1
|
Das B, Samal S, Hamdi H, Dash MK, Singh G. Simultaneous detection of dengue virus serotypes in a dual-serotype-detection nucleic acid based lateral flow assay. Diagn Microbiol Infect Dis 2025; 111:116679. [PMID: 39798241 DOI: 10.1016/j.diagmicrobio.2025.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Dengue virus (DENV) is an important arthropod-borne viral disease, with four antigenically and genetically diverse serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Timely and accurate diagnosis of dengue virus serotypes is crucial for the management of outbreaks. This study focussed on the development of a RT-PCR based lateral flow strip assay to detect DENV serotypes in a dual detection manner without using gel electrophoresis. The assay uses anti-biotin/streptavidin colloidal gold conjugates with fluorescent/enzymatic tagged DENV serotype specific antibodies for the direct detection of DENV infected serum samples on a nitrocellulose membrane using biotin-BSA as control line. The detection limit of the assay was up to 10 copies of cDNA for DENV-1 and 100 copies for DENV-2, DENV-3, and DENV-4. In house evaluation of DENV LFIA demonstrated 100 % sensitivity in all the serotypes compared to conventional RT-PCR, 100 % specificity for DENV-1, DENV-2, DENV-3, and 95 % specificity for DENV-4 detection. DENV serotyping was assessed in a dual detection manner (DENV-1/DENV-3 and DENV-2/DENV-4 at two test lines) on the strip. The limitation of the assay is the requirement of PCR for initial amplification and confirmation of individual serotype in case of DENV-1/DENV-3 and DENV-2/DENV-4 detection, besides the field evaluation of the assay detected DENV-2 and DENV-3 serotypes, and no other serotype was detected in line with RT-PCR findings.
Collapse
Affiliation(s)
- Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha 751024, India.
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Hamida Hamdi
- Department of Biology, College of Science, Taif University 21944, Saudi Arabia
| | - Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Gyanraj Singh
- Department of Anatomy, Jajati Keshari Medical College and Hospital, Jajpur, Odisha, India
| |
Collapse
|
2
|
Besson ME, Pépin M, Metral PA. Lassa Fever: Critical Review and Prospects for Control. Trop Med Infect Dis 2024; 9:178. [PMID: 39195616 PMCID: PMC11359316 DOI: 10.3390/tropicalmed9080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Lassa Fever is a deadly viral