weykamp F, Katsigiannopulos E, Piskorski L, Regnery S, Hoegen P, Ristau J, Renkamp CK, Liermann J, Forster T, Lang K, König L, Rippke C, Buchele C, Debus J, Klüter S, Hörner-Rieber J. Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers (Basel) 2022; 14:cancers14246041. [PMID: 36551527 PMCID: PMC9775484 DOI: 10.3390/cancers14246041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: To assess dosimetry benefits of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of liver metastases. (2) Methods: This is a subgroup analysis of an ongoing prospective registry including patients with liver metastases. Patients were treated at the MRIdian Linac between February 2020 and April 2022. The baseline plan was recalculated based on the updated anatomy of the day to generate the predicted plan. This predicted plan could then be re-optimized to create an adapted plan. (3) Results: Twenty-three patients received 30 SMART treatment series of in total 36 liver metastases. Most common primary tumors were colorectal- and pancreatic carcinoma (26.1% respectively). Most frequent fractionation scheme (46.6%) was 50 Gy in five fractions. The adapted plan was significantly superior compared to the predicted plan in regard to planning-target-volume (PTV) coverage, PTV overdosing, and organs-at-risk (OAR) dose constraints violations (91.5 vs. 38.0%, 6 vs. 19% and 0.6 vs. 10.0%; each p < 0.001). Plan adaptation significantly increased median BEDD95 by 3.2 Gy (p < 0.001). Mean total duration of SMART was 72.4 min. (4) Conclusions: SMART offers individualized ablative irradiation of liver metastases tailored to the daily anatomy with significant superior tumor coverage and improved sparing of OAR.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Lars Piskorski
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - C. Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Murgić J, Gregov M, Mrčela I, Budanec M, Krengli M, Fröbe A, Franco P. MRI-GUIDED RADIOTHERAPY FOR PROSTATE CANCER: A NEW PARADIGM. Acta Clin Croat 2022; 61:65-70. [PMID: 36938552 PMCID: PMC10022406 DOI: 10.20471/acc.2022.61.s3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Radiotherapy is one of the key treatment modalities for primary prostate cancer. During the last decade, significant advances were made in radiotherapy technology leading to increasing both physical and biological precision. Being a loco-regional treatment approach, radiotherapy requires accurate target dose deposition while sparing surrounding healthy tissue. Conventional radiotherapy is based on computerized tomography (CT) images both for radiotherapy planning and image-guidance, however, shortcomings of CT as soft tissue imaging tool are well known. Nowadays, our ability to further escalate radiotherapy dose using hypofractionation is limited by uncertainties in CT-based image guidance and verification. Magnetic resonance imaging (MRI) is a well established imaging method for pelvic organs. In prostate cancer specifically, MRI accurately depicts prostate zonal anatomy, rectum, bladder, and pelvic floor structures with previously unseen precision owing to its sharp soft tissue contrast. The advantages of including MRI in the clinical workflow of prostate cancer radiotherapy are multifold. MRI allows for true adaptive radiotherapy to unfold based on daily MRI images taken before, during and after each radiotherapy fraction. It enables accurate dose escalation to the prostate and intraprostatic tumor lesions. Technically, MRI high-strength magnetic field and linear accelerator high energy electromagnetic beams are hardly compatible, and important efforts were made to overcome these technical challenges and integrate MRI and linear accelerator into one single treatment device, called MRI-linac. Different systems are produced by two leading vendors in the field and currently, there are around 100 MRI-linacs worldwide in clinical operations. In this narrative review paper, we discuss historical perspective of image guidance in radiotherapy, basic elements of MRI, current clinical developments in MRI-guided prostate cancer radiotherapy, and challenges associated with the use of MRI-linac in clinical practice.
Collapse
Affiliation(s)
- Jure Murgić
- Department of Oncology and Nuclear Medicine, Sestre milosrdnice University Hospital Center, Vinogradska 29, 10000 Zagreb, Croatia
| | - Marin Gregov
- Department of Medical Physics, Sestre milosrdnice University Hospital Center, Vinogradska 29, 10000 Zagreb, Croatia
| | - Iva Mrčela
- Department of Medical Physics, Sestre milosrdnice University Hospital Center, Vinogradska 29, 10000 Zagreb, Croatia
| | - Mirjana Budanec
- Department of Medical Physics, Sestre milosrdnice University Hospital Center, Vinogradska 29, 10000 Zagreb, Croatia
| | - Marco Krengli
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Department of Radiation Oncology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre milosrdnice University Hospital Center, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Pierfrancesco Franco
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Department of Radiation Oncology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy
| |
Collapse
|
11
|
Noyan A, Yavas G, Efe E, Arslan G, Yavas C, Onal C. Cardiac angiosarcoma treated with 1.5 Tesla MR-guided adaptive stereotactic body radiotherapy – Case report and review of the literature. Int J Surg Case Rep 2022; 98:107521. [PMID: 36027835 PMCID: PMC9424346 DOI: 10.1016/j.ijscr.2022.107521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Asli Noyan
- Baskent University, Faculty of Medicine, Ankara, Turkey
| | - Guler Yavas
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Esma Efe
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Gungor Arslan
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Cagdas Yavas
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Cem Onal
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey; Baskent University Faculty of Medicine, Adana Dr. Turgut Noyan Research and Treatment Center, Department of Radiation Oncology, Adana, Turkey.
| |
Collapse
|
12
|
Comparing patient acceptability of MR-guided radiotherapy to conventional CBCT on two Elekta systems: a questionnaire-based survey. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background and Purpose:
The magnetic resonance linear accelerator system (MR Linac) is a novel piece of radiotherapy (RT) equipment allowing the routine application of daily MR-guided treatment adaptation. The hardware design required for such technical capabilities and the increased complexity of the treatment workflow entails a notable departure from cone beam computed tomography (CBCT)-based RT. Patient tolerability of treatment is paramount to RT practice where high compliance is required. Presented is a comparative analysis of how such modality specific characteristics may ultimately impact the patient experience of treatment.
Materials and Methods:
Forty patients undergoing RT for prostate cancer (PCa) on either the MR Linac (n = 20) or a CBCT-based linac (n = 20) were provided with a validated patient reported outcomes measures (PROM’s) questionnaire at fraction 1 and fraction 20. The 18-item questionnaire provided patient responses recorded using a 4-point Likert scale, 0 denoting a response of ‘Not at all’, 1 ‘Slightly’, 2 ‘Moderately’ and 3 signifying ‘Very’. The analysis provided insight into both comparisons between modalities at singular time points (fractions 1 and 20), as well as a temporal analysis within a single modality, denoting changing patient experience.
Results:
Patients generally found the MR Linac treatment couch more comfortable, however, found the increase in treatment duration harder to tolerate. Responses for all items remained stable between first and last fraction across both cohorts, indicating minimal temporal variation within a single modality. None of the responses were statistically significant at the 0·01 level.
Conclusion:
Whether radiotherapy for PCa is delivered on a CBCT linac or the MR Linac, there is little difference in patient experience with minimal experiential variation within a single modality.
