1
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
4
|
Li Z, Feng Y, Wang P, Han S, Zhang K, Zhang C, Lu S, Lv C, Zhu F, Bie L. Evaluation of the prognosis of acute subdural hematoma according to the density differences between gray and white matter. Front Neurol 2023; 13:1024018. [PMID: 36686517 PMCID: PMC9853902 DOI: 10.3389/fneur.2022.1024018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Objective Acute subdural hematoma (ASDH) is a common neurological emergency, and its appearance on head-computed tomographic (CT) imaging helps guide clinical treatment. To provide a basis for clinical decision-making, we analyzed that the density difference between the gray and white matter of the CT image is associated with the prognosis of patients with ASDH. Methods We analyzed the data of 194 patients who had ASDH as a result of closed traumatic brain injury (TBI) between 2018 and 2021. The patients were subdivided into surgical and non-surgical groups, and the non-surgical group was further subdivided into "diffused [hematoma]" and "non-diffused" groups. The control group's CT scans were normal. The 3D Slicer software was used to quantitatively analyze the density of gray and white matter depicted in the CT images. Results Imaging evaluation showed that the median difference in density between the gray and white matter on the injured side was 4.12 HU (IQR, 3.91-4.22 HU; p < 0.001) and on the non-injured side was 4.07 HU (IQR, 3.90-4.19 HU; p < 0.001), and the hematoma needs to be surgically removed. The median density difference value of the gray and white matter on the injured side was 3.74 HU (IQR, 3.53-4.01 HU; p < 0.001) and on the non-injured side was 3.71 HU (IQR, 3.69-3.73 HU; p < 0.001), and the hematoma could diffuse in a short time. Conclusion Quantitative analysis of the density differences in the gray and white matter of the CT images can be used to evaluate the clinical prognosis of patients with ASDH.
Collapse
Affiliation(s)
- Zean Li
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Yan Feng
- Department of Radiology of the First Clinical Hospital, Jilin University, Changchun, China
| | - Pengju Wang
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Shuai Han
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Kang Zhang
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Chunyun Zhang
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Shouyong Lu
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Chuanxiang Lv
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Fulei Zhu
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Li Bie
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China,*Correspondence: Li Bie
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Each year in the United States there are over 2.5 million visits to emergency departments for traumatic brain injury (TBI), 300,000 hospitalizations, and 50,000 deaths. TBI initiates a complex cascade of events which can lead to significant secondary brain damage. Great interest exists in directly measuring cerebral oxygen delivery and demand after TBI to prevent this secondary injury. Several invasive, catheter-based devices are now available which directly monitor the partial pressure of oxygen in brain tissue (PbtO2), yet significant equipoise exists regarding their clinical use in severe TBI. RECENT FINDINGS There are currently three ongoing multicenter randomized controlled trials studying the use of PbtO2 monitoring in severe TBI: BOOST-3, OXY-TC, and BONANZA. All three have similar inclusion/exclusion criteria, treatment protocols, and outcome measures. Despite mixed existing evidence, use of PbtO2 is already making its way into new TBI guidelines such as the recent Seattle International Brain Injury Consensus Conference. Analysis of high-fidelity data from multimodal monitoring, however, suggests that PbtO2 may only be one piece of the puzzle in severe TBI. SUMMARY While current evidence regarding the use of PbtO2 remains mixed, three ongoing clinical trials are expected to definitively answer the question of what role PbtO2 monitoring plays in severe TBI.
Collapse
Affiliation(s)
- Matthew R. Leach
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| | - Lori A. Shutter
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| |
Collapse
|