1
|
Karlina R, Flexeder C, Musiol S, Bhattacharyya M, Schneider E, Altun I, Gschwendtner S, Neumann AU, Nano J, Schloter M, Peters A, Schulz H, Schmidt‐Weber CB, Standl M, Traidl‐Hoffmann C, Alessandrini F, Ussar S. Differential effects of lung inflammation on insulin resistance in humans and mice. Allergy 2022; 77:2482-2497. [PMID: 35060125 DOI: 10.1111/all.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The rates of obesity, its associated diseases, and allergies are raising at alarming rates in most countries. House dust mites (HDM) are highly allergenic and exposure often associates with an urban sedentary indoor lifestyle, also resulting in obesity. The aim of this study was to investigate the epidemiological association and physiological impact of lung inflammation on obesity and glucose homeostasis. METHODS Epidemiological data from 2207 adults of the population-based KORA FF4 cohort were used to test associations between asthma and rhinitis with metrics of body weight and insulin sensitivity. To obtain functional insights, C57BL/6J mice were intranasally sensitized and challenged with HDM and simultaneously fed with either low-fat or high-fat diet for 12 weeks followed by a detailed metabolic and biochemical phenotyping of the lung, liver, and adipose tissues. RESULTS We found a direct association of asthma with insulin resistance but not body weight in humans. In mice, co-development of obesity and HDM-induced lung inflammation attenuated inflammation in lung and perigonadal fat, with little impact on body weight, but small shifts in the composition of gut microbiota. Exposure to HDM improved glucose tolerance, reduced hepatosteatosis, and increased energy expenditure and basal metabolic rate. These effects associate with increased activity of thermogenic adipose tissues independent of uncoupling protein 1. CONCLUSIONS Asthma associates with insulin resistance in humans, but HDM challenge results in opposing effects on glucose homeostasis in mice due to increased energy expenditure, reduced adipose inflammation, and hepatosteatosis.
Collapse
Affiliation(s)
- Ruth Karlina
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity Helmholtz Zentrum München Munich Germany
- German Center for Diabetes Research (DZD) Munich Germany
| | - Claudia Flexeder
- Institute of Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
- Institute and Clinic for Occupational, Social and Environmental Medicine University Hospital, LMU Munich Munich Germany
- German Center for Lung Research (DZL) Munich Germany
| | - Stephanie Musiol
- German Center for Lung Research (DZL) Munich Germany
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Madhumita Bhattacharyya
- Department of Environmental Medicine, Faculty of Medicine University of Augsburg Augsburg Germany
| | - Evelyn Schneider
- German Center for Lung Research (DZL) Munich Germany
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Irem Altun
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity Helmholtz Zentrum München Munich Germany
- German Center for Diabetes Research (DZD) Munich Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg Germany
| | - Avidan U. Neumann
- Department of Environmental Medicine, Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München, German Research Center for Environmental Health Augsburg Germany
| | - Jana Nano
- German Center for Diabetes Research (DZD) Munich Germany
- Institute of Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD) Munich Germany
- Institute of Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Holger Schulz
- Institute of Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
- German Center for Lung Research (DZL) Munich Germany
| | - Carsten B. Schmidt‐Weber
- German Center for Lung Research (DZL) Munich Germany
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Marie Standl
- Institute of Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
- German Center for Lung Research (DZL) Munich Germany
| | - Claudia Traidl‐Hoffmann
- Department of Environmental Medicine, Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München, German Research Center for Environmental Health Augsburg Germany
- Environmental Medicine Technical University Munich Munich Germany
| | - Francesca Alessandrini
- German Center for Lung Research (DZL) Munich Germany
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Zentrum München, German Research Center for Environmental Health Munich Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity Helmholtz Zentrum München Munich Germany
- German Center for Diabetes Research (DZD) Munich Germany
- Department of Medicine Technical University of Munich Munich Germany
| |
Collapse
|
2
|
Zhang F, Hong F, Wang L, Fu R, Qi J, Yu B. MrgprX2 regulates mast cell degranulation through PI3K/AKT and PLCγ signaling in pseudo-allergic reactions. Int Immunopharmacol 2022; 102:108389. [PMID: 34920312 DOI: 10.1016/j.intimp.2021.108389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