Collapse
|
13
|
Mohamad I, Barry A, Dawson L, Hosni A. Stereotactic body radiation therapy for colorectal liver metastases. Int J Hyperthermia 2022; 39:611-619. [DOI: 10.1080/02656736.2021.1923836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Aisling Barry
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Laura Dawson
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Ali Hosni
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
MR-guided adaptive versus ITV-based stereotactic body radiotherapy for hepatic metastases (MAESTRO): a randomized controlled phase II trial. Radiat Oncol 2022; 17:59. [PMID: 35346270 PMCID: PMC8958771 DOI: 10.1186/s13014-022-02033-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Background Stereotactic body radiotherapy (SBRT) is an established local treatment method for patients with hepatic oligometastasis or oligoprogression. Liver metastases often occur in close proximity to radiosensitive organs at risk (OARs). This limits the possibility to apply sufficiently high doses needed for optimal local control. Online MR-guided radiotherapy (oMRgRT) is expected to hold potential to improve hepatic SBRT by offering superior soft-tissue contrast for enhanced target identification as well as the benefit of gating and daily real-time adaptive treatment. The MAESTRO trial therefore aims to assess the potential advantages of adaptive, gated MR-guided SBRT compared to conventional SBRT at a standard linac using an ITV (internal target volume) approach. Methods This trial is conducted as a prospective, randomized, three-armed phase II study in 82 patients with hepatic metastases (solid malignant tumor, 1–3 hepatic metastases confirmed by magnetic resonance imaging (MRI), maximum diameter of each metastasis ≤ 5 cm (in case of 3 metastases: sum of diameters ≤ 12 cm), age ≥ 18 years, Karnofsky Performance Score ≥ 60%). If a biologically effective dose (BED) ≥ 100 Gy (α/β = 10 Gy) is feasible based on ITV-based planning, patients will be randomized to either MRgRT or ITV-based SBRT. If a lesion cannot be treated with a BED ≥ 100 Gy, the patient will be treated with MRgRT at the highest possible dose. Primary endpoint is the non-inferiority of MRgRT at the MRIdian Linac® system compared to ITV-based SBRT regarding hepatobiliary and gastrointestinal toxicity CTCAE III or higher. Secondary outcomes investigated are local, locoregional (intrahepatic) and distant tumor control, progression-free survival, overall survival, possible increase of BED using MRgRT if the BED is limited with ITV-based SBRT, treatment-related toxicity, quality of life, dosimetric parameters of radiotherapy plans as well as morphological and functional changes in MRI. Potential prognostic biomarkers will also be evaluated. Discussion MRgRT is known to be both highly cost- and labor-intensive. The MAESTRO trial aims to provide randomized, higher-level evidence for the dosimetric and possible consecutive clinical benefit of MR-guided, on-table adaptive and gated SBRT for dose escalation in critically located hepatic metastases adjacent to radiosensitive OARs. Trial registration The study has been prospectively registered on August 30th, 2021: Clinicaltrials.gov, “Magnetic Resonance-guided Adaptive Stereotactic Body Radiotherapy for Hepatic Metastases (MAESTRO)”, NCT05027711. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02033-2.
Collapse
|
15
|
Regnery S, Buchele C, Piskorski L, Weykamp F, Held T, Eichkorn T, Rippke C, Katharina Renkamp C, Klüter S, Ristau J, König L, Koerber SA, Adeberg S, Debus J, Hörner-Rieber J. SMART ablation of lymphatic oligometastases in the pelvis and abdomen: Clinical and dosimetry outcomes. Radiother Oncol 2022; 168:106-112. [PMID: 35121031 DOI: 10.1016/j.radonc.2022.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To demonstrate dosimetry benefits and report clinical outcomes of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of abdominopelvic lymphatic oligometastases. PATIENTS & METHODS Prospective registry data of 26 patients with 31 oligoprogressive lymphatic metastases (1 - 2 lesions) who received SMART between April 2020 and April 2021 was analyzed. Prostate cancer was the most common histology (69%). Most patients (63%) had received previous abdominopelvic radiotherapy (RT). SMART was delivered in 3 - 7 fractions based on planning target volume (PTV) location and previous dose exposures. For SMART, the baseline plan was recalculated on daily 3D MR-imaging (predicted plan), and plan adaptation was mandatory in case of planning objective violations. RESULTS Plan adaptation was mostly performed due to violation of planning objectives in the predicted plan (134/140 fractions, 96%) and significantly improved plan dosimetry: 1) PTV coverage was increased (predicted: median 89%, adapted: median 95%, p < 0.001), 2) organs-at-risk (OAR) overdoses were reduced (predicted: 27/140 (19%), adapted: 1/140 (1%), p < 0.001) and 3) PTV overdoses were reduced (predicted: 21/140 (15%), adapted: 1/140 (1%), p < 0.001). After a median follow-up of 9.8 months, one patient had in-field tumor progression and twelve patients had out-field tumor progression (at 6 months: progression-free survival: 63% [46 - 88%], local control rate: 97% [90 - 100%]). Treatment was tolerated well and no grade ≥ 3 toxicity was reported. CONCLUSION SMART improves target volume coverage and yields superior OAR protection compared to non-adaptive radiotherapy, thus representing an innovative approach to challenging cases, such as repeated radiotherapy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Lars Piskorski
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Regnery S, Buchele C, Weykamp F, Pohl M, Hoegen P, Eichkorn T, Held T, Ristau J, Rippke C, König L, Thomas M, Winter H, Adeberg S, Debus J, Klüter S, Hörner-Rieber J. Adaptive MR-Guided Stereotactic Radiotherapy is Beneficial for Ablative Treatment of Lung Tumors in High-Risk Locations. Front Oncol 2022; 11:757031. [PMID: 35087746 PMCID: PMC8789303 DOI: 10.3389/fonc.2021.757031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To explore the benefit of adaptive magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) for treatment of lung tumors in different locations with a focus on ultracentral lung tumors (ULT). PATIENTS & METHODS A prospective cohort of 21 patients with 23 primary and secondary lung tumors was analyzed. Tumors were located peripherally (N = 10), centrally (N = 2) and ultracentrally (N = 11, planning target volume (PTV) overlap with proximal bronchi, esophagus and/or pulmonary artery). All patients received MRgSBRT with gated dose delivery and risk-adapted fractionation. Before each fraction, the baseline plan was recalculated on the anatomy of the day (predicted plan). Plan adaptation was performed in 154/165 fractions (93.3%). Comparison of dose characteristics between predicted and adapted plans employed descriptive statistics and Bayesian linear multilevel models. The posterior distributions resulting from the Bayesian models are presented by the mean together with the corresponding 95% compatibility interval (CI). RESULTS Plan adaptation decreased the proportion of fractions with violated planning objectives from 94% (predicted plans) to 17% (adapted plans). In most cases, inadequate PTV coverage was remedied (predicted: 86%, adapted: 13%), corresponding to a moderate increase of PTV coverage (mean +6.3%, 95% CI: [5.3-7.4%]) and biologically effective PTV doses (BED10) (BEDmin: +9.0 Gy [6.7-11.3 Gy], BEDmean: +1.4 Gy [0.8-2.1 Gy]). This benefit was smaller in larger tumors (-0.1%/10 cm³ PTV [-0.2 to -0.02%/10 cm³ PTV]) and ULT (-2.0% [-3.1 to -0.9%]). Occurrence of exceeded maximum doses inside the PTV (predicted: 21%, adapted: 4%) and violations of OAR constraints (predicted: 12%, adapted: 1%, OR: 0.14 [0.04-0.44]) was effectively reduced. OAR constraint violations almost exclusively occurred if the PTV had touched the corresponding OAR in the baseline plan (18/19, 95%). CONCLUSION Adaptive MRgSBRT is highly recommendable for ablative treatment of lung tumors whose PTV initially contacts a sensitive OAR, such as ULT. Here, plan adaptation protects the OAR while maintaining best-possible PTV coverage.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor diseases, Heidelberg, Germany.,Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Hauke Winter
- National Center for Tumor diseases, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany.,Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,National Center for Tumor diseases, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
17
|
de Mol van Otterloo SR, Christodouleas JP, Blezer ELA, Akhiat H, Brown K, Choudhury A, Eggert D, Erickson BA, Daamen LA, Faivre-Finn C, Fuller CD, Goldwein J, Hafeez S, Hall E, Harrington KJ, van der Heide UA, Huddart RA, Intven MPW, Kirby AM, Lalondrelle S, McCann C, Minsky BD, Mook S, Nowee ME, Oelfke U, Orrling K, Philippens MEP, Sahgal A, Schultz CJ, Tersteeg RJHA, Tijssen RHN, Tree AC, van Triest B, Tseng CL, Hall WA, Verkooijen HM. Patterns of Care, Tolerability, and Safety of the First Cohort of Patients Treated on a Novel High-Field MR-Linac Within the MOMENTUM Study: Initial Results From a Prospective Multi-Institutional Registry. Int J Radiat Oncol Biol Phys 2021; 111:867-875. [PMID: 34265394 PMCID: PMC9764331 DOI: 10.1016/j.ijrobp.2021.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive workflow, potentially give rise to novel online anatomic and response adaptive radiation therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study (NCT04075305), a prospective international registry of the MR-Linac Consortium. METHODS AND MATERIALS Patients were included between February 2019 and October 2020 at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end of treatment). RESULTS A total 943 patients participated in the MOMENTUM Study, 702 of whom had complete baseline data at the time of this analysis. Patients were primarily male (79%) with a median age of 68 years (range, 22-93) and were treated for 39 different indications. The most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity related to radiation was observed. CONCLUSIONS In the first 21 months of our study, patterns of care were diverse with respect to clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was encouraging.