The G protein-coupled receptor MrgprX2 in mast cells is known to be a crucial receptor for pseudo-allergic reactions. MrgprX2 activation leads to elevated intracellular calcium levels and mast cell degranulation, but the underlying mechanism remains to be elucidated. Herein, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)/serum-threonine kinase (AKT) signaling pathway and phospholipase C gamma (PLCγ) in mast cell degranulation mediated by MrgprX2 in LAD2 human-derived mast cells. The results showed that phosphorylated AKT (p-AKT) and PLCγ up-regulation were accompanied by an increase in intracellular calcium following activation of MrgprX2 by Compound 48/80, an inducer of mast cell degranulation. In contrast, p-AKT and PLCγ were down-regulated and intracellular calcium levels decreased after MrgprX2 knockdown. Mast cell degranulation was clearly suppressed; however, inhibiting PI3K and PLCγ phosphorylation did not influence MrgprX2 expression. The increase in calcium concentration was suppressed and mast cell degranulation was weakened. Furthermore, by inhibiting PI3K and PLCγ phosphorylation in animals, the allergic symptoms caused by C48/80 were obviously reduced. We deduced that during the mast cell degranulation observed in pseudoallergic reactions, MrgprX2 regulated intracellular calcium levels via the PI3K/AKT and PLCγ pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Hong
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Wang
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, China
| | - Renjie Fu
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China
| | - Jin Qi
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Hülpüsch C, Weins AB, Traidl‐Hoffmann C, Reiger M. A new era of atopic eczema research: Advances and highlights. Allergy 2021; 76:3408-3421. [PMID: 34407212 DOI: 10.1111/all.15058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Atopic eczema (AE) is an inflammatory skin disease with involvement of genetic, immunological and environmental factors. One hallmark of AE is a skin barrier disruption on multiple, highly interconnected levels: filaggrin mutations, increased skin pH and a microbiome dysbiosis towards Staphylococcus aureus overgrowth are observed in addition to an abnormal type 2 immune response. Extrinsic factors seem to play a major role in the development of AE. As AE is a first step in the atopic march, its prevention and appropriate treatment are essential. Although standard therapy remains topical treatment, powerful systemic treatment options emerged in the last years. However, thorough endotyping of the individual patients is still required for ideal precision medicine approaches in future. Therefore, novel microbial and immunological biomarkers were described recently for the prediction of disease development and treatment response. This review summarizes the current state of the art in AE research.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| | - Andreas B. Weins
- Department of Dermatology Faculty of Medicine University of Augsburg Augsburg Germany
| | - Claudia Traidl‐Hoffmann
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
- ZIEL Technical University of Munich Freising Germany
| | - Matthias Reiger
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| |
Collapse
|
4
|
Luschkova D, Zeiser K, Ludwig A, Traidl-Hoffmann C. Atopic eczema is an environmental disease. Allergol Select 2021; 5:244-250. [PMID: 34476334 PMCID: PMC8383845 DOI: 10.5414/alx02258e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
It is obvious that social, biogenic, and anthropogenic environmental factors, as well as nutrition contribute to the development and course of atopic eczema. Social deprivation and stress have a negative impact on atopic eczema symptoms, and social change in recent decades has led to a "westernized" lifestyle associated with high prevalence of atopic eczema in industrialized countries. Urbanization leads to an increase in air pollution and a decrease in biodiversity, which negatively affects atopic eczema. Climate change alters the allergenicity of pollen, which increases atopic eczema symptoms in some patients during the pollen season. Protective natural and social factors for the prevention of atopic eczema and for the promotion of "climate resilience" should be given greater consideration in future research.
Collapse
Affiliation(s)
- Daria Luschkova
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg
| | - Katharina Zeiser
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg
- Professorship of Sociology with a focus on health research, Faculty of Philosophy and Social Sciences, University of Augsburg, Augsburg, Germany and
| | - Alika Ludwig
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos Wolfgang, Switzerland
| |
Collapse
|
5
|
Abstract
The prevalence of allergic diseases is increasing rapidly and has already reached an epidemic level. Two major drivers of this development are climate change and globalization, which both induce an increase in allergens. Concomitant climate change fosters the spreading of the latter on a global scale. The increase in allergens not only aggravates the symptoms and the degree of suffering for patients who already are allergic, but also gives rise to new cases of allergies. The distribution of allergies in society follows a steep socioeconomic gradient worldwide. According to well-established theories of justice such a distribution of the allergy burden is unfair. This fact adds a major ethical dimension and challenge to the allergy epidemic. This chapter draws on the key points of policies for allergy prevention and treatment. It shows how related programs and measures can be conceptualized and prioritized according to the principles of distributional justice.