Collapse
Affiliation(s)
| | | | - Erwin L A Blezer
- Division of Imaging, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Ananya Choudhury
- The University of Manchester and The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | | | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lois A Daamen
- Division of Imaging, University Medical Center Utrecht, Utrecht, Netherlands
| | - Corinne Faivre-Finn
- The University of Manchester and The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Clifton D Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas
| | | | - Shaista Hafeez
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J Harrington
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Uulke A van der Heide
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Robert A Huddart
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anna M Kirby
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Susan Lalondrelle
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Claire McCann
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre/Odette Cancer Centre, Toronto, Ontario
| | - Bruce D Minsky
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas
| | - Stella Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marlies E Nowee
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Uwe Oelfke
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | | | | | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre/Odette Cancer Centre, Toronto, Ontario
| | - Christopher J Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robbert J H A Tersteeg
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob H N Tijssen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer, London, United Kingdom
| | - Baukelien van Triest
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre/Odette Cancer Centre, Toronto, Ontario
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Helena M Verkooijen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands; Division of Imaging, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
18
|
Garcia Schüler HI, Pavic M, Mayinger M, Weitkamp N, Chamberlain M, Reiner C, Linsenmeier C, Balermpas P, Krayenbühl J, Guckenberger M, Baumgartl M, Wilke L, Tanadini-Lang S, Andratschke N. Operating procedures, risk management and challenges during implementation of adaptive and non-adaptive MR-guided radiotherapy: 1-year single-center experience. Radiat Oncol 2021; 16:217. [PMID: 34775998 PMCID: PMC8591958 DOI: 10.1186/s13014-021-01945-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Main purpose was to describe procedures and identify challenges in the implementation process of adaptive and non-adaptive MR-guided radiotherapy (MRgRT), especially new risks in workflow due to the new technique. We herein report the single center experience for the implementation of (MRgRT) and present an overview on our treatment practice. METHODS Descriptive statistics were used to summarize clinical and technical characteristics of treatment and patient characteristics including sites treated between April 2019 and end of March 2020 after ethical approval. A risk analysis was performed to identify risks of the online adaptive workflow. RESULTS A summary of the processes on the MR-Linac including workflows, quality assurance and possible pitfalls is presented. 111 patients with 124 courses were treated during the first year of MR-guided radiotherapy. The most commonly treated site was the abdomen (42% of all treatment courses). 73% of the courses were daily online adapted and a high number of treatment courses (75%) were treated with stereotactic body irradiation. Only 4/382 fractions could not be treated due to a failing online adaptive quality assurance. In the risk analysis for errors, the two risks with the highest risk priority number were both in the contouring category, making it the most critical step in the workflow. CONCLUSION Although challenging, establishment of MRgRT as a routinely used technique at our department was successful for all sites and daily o-ART was feasible from the first day on. However, ongoing research and reports will have to inform us on the optimal indications for MRgRT because careful patient selection is necessary as it continues to be a time-consuming treatment technique with restricted availability. After risk analysis, the most critical workflow category was the contouring process, which resembles the need of experienced staff and safety check paths.
Collapse
Affiliation(s)
- Helena Isabel Garcia Schüler
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland. .,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Nienke Weitkamp
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Madalyne Chamberlain
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Cäcilia Reiner
- University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland.,Department of Diagnostic and Interventional Radiology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Claudia Linsenmeier
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Jerome Krayenbühl
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael Baumgartl
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
19
|
Cuccia F, Alongi F, Belka C, Boldrini L, Hörner-Rieber J, McNair H, Rigo M, Schoenmakers M, Niyazi M, Slagter J, Votta C, Corradini S. Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat Oncol 2021; 16:183. [PMID: 34544481 PMCID: PMC8454038 DOI: 10.1186/s13014-021-01910-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hybrid magnetic resonance (MR)-guided linear accelerators represent a new horizon in the field of radiation oncology. By harnessing the favorable combination of on-board MR-imaging with the possibility to daily recalculate the treatment plan based on real-time anatomy, the accuracy in target and organs-at-risk identification is expected to be improved, with the aim to provide the best tailored treatment. To date, two main MR-linac hybrid machines are available, Elekta Unity and Viewray MRIdian. Of note, compared to conventional linacs, these devices raise practical issues due to the positioning phase for the need to include the coil in the immobilization procedure and in order to perform the best reproducible positioning, also in light of the potentially longer treatment time. Given the relative novelty of this technology, there are few literature data regarding the procedures and the workflows for patient positioning and immobilization for MR-guided daily adaptive radiotherapy. In the present narrative review, we resume the currently available literature and provide an overview of the positioning and setup procedures for all the anatomical districts for hybrid MR-linac systems.
Collapse
Affiliation(s)
- Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, VR, Italy.
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, VR, Italy
- University of Brescia, Brescia, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Luca Boldrini
- Radiology, Radiation Oncology and Hematology Department, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust, and Institute of Cancer Research Sutton, Surrey, UK
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, VR, Italy
| | - Maartje Schoenmakers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Judith Slagter
- Department of Radiation Oncology - Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudio Votta
- Radiology, Radiation Oncology and Hematology Department, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Stereotactic body radiotherapy of lymph node metastases under MR-guidance: First clinical results and patient-reported outcomes. Strahlenther Onkol 2021; 198:56-65. [PMID: 34468783 PMCID: PMC8760210 DOI: 10.1007/s00066-021-01834-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/01/2021] [Indexed: 12/04/2022]
Abstract
Objective Stereotactic body radiotherapy (SBRT) is a noninvasive treatment option for lymph node metastases (LNM). Magnetic resonance (MR)-guidance offers superior tissue contrast and enables treatment of targets in close vicinity to radiosensitive organs at risk (OAR). However, literature on MR-guided SBRT of LNM is scarce with no report on outcome parameters. Materials and methods We report a subgroup analysis of a prospective observational study comprising patients with LNM. Patients received MR-guided SBRT at our MRIdian Linac (ViewRay Inc., Mountain View, CA, USA) between January 2019 and February 2020. Local control (LC), progression-free survival (PFS) and overall survival (OS) analysis were performed using the Kaplan–Meier method with log rank test to test for significance (p < 0.05). Our patient-reported outcome questionnaire was utilized to evaluate patients’ perspective. The CTCAE (Common Terminology Criteria for Adverse Events) v. 5.0 was used to describe toxicity. Results Twenty-nine patients (72.4% with prostate cancer; 51.7% with no distant metastases) received MR-guided SBRT for in total 39 LNM. Median dose was 27 Gy in three fractions, prescribed to the 80% isodose. At 1‑year, estimated LC, PFS and OS were 92.6, 67.4 and 100.0%. Compared to baseline, six patients (20.7%) developed new grade I toxicities (mainly fatigue). One grade II toxicity occurred (fatigue), with no adverse event grade ≥III. Overall treatment experience was rated particularly positive, while the technically required low room temperature still represents the greatest obstacle in the pursuit of the ideal patient acceptance. Conclusion MR-guided SBRT of LNM was demonstrated to be a well-accepted treatment modality with excellent preliminary results. Future studies should evaluate the clinical superiority to conventional SBRT. Video online The online version of this article contains one video. The article and the video are available online (10.1007/s00066-021-01834-w). The video can be found in the article back matter as “Supplementary Information”.
Collapse
|
21
|
Barnes H, Alexander S, Bower L, Ehlers J, Gani C, Herbert T, Lawes R, Møller PK, Morgan T, Nowee ME, Smith G, van Triest B, Tyagi N, Whiteside L, McNair H. Development and results of a patient-reported treatment experience questionnaire on a 1.5 T MR-Linac. Clin Transl Radiat Oncol 2021; 30:31-37. [PMID: 34307911 PMCID: PMC8283148 DOI: 10.1016/j.ctro.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION With the implementation of new radiotherapy technology, it is imperative that patient experience is investigated alongside efficacy and outcomes. This paper presents the development of a specifically designed validated questionnaire and a first report of international multi-institutional preliminary patient experience of MRI-guided adaptive radiotherapy (MRgART) on the 1.5 T MR-Linac (MRL). METHODS A patient experience questionnaire was developed and validated before being distributed to the Elekta MRL Consortium, to gather first patient-reported experience from participating centres worldwide. The final version of the questionnaire contains 18 questions covering a range of themes and was scored on a Likert scale of 0-3. Responses were post-processed so that a score of 0 represents a negative response and 3 represents the most favourable response. These results were analysed for patient-reported experience of treatment on the MRL. Results were also analysed for internal consistency of the questionnaire using Chronbach's Alpha and the questionnaire contents were validated for relevance using content validity indexes (CVI). RESULTS 170 responses were received from five centres, representing patients with a wide range of tumour treatment sites from four different countries. MRgART was well tolerated with an 84% favourable response across all questions and respondents. When analysed by theme, all reported the highest percentage of results in the favourable categories (2 and 3). Internal consistency in the questionnaire was high (Cronbach's α = 0.8) and the item-level CVI for each question was 0.78 or above and the Scale-level CVI was 0.93, representing relevant content. CONCLUSION The developed questionnaire has been validated as relevant and appropriate for use in reporting experience of patients undergoing treatment on the MRL. The overall patient-reported experience and satisfaction from multiple centres within the Elekta MRL Consortium was consistently high. These results can reinforce user confidence in continuing to expand and develop MRL use in adaptive radiotherapy.
Collapse
Affiliation(s)
- Helen Barnes
- Royal Marsden NHS Foundation Trust, United Kingdom
| | | | - Lorna Bower
- Royal Marsden NHS Foundation Trust, United Kingdom
- Institute of Cancer Research, United Kingdom
| | - Jakob Ehlers
- Department for Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department for Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | - Toby Morgan
- Royal Marsden NHS Foundation Trust, United Kingdom
- Institute of Cancer Research, United Kingdom
| | | | | | | | - Neelam Tyagi
- Memorial Sloan Kettering Cancer Centre, United States
| | | | - Helen McNair
- Royal Marsden NHS Foundation Trust, United Kingdom
- Institute of Cancer Research, United Kingdom
| |
Collapse
|
22
|
Portelance L, Corradini S, Erickson B, Lalondrelle S, Padgett K, van der Leij F, van Lier A, Jürgenliemk-Schulz I. Online Magnetic Resonance-Guided Radiotherapy (oMRgRT) for Gynecological Cancers. Front Oncol 2021; 11:628131. [PMID: 34513656 PMCID: PMC8429611 DOI: 10.3389/fonc.2021.628131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is increasingly being used in gynecological cancer management. RT delivered with curative or palliative intent can be administered alone or combined with chemotherapy or surgery. Advanced treatment planning and delivery techniques such as intensity-modulated radiation therapy, including volumetric modulated arc therapy, and image-guided adaptive brachytherapy allow for highly conformal radiation dose delivery leading to improved tumor control rates and less treatment toxicity. Quality on-board imaging that provides accurate visualization of target and surrounding organs at risk is a critical feature of these advanced techniques. As soft tissue contrast resolution is superior with magnetic resonance imaging (MRI) compared to other imaging modalities, MRI has been used increasingly to delineate tumor from adjacent soft tissues and organs at risk from initial diagnosis to tumor response evaluation. Gynecological cancers often have poor contrast resolution compared to the surrounding tissues on computed tomography scan, and consequently the benefit of MRI is high. One example is in management of locally advanced cervix cancer where adaptive MRI guidance has been broadly implemented for adaptive brachytherapy. The role of MRI for external beam RT is also steadily increasing. MRI information is being used for treatment planning, predicting, and monitoring position shifts and accounting for tissue deformation and target regression during treatment. The recent clinical introduction of online MRI-guided radiation therapy (oMRgRT) could be the next step in high-precision RT. This technology provides a tool to take full advantage of MRI not only at the time of initial treatment planning but as well as for daily position verification and online plan adaptation. Cervical, endometrial, vaginal, and oligometastatic ovarian cancers are being treated on MRI linear accelerator systems throughout the world. This review summarizes the current state, early experience, ongoing trials, and future directions of oMRgRT in the management of gynecological cancers.
Collapse
Affiliation(s)
- Lorraine Portelance
- Sylvester Comprehensive Cancer Center, Radiation Oncology Department, University of Miami, Miami, FL, United States
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Lalondrelle
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research London, London, United Kingdom
| | - Kyle Padgett
- Sylvester Comprehensive Cancer Center, Radiation Oncology Department, University of Miami, Miami, FL, United States
| | - Femke van der Leij
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Astrid van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Ina Jürgenliemk-Schulz
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Slevin F, Beasley M, Zhong J, Hudson E, Speight R, Lilley J, Murray LJ, Henry AM. A feasibility study of hyoscine butylbromide (buscopan) to improve image quality of cone beam computed tomography during abdominal/pelvic Stereotactic Ablative Radiotherapy. BJR Open 2021; 3:20210045. [PMID: 34381954 PMCID: PMC8328082 DOI: 10.1259/bjro.20210045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Cone beam computed tomography (CBCT) is used for image guidance of stereotactic ablative radiotherapy (SABR), but it is susceptible to bowel motion artefacts. This trial evaluated the impact of hyoscine butylbromide (buscopan) on CBCT image quality and its feasibility within a radiotherapy workflow. METHODS A single-centre feasibility trial (ISRCTN24362767) was performed in patients treated with SABR for abdominal/pelvic oligorecurrence. Buscopan was administered to separate cohorts by intramuscular (IM) or intravenous (i.v.) injection on alternate fractions, providing within-patient control data. 4-point Likert scales were used to assess overall image quality (ranging from excellent to impossible to use) and bowel motion artefact (ranging from none to severe). Feasibility was determined by patient/radiographer questionnaires and toxicity assessment. Descriptive statistics are presented. RESULTS 16 patients were treated (8 by IM and 8 by i.v. buscopan). The percentage of images of excellent quality with/without buscopan was 47 vs 29% for IM buscopan and 65 vs 40% for i.v. buscopan. The percentage of images with no bowel motion artefact with/without buscopan was 24.6 vs 8.9% for IM buscopan and 25.8 vs 7% for i.v. buscopan. Four patients (25%) reported dry mouth. 14 patients (93%) would accept buscopan as routine. 11 radiographers (92%) reported no delay in treatments. CONCLUSIONS A trend towards improved image quality/reduced bowel motion artefact was observed with IM/i.v. buscopan. Buscopan was well tolerated with limited impact on workflow. ADVANCES IN KNOWLEDGE This is the first trial of buscopan within a radiotherapy workflow. It demonstrated a trend to improved image quality and feasibility of use.