Collapse
Affiliation(s)
- Clemens Heuson
- Zentrum für Klimaresilienz, Universität Augsburg, Augsburg, Germany.
| |
Collapse
|
6
|
Tree Allergen Pollen-Related Content as Pollution Source in the City of Ourense (NW Spain). FORESTS 2020. [DOI: 10.3390/f11111129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Allergies became a major public health problem, identified as an important global pandemic with a considerable impact on the worldwide economy. In addition, a higher prevalence of pollen Type I sensitization cases in urban environments in comparison with the rural territories was detected. Our survey sought to assess the main biological pollution episodes caused by the aeroallergens of the major allergenic tree species in urban environments. A Hirst-type volumetric device was used for pollen sampling and a Burkard Cyclone sampler for the detection of tree atmospheric allergens over two years. The main allergens of Alnus, Fraxinus, Betula, Platanus and Olea, were detected in the atmosphere. Three peaks of important pollen concentrations were recorded throughout the year. The developed regression equations between pollen counts and allergen proteins registered great R2 values. The number of days with probability of allergenic symptoms was higher when the pollen and allergen data were assessed altogether. Fraxinus allergens in the atmosphere were detected using Ole e 1 antibodies and the Aln g 1 allergens with Bet v 1 antibodies, demonstrating the cross-reaction processes between the principal allergenic proteins of the Oleaceae and Betulaceae families. Long Distance Transport processes (LDT) showed that pollen from Betula populations located in mountainous areas increased the secondary peaks of pollen and allergen concentrations, and air masses from extensive olive orchards of North-Eastern Portugal triggered the highest concentrations in the atmosphere of Olea pollen and Ole e 1 allergens.
Collapse
|
7
|
Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O’Hehir RE, O’Mahony L, Pfaar O, Torres MJ, Wang DY, Zhang L, Akdis CA. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 2019; 74:2293-2311. [PMID: 31056763 PMCID: PMC6973012 DOI: 10.1111/all.13851] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
The specialties of allergy and clinical immunology have entered the era of precision medicine with the stratification of diseases into distinct disease subsets, specific diagnoses, and targeted treatment options, including biologicals and small molecules. This article reviews recent developments in research and patient care and future trends in the discipline. The section on basic mechanisms of allergic diseases summarizes the current status and defines research needs in structural biology, type 2 inflammation, immune tolerance, neuroimmune mechanisms, role of the microbiome and diet, environmental factors, and respiratory viral infections. In the section on diagnostic challenges, clinical trials, precision medicine and immune monitoring of allergic diseases, asthma, allergic and nonallergic rhinitis, and new approaches to the diagnosis and treatment of drug hypersensitivity reactions are discussed in further detail. In the third section, unmet needs and future research areas for the treatment of allergic diseases are highlighted with topics on food allergy, biologics, small molecules, and novel therapeutic concepts in allergen‐specific immunotherapy for airway disease. Unknowns and future research needs are discussed at the end of each subsection.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine, First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Thomas Eiwegger
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
- Research Institute, The Hospital for Sick Children, Translational Medicine Program Toronto Ontario Canada
- Department of Immunology The University of Toronto Toronto Ontario Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres, Location AMC Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- Christine Kühne Center for Allergy Research and Education Davos Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford California
| | - Robyn E. O’Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Central Clinical School Monash University Melbourne Victoria Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Victoria Australia
| | - Liam O’Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy University Hospital Marburg, Philipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of MalagaIBIMA‐UMA‐ARADyAL Malaga Spain
| | - De Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing Tongren Hospital Beijing China
| | - Cezmi A. Akdis
- Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich Davos Switzerland
| |
Collapse
|
8
|
Harter K, Hammel G, Krabiell L, Linkohr B, Peters A, Schwettmann L, Ring J, Johar H, Ladwig KH, Traidl-Hoffmann C. Different Psychosocial Factors Are Associated with Seasonal and Perennial Allergies in Adults: Cross-Sectional Results of the KORA FF4 Study. Int Arch Allergy Immunol 2019; 179:262-272. [DOI: 10.1159/000499042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
|
9
|
Bedeutung von Klima- und Umweltschutz für die Gesundheit mit besonderer Berücksichtigung von Schädigungen der Hautbarriere und allergischen Folgeerkrankungen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:684-696. [DOI: 10.1007/s00103-018-2742-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|