Collapse
Affiliation(s)
| | - Matthew Beasley
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, UK
| | | | - Eleanor Hudson
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, UK
| | - John Lilley
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, UK
| | | | | |
Collapse
|
24
|
Weykamp F, Hoegen P, Klüter S, Spindeldreier CK, König L, Seidensaal K, Regnery S, Liermann J, Rippke C, Koerber SA, Buchele C, Debus J, Hörner-Rieber J. Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Tumors: Initial Clinical Experience and Patient-Reported Outcomes. Front Oncol 2021; 11:610637. [PMID: 34178616 PMCID: PMC8219972 DOI: 10.3389/fonc.2021.610637] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE/OBJECTIVE Stereotactic body radiation therapy (SBRT) has emerged as a valid treatment alternative for non-resectable liver metastases or hepatocellular carcinomas (HCC). Magnetic resonance (MR) guided SBRT has a high potential of further improving treatment quality, allowing for higher, tumoricidal irradiation doses whilst simultaneously sparing organs at risk. However, data on treatment outcome and patient acceptance is still limited. MATERIAL/METHODS We performed a subgroup analysis of an ongoing prospective observational study comprising patients with liver metastases or HCC. Patients were treated with ablative MR-guided SBRT at the MRIdian Linac in the Department of Radiation Oncology at Heidelberg University Hospital between January 2019 and February 2020. Local control (LC) and overall survival (OS) analysis was performed using the Kaplan-Meier method. An in-house designed patient-reported outcome questionnaire was used to measure patients' experience with the MR-Linac treatment. Toxicity was evaluated using the Common Terminology Criteria for Adverse Events (CTCAE v. 5.0). RESULTS Twenty patients (with n = 18 metastases; n = 2 HCC) received MR-guided SBRT for in total 26 malignant liver lesions. Median biologically effective dose (BED at α/β = 10) was 105.0 Gy (range: 67.2-112.5 Gy) and median planning target volume was 57.20 ml (range: 17.4-445.0 ml). Median treatment time was 39.0 min (range: 26.0-67.0 min). At 1-year, LC was 88.1% and OS was 84.0%. Grade I° gastrointestinal toxicity °occurred in 30.0% and grade II° in 5.0% of the patients with no grade III° or higher toxicity. Overall treatment experience was rated positively, with items scoring MR-Linac staff's performance and items concerning the breath hold process being among the top positively rated elements. Worst scored items were treatment duration, positioning and low temperature. CONCLUSION MR-guided SBRT of liver tumors is a well-tolerated and well-accepted treatment modality. Initial results are promising with excellent local control and only mildest toxicity. However, prospective studies are warranted to truly assess the potential of MR-guided liver SBRT and to identify which patients profit most from this new versatile technology.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - C. Katharina Spindeldreier
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Votta C, Cusumano D, Boldrini L, Dinapoli N, Placidi L, Turco G, Antonelli MV, Pollutri V, Romano A, Indovina L, Valentini V. Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose boundaries. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:78-81. [PMID: 34258412 PMCID: PMC8254198 DOI: 10.1016/j.phro.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Magnetic Resonance-guided Radiotherapy (MRgRT) allows direct monitoring of treated volumes. The aim of this study was to investigate the feasibility of a new gating strategy consisting in using an isodose as boundary. Forty-four patients treated for thoracic and abdominal lesions using MRgRT were enrolled. The accuracy of the new strategy was compared to the conventional one in terms of area improvement available for gating without compromising target coverage. A mean increase of 24% for lung, 15% for liver and 11% for pancreas was observed, demonstrating how the new method can be useful in challenging situations with low dose conformality.
Collapse
|
26
|
Corradini S, Alongi F, Andratschke N, Azria D, Bohoudi O, Boldrini L, Bruynzeel A, Hörner-Rieber J, Jürgenliemk-Schulz I, Lagerwaard F, McNair H, Raaymakers B, Schytte T, Tree A, Valentini V, Wilke L, Zips D, Belka C. ESTRO-ACROP recommendations on the clinical implementation of hybrid MR-linac systems in radiation oncology. Radiother Oncol 2021; 159:146-154. [PMID: 33775715 DOI: 10.1016/j.radonc.2021.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Online magnetic resonance-guided radiotherapy (oMRgRT) represents one of the most innovative applications of current image-guided radiation therapy (IGRT). The revolutionary concept of oMRgRT systems is the ability to acquire MR images for adaptive treatment planning and also online imaging during treatment delivery. The daily adaptive planning strategies allow to improve targeting accuracy while avoiding critical structures. This ESTRO-ACROP recommendation aims to provide an overview of available systems and guidance for best practice in the implementation phase of hybrid MR-linac systems. Unlike the implementation of other radiotherapy techniques, oMRgRT adds the MR environment to the daily practice of radiotherapy, which might be a new experience for many centers. New issues and challenges that need to be thoroughly explored before starting clinical treatments will be highlighted.
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy, University of Brescia, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology Montpellier-Nîmes, ICM, Montpellier Cancer Institute, University of Montpellier, INSERM U1194, France
| | - Omar Bohoudi
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Anna Bruynzeel
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Bas Raaymakers
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alison Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Vincenzo Valentini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| |
Collapse
|
27
|
Boldrini L, Corradini S, Gani C, Henke L, Hosni A, Romano A, Dawson L. MR-Guided Radiotherapy for Liver Malignancies. Front Oncol 2021; 11:616027. [PMID: 33869001 PMCID: PMC8047407 DOI: 10.3389/fonc.2021.616027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
MR guided radiotherapy represents one of the most promising recent technological innovations in the field. The possibility to better visualize therapy volumes, coupled with the innovative online adaptive radiotherapy and motion management approaches, paves the way to more efficient treatment delivery and may be translated in better clinical outcomes both in terms of response and reduced toxicity. The aim of this review is to present the existing evidence about MRgRT applications for liver malignancies, discussing the potential clinical advantages and the current pitfalls of this new technology.
Collapse
Affiliation(s)
- Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Lauren Henke
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, United States
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Laura Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Corradini S, von Bestenbostel R, Romano A, Curta A, Di Gioia D, Placidi L, Niyazi M, Boldrini L. MR-guided stereotactic body radiation therapy for primary cardiac sarcomas. Radiat Oncol 2021; 16:60. [PMID: 33771179 PMCID: PMC7995725 DOI: 10.1186/s13014-021-01791-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/17/2021] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Primary cardiac tumors are an extremely rare disease with limited prognosis. The treatment of choice is surgery. Other treatment options include chemotherapy and radiation therapy, which historically represented a palliative approach in patients who were not eligible for surgery. The development of hybrid MR-guided radiation therapy makes it possible to better visualize cardiac lesions and to apply high doses per fraction in sensible organs such as the heart. CASE PRESENTATION Patients affected by inoperable primary cardiac sarcomas and treated at two different institutions were considered for this analysis and retrospectively analyzed. All patients were treated using a 0.35 T hybrid MR Linac system (MRIdian, ViewRay Inc., Mountain View, CA). In the present study we investigated the feasibility, early outcome and toxicity of MR-guided RT in primary cardiac sarcomas. Four consecutive non-metastasized patients who were treated between 05-09/2020 were analyzed. The cardiac sarcomas were mostly located in the right atrium (50%) and one patient presented with 3 epicardial lesions. All patients received MRgRT as a salvage treatment for recurrent cardiac sarcoma after initial surgery, after a mean interval of 12 months (range 1-29 months). Regarding the treatment characteristics, the mean GTV size was 22.9 cc (range 2.5-56.9 cc) and patients were treated with a mean GTV dose of 38.9 Gy (range 30.1-41.1 Gy) in 5 fractions. Regarding feasibility, all treatments were completed as planned and all patients tolerated the treatment very well and showed only mild grade 1 or 2 symptoms like fatigue, dyspnea or mild chest pain at early follow-up. CONCLUSION To the best of our knowledge, in this retrospective analysis we present the first and largest series of patients presenting with primary cardiac sarcomas treated with online adaptive MRgRT. However, further studies are needed to evaluate the impact of this new methodology on the outcome of this very rare disease.
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Angela Romano
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Adrian Curta
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Dorit Di Gioia
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lorenzo Placidi
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
29
|
Feasibility and Early Clinical Experience of Online Adaptive MR-Guided Radiotherapy of Liver Tumors. Cancers (Basel) 2021; 13:cancers13071523. [PMID: 33810244 PMCID: PMC8037065 DOI: 10.3390/cancers13071523] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the feasibility and early results of online adaptive MR-guided radiotherapy (oMRgRT) of liver tumors. METHODS We retrospectively examined consecutive patients with primary or secondary liver lesions treated at our institution using a 0.35T hybrid MR-Linac (Viewray Inc., Mountain View, CA, USA). Online-adaptive treatment planning was used to account for interfractional anatomical changes, and real-time intrafractional motion management using online 2D cine MRI was performed using a respiratory gating approach. Treatment response and toxicity were assessed during follow-up. RESULTS Eleven patients and a total of 15 lesions were evaluated. Histologies included cholangiocarcinomas and metastases of neuroendocrine tumors, colorectal carcinomas, sarcomas and a gastrointestinal stroma tumor. The median BED10 of the PTV prescription doses was 84.4 Gy (range 59.5-112.5 Gy) applied in 3-5 fractions and the mean GTV BED10 was in median 147.9 Gy (range 71.7-200.5 Gy). Online plan adaptation was performed in 98% of fractions. The median overall treatment duration was 53 min. The treatment was feasible and successfully completed in all patients. After a median follow-up of five months, no local failure occurred and no ≥ grade two toxicity was observed. OMRgRT resulted in better PTV coverage and fewer OAR constraint violations. CONCLUSION Early results of MR-linac based oMRgRT for the primary and secondary liver tumors are promising. The treatment was feasible in all cases and well tolerated with minimal toxicity. The technique should be compared to conventional SBRT in further studies to assess the advantages of the technique.
Collapse
|
30
|
Thorwarth D, Low DA. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front Oncol 2021; 11:634507. [PMID: 33763369 PMCID: PMC7982516 DOI: 10.3389/fonc.2021.634507] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
In the past few years, radiotherapy (RT) has experienced a major technological innovation with the development of hybrid machines combining magnetic resonance (MR) imaging and linear accelerators. This new technology for MR-guided cancer treatment has the potential to revolutionize the field of adaptive RT due to the opportunity to provide high-resolution, real-time MR imaging before and during treatment application. However, from a technical point of view, several challenges remain which need to be tackled to ensure safe and robust real-time adaptive MR-guided RT delivery. In this manuscript, several technical challenges to MR-guided RT are discussed. Starting with magnetic field strength tradeoffs, the potential and limitations for purely MR-based RT workflows are discussed. Furthermore, the current status of real-time 3D MR imaging and its potential for real-time RT are summarized. Finally, the potential of quantitative MR imaging for future biological RT adaptation is highlighted.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Daniel A Low
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Koerber SA, Beuthien-Baumann B. [Modern radiation therapy planning and image-guided radiotherapy using the example of prostate cancer]. Radiologe 2021; 61:28-35. [PMID: 33057736 DOI: 10.1007/s00117-020-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CLINICAL/METHODICAL ISSUE Optimizing radiotherapy demands precise delineation of the target structure, not only before but also during the course of radiotherapy. STANDARD RADIOLOGICAL METHODS For many years, planning of external radiation treatment planning has been based on computer tomography data. METHODOLOGICAL INNOVATIONS With the advent of image-guided radiotherapy (IGRT), magnetic resonance imaging (MRI) and functional hybrid imaging are increasingly being integrated into radiation treatment planning. The development of the MR-linac can be seen as an innovation. PERFORMANCE The integration of MRI and hybrid imaging (positron emission tomography [PET]/CT, PET/MRI) in the treatment planning process enables more precise treatment planning due to the better morphological and functional information. The integration of MRI data on the MR-linac in daily position control enables adaptation of the irradiation plan to the current conditions. ACHIEVEMENTS Technical innovation such as the MR-linac as well as increasing use of hybrid imaging contribute to the objective of further individualization within (radio)oncology. PRACTICAL RECOMMENDATIONS Using the example of prostate cancer, the application of prostate-specific membrane antigen (PSMA) ligands and hybrid imaging offers great potential for individualized strategic treatment decisions. The MR-linac appears to be particularly suitable for radiation therapy of prostate cancer. Special attention must be paid to the technical aspects of positioning and data acquisition for the purpose of radiation treatment planning.
Collapse
Affiliation(s)
- Stefan A Koerber
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland. .,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Deutschland.
| | | |
Collapse
|
32
|
Hoegen P, Spindeldreier CK, Buchele C, Rippke C, Regnery S, Weykamp F, Klüter S, Debus J, Hörner-Rieber J. [Magnetic-resonance-guided radiotherapy : The beginning of a new era in radiation oncology?]. Radiologe 2021; 61:13-20. [PMID: 33052442 DOI: 10.1007/s00117-020-00761-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CLINICAL ISSUE Image-guided radiotherapy (IGRT) using X‑rays and cone-beam computed tomography (CT) has fostered precision radiotherapy. However, inter- and intrafractional variations of target volume position and organs at risk still limit target volume dose and sparing of radiosensitive organs at risk. METHODOLOGICAL INNOVATIONS Hybrid machines directly combining linear accelerators and magnetic resonance (MR) imaging allow for live imaging during radiotherapy. PERFORMANCE Besides highly improved soft tissue contrast, MR-linacs enable online, on-table adaptive radiotherapy. Thus, adaptation of the treatment plan to the anatomy of the day, dose escalation and superior sparing of organs at risk become possible. ACHIEVEMENTS This article summarizes the underlying intention for the development of MR-guided radiotherapy, technical innovations and challenges as well as the current state-of-the-art. Potential clinical benefits and future developments are discussed. PRACTICAL RECOMMENDATIONS Increasing availability of MR imaging at linear accelerators calls for the ability to review and interpret MR images. Therefore, close collaborations of diagnostic radiologists and radiation oncologists are mandatory to foster this fascinating technique.
Collapse
Affiliation(s)
- P Hoegen
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland.,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - C K Spindeldreier
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - C Buchele
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - C Rippke
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - S Regnery
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland
| | - F Weykamp
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland
| | - S Klüter
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - J Debus
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland.,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.,Heidelberger Ionenstrahl-Therapiezentrum (HIT), Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.,Standort Heidelberg, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland
| | - J Hörner-Rieber
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland. .,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland. .,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland. .,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
| |
Collapse
|
33
|
Klüter S, Schrenk O, Renkamp CK, Gliessmann S, Kress M, Debus J, Hörner-Rieber J. A practical implementation of risk management for the clinical introduction of online adaptive Magnetic Resonance-guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 17:53-57. [PMID: 33898779 PMCID: PMC8058032 DOI: 10.1016/j.phro.2020.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Background and Purpose The clinical introduction of on-table adaptive radiotherapy with Magnetic Resonance (MR)-guided linear accelerators (Linacs) yields new challenges and potential risks. Since the adapted plan is created within a highly interdisciplinary workflow with the patient in treatment position, time pressure or erroneous communication may lead to various possibly hazardous situations. To identify risks and implement a safe workflow, a proactive risk analysis has been conducted. Materials and Methods A process failure mode, effects and criticality analysis (P-FMECA) was performed within a group of radiation therapy technologists, physicians and physicists together with an external moderator. The workflow for on-table adaptive MR-guided treatments was defined and for each step potentially hazardous situations were identified. The risks were evaluated within the team in order to homogenize risk assessment. The team elaborated and discussed possible mitigation strategies and carried out their implementation. Results In total, 89 risks were identified for the entire MR-guided online adaptive workflow. After mitigation, all risks could be minimized to an acceptable level. Overall, the need for a standardized workflow, clear-defined protocols together with the need for checklists to ensure protocol adherence were identified among the most important mitigation measures. Moreover, additional quality assurance processes and automated plan checks were developed. Conclusions Despite additional workload and beyond the fulfilment of legal requirements, execution of the P-FMECA within an interdisciplinary team helped all involved occupational groups to develop and foster an open culture of safety and to ensure a consensus for an efficient and safe online adaptive radiotherapy workflow.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Oliver Schrenk
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | | | - Melanie Kress
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Core-center Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Spindeldreier CK, Klüter S, Hoegen P, Buchele C, Rippke C, Tonndorf-Martini E, Debus J, Hörner-Rieber J. MR-guided radiotherapy of moving targets. Radiologe 2021; 61:39-48. [PMID: 33392627 DOI: 10.1007/s00117-020-00781-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Hybrid magnetic resonance (MR) linear accelerators (MR-Linacs) for radiotherapy allow for the visualization and tracking of moving target volumes during the entire treatment. This makes gated treatments possible, decreasing the irradiated volumes and thus sparing healthy tissue from unnecessary radiation dose. Conventionally, tumors that are subject to respiration motion are treated by irradiating the entire area of potential target presence (internal target volume, ITV). This study presents three patient cases (lung, adrenal gland, and liver tumors) treated with gated MR-guided radiotherapy and compares the treatment plans retrospectively with conventional ITV plans. MATERIALS AND METHODS The gross tumor volume was delineated on MR and computed tomography (CT) images of the patients, and MR-Linac treatment plans were generated using additional clinical and planning target volume margins. The motion of the gross tumor volume was evaluated on two-dimensional cine-MRI images during the entire MR-Linac treatment. Based on the motion analysis, standard ITV-based plans were retrospectively created and compared by means of irradiated target volumes and dose-volume parameters. RESULTS For the MR-Linac plans, the irradiated treatment volumes were reduced by an average of 62% across the three cases, and for one case the ITV-based target volume would have overlapped with a critical organ. Target volume coverage was much better and the lung and adrenal MR-Linac plans revealed superior sparing of the organs at risks thanks to gated treatments. CONCLUSION Dosimetrically beneficial treatment plans with promising clinical outcomes can be applied when using gated MR-guided radiotherapy. Future studies will reveal which patients will benefit most from this technique. To utilize the full potential of online adaptive, individualized MR-guided therapy, the close collaboration of radio-oncology and radiology is needed.
Collapse
Affiliation(s)
- C Katharina Spindeldreier
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany. .,National Center for Tumor diseases (NCT), Heidelberg, Germany. .,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
35
|
Gani C, Boeke S, McNair H, Ehlers J, Nachbar M, Mönnich D, Stolte A, Boldt J, Marks C, Winter J, Künzel LA, Gatidis S, Bitzer M, Thorwarth D, Zips D. Marker-less online MR-guided stereotactic body radiotherapy of liver metastases at a 1.5 T MR-Linac - Feasibility, workflow data and patient acceptance. Clin Transl Radiat Oncol 2021; 26:55-61. [PMID: 33319073 PMCID: PMC7723999 DOI: 10.1016/j.ctro.2020.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Stereotactic body radiotherapy (SBRT) is an established ablative treatment for liver tumors with excellent local control rates. Magnetic resonance imaging guided radiotherapy (MRgRT) provides superior soft tissue contrast and may therefore facilitate a marker-less liver SBRT workflow. The goal of the present study was to investigate feasibility, workflow parameters, toxicity and patient acceptance of MRgSBRT on a 1.5 T MR-Linac. METHODS Ten consecutive patients with liver metastases treated on a 1.5 T MR-Linac were included in this prospective trial. Tumor delineation was performed on four-dimensional computed tomography scans and both exhale triggered and free-breathing T2 MRI scans from the MR-Linac. An internal target volume based approach was applied. Organ at risk constraints were based on the UKSABR guidelines (Version 6.1). Patient acceptance regarding device specific aspects was assessed and toxicity was scored according to the common toxicity criteria of adverse events, version 5. RESULTS Nine of ten tumors were clearly visible on the 1.5 T MR-Linac. No patient had fiducial markers placed for treatment. All patients were treated with three or five fractions. Median dose to 98% of the gross tumor volume was 38.5 Gy. The median time from "patient identity check" until "beam-off" was 31 min. Median beam on time was 9.6 min. Online MRgRT was well accepted in general and no treatment had to be interrupted on patient request. No event of symptomatic radiation induced liver disease was observed after a median follow-up of ten month (range 3-17 months). CONCLUSION Our early experience suggests that online 1.5 T MRgSBRT of liver metastases represents a promising new non-invasive marker-free treatment modality based on high image quality, clinically reasonable in-room times and high patient acceptance. Further studies are necessary to assess clinical outcome, to validate advanced motion management and to explore the benefit of online response adaptive liver SBRT.
Collapse
Affiliation(s)
- Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S. Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H. McNair
- Department of Radiotherapy, The Royal Marsden Hospital NHS Foundation Trust, United Kingdom
| | - J. Ehlers
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - M. Nachbar
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Mönnich
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - A. Stolte
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - C. Marks
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Winter
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - S. Gatidis
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Eberhard Karls University, Tübingen, Germany
| | - M. Bitzer
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology and Infectious Diseases, Eberhard Karls University, Tübingen, Germany
| | - D. Thorwarth
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Placidi L, Cusumano D, Boldrini L, Votta C, Pollutri V, Antonelli MV, Chiloiro G, Romano A, De Luca V, Catucci F, Indovina L, Valentini V. Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency. J Appl Clin Med Phys 2020; 21:70-79. [PMID: 33089954 PMCID: PMC7701108 DOI: 10.1002/acm2.13030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Magnetic Resonance-guided radiotherapy (MRgRT) systems allow continuous monitoring of therapy volumes during treatment delivery and personalized respiratory gating approaches. Treatment length may therefore be significantly affected by patient's compliance and breathing control. We quantitatively analyzed treatment process time efficiency (TE ) using data obtained from real-world patient treatment logs to optimize MRgRT delivery settings. METHODS Data corresponding to the first 100 patients treated with a low T hybrid MRI-Linac system, both in free breathing (FB) and in breath hold inspiration (BHI) were collected. TE has been computed as the percentage difference of the actual single fraction's total treatment time and the predicted treatment process time, as computed by the TPS during plan optimization. Differences between the scheduled and actual treatment room occupancy time were also evaluated. Finally, possible correlations with planning, delivery and clinical parameters with TE were also investigated. RESULTS Nine hundred and nineteen treatment fractions were evaluated. TE difference between BHI and FB patients' groups was statistically significant and the mean TE were 42.4%, and -0.5% respectively. No correlation was found with TE for BHI and FB groups. Planning, delivering and clinical parameters classified BHI and FB groups, but no correlation with TE was found. CONCLUSION The use of BHI gating technique can increase the treatment process time significantly. BHI technique could be not always an adequate delivery technique to optimize the treatment process time. Further gating techniques should be considered to improve the use of MRgRT.
Collapse
Affiliation(s)
- Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Votta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Veronica Pollutri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Marco Valerio Antonelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Viola De Luca
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Francesco Catucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
37
|
Hunt A, Hanson I, Dunlop A, Barnes H, Bower L, Chick J, Cruickshank C, Hall E, Herbert T, Lawes R, McQuaid D, McNair H, Mitchell A, Mohajer J, Morgan T, Oelfke U, Smith G, Nill S, Huddart R, Hafeez S. Feasibility of magnetic resonance guided radiotherapy for the treatment of bladder cancer. Clin Transl Radiat Oncol 2020; 25:46-51. [PMID: 33015380 PMCID: PMC7522378 DOI: 10.1016/j.ctro.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Whole bladder magnetic resonance image-guided radiotherapy using the 1.5 Telsa MR-linac is feasible. Full online adaptive planning workflow based on the anatomy seen at each fraction was performed. This was delivered within 45 min. Intra-fraction bladder filling did not compromise target coverage. Patients reported acceptable tolerance of treatment.
Collapse
Affiliation(s)
- A. Hunt
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - I. Hanson
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - A. Dunlop
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - H. Barnes
- The Royal Marsden NHS Foundation Trust, London, UK
| | - L. Bower
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - J. Chick
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - C. Cruickshank
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - E. Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - T. Herbert
- The Royal Marsden NHS Foundation Trust, London, UK
| | - R. Lawes
- The Royal Marsden NHS Foundation Trust, London, UK
| | - D. McQuaid
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - H. McNair
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - A. Mitchell
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - J. Mohajer
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - T. Morgan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - U. Oelfke
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - G. Smith
- The Royal Marsden NHS Foundation Trust, London, UK
| | - S. Nill
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - R. Huddart
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - S. Hafeez
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Changes in gastric anatomy after delivery of breath-hold MR-guided SABR for adrenal metastases. Radiother Oncol 2020; 152:26-29. [DOI: 10.1016/j.radonc.2020.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022]
|
39
|
Sayan M, Serbez I, Teymur B, Gur G, Zoto Mustafayev T, Gungor G, Atalar B, Ozyar E. Patient-Reported Tolerance of Magnetic Resonance-Guided Radiation Therapy. Front Oncol 2020; 10:1782. [PMID: 33072560 PMCID: PMC7537416 DOI: 10.3389/fonc.2020.01782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Magnetic resonance-guided radiation therapy (MRgRT) has been incorporated into a growing number of clinical practices world-wide, however, there is limited data on patient experiences with MRgRT. The purpose of this study was to prospectively evaluate patient tolerance of MRgRT using patient reported outcome questionnaires (PRO-Q). Methods Ninety patients were enrolled in this prospective observational study and treated with MRgRT (MRIdian Linac System, ViewRay Inc. Oakwood Village, OH, United States) between September 2018 and September 2019. Breath-hold-gated dose delivery with audiovisual feedback was completed as needed. Patients completed an in-house developed PRO-Q after the first and last fraction of MRgRT. Results The most commonly treated anatomic sites were the abdomen (47%) and pelvis (33%). Respiratory gating was utilized in 62% of the patients. Patients rated their experience as positive or at least tolerable with mean scores of 1.0–2.8. The most common complaint was the temperature in the room (61%) followed by paresthesias (57%). The degree of anxiety reported by 45% of the patients significantly decreased at the completion of treatment (mean score 1.54 vs. 1.36, p = 0.01). Forty-three percent of the patients reported some degree of disturbing noise which was improved considerably by use of music. All patients appreciated their active role during the treatment. Conclusion This evaluation of PROs indicates that MRgRT was well-tolerated by our patients. Patients’ experience may further improve with adjustment of room temperature and noise reduction.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Ilkay Serbez
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Bilgehan Teymur
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Gokhan Gur
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Gorkem Gungor
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, School of Medicine, Mehmet Ali Aydınlar Acıbadem University, Istanbul, Turkey
| |
Collapse
|
40
|
Stick LB, Vogelius IR, Risum S, Josipovic M. Intrafractional fiducial marker position variations in stereotactic liver radiotherapy during voluntary deep inspiration breath-hold. Br J Radiol 2020; 93:20200859. [PMID: 32915653 DOI: 10.1259/bjr.20200859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To evaluate intrafractional fiducial marker position variations during stereotactic body radiotherapy (SBRT) in patients treated for liver metastases in visually guided, voluntary deep inspiration breath-hold (DIBH). METHODS 10 patients with implanted fiducial markers were studied. Respiratory coaching with visual guidance was used to ensure comfortable voluntary breath-holds for SBRT imaging and delivery. Three DIBH CTs were acquired for treatment planning. Pre- and post-treatment CBCTs were acquired for each of the three treatment fractions. Per-fraction marker position was evaluated on planar 2D kV images acquired during treatment fractions for 4 of the 10 patients. RESULTS The median difference in marker position was 0.3 cm (range, 0.0-0.9 cm) between the three DIBH CTs and 0.3 cm (range, 0.1 to 1.4 cm) between pre- and post-treatment CBCTs. The maximum intrafractional variation in marker position in craniocaudal (CC) direction on planar kV images was 0.7 to 1.3 cm and up to 1.0 cm during a single DIBH. CONCLUSION Difference in marker position of up to 1.0 cm was observed during a single DIBH despite use of narrow external gating window and visual feedback. Stability examination on pre-treatment DIBH CTs was not sufficient to guarantee per-fraction stability. Evaluation of differences in marker position on pre- and post-treatment CBCT did not always reveal the full magnitude of the intrafractional variation. ADVANCES IN KNOWLEDGE To increase treatment accuracy, it is necessary to apply real-time monitoring of the tumour or a reliable internal surrogate when delivering liver SBRT in voluntary DIBH.
Collapse
Affiliation(s)
- Line Bjerregaard Stick
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Risum
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mirjana Josipovic
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Bostel T, Dreher C, Wollschläger D, Mayer A, König F, Bickelhaupt S, Schlemmer HP, Huber PE, Sterzing F, Bäumer P, Debus J, Nicolay NH. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI. Radiat Oncol 2020; 15:171. [PMID: 32653003 PMCID: PMC7353746 DOI: 10.1186/s13014-020-01613-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background To date, only limited magnetic resonance imaging (MRI) data are available concerning tumor regression during neoadjuvant radiochemotherapy (RCT) of rectal cancer patients, which is a prerequisite for adaptive radiotherapy (RT) concepts. This exploratory study prospectively evaluated daily fractional MRI during neoadjuvant treatment to analyze the predictive value of MR biomarkers for treatment response. Methods Locally advanced rectal cancer patients were examined with daily MRI during neoadjuvant RCT. Contouring of the tumor volume was performed for each MRI scan by using T2- and diffusion-weighted-imaging (DWI)-sequences. The daily apparent-diffusion coefficient (ADC) was calculated. Volumetric and functional tumor changes during RCT were analyzed and correlated with the pathological response after surgical resection. Results In total, 171 MRI scans of eight patients were analyzed regarding anatomical and functional dynamics during RCT. Pathological complete response (pCR) could be achieved in four patients, and four patients had a pathological partial response (pPR) following neoadjuvant treatment. T2- and DWI-based volumetry proved to be statistically significant in terms of therapeutic response, and volumetric thresholds at week two and week four during RCT were defined for the prediction of pCR. In contrast, the average tumor ADC values widely overlapped between both response groups during RCT and appeared inadequate to predict treatment response in our patient cohort. Conclusion This prospective exploratory study supports the hypothesis that MRI may be able to predict pCR of rectal cancers early during neoadjuvant RCT. Our data therefore provide a useful template to tailor future MR-guided adaptive treatment concepts.
Collapse
Affiliation(s)
- T Bostel
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - C Dreher
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - D Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Obere Zahlbacher Strasse 69, 55131, Mainz, Germany
| | - A Mayer
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - F König
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - S Bickelhaupt
- Division of Medical Imaging and Radiology - Cancer Prevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Maximiliansplatz 2, 91054, Erlangen, Germany
| | - H P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - P E Huber
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - F Sterzing
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Radiation Oncology, Kempten Clinic, Robert-Weixler-Strasse 50, 87439, Kempten, Germany
| | - P Bäumer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,dia.log, Altoetting Center for Radiology, Vinzenz-von-Paul-Strasse 10, 84503, Altoetting, Germany
| | - J Debus
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - N H Nicolay
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, University of Freiburg Medical Center, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| |
Collapse
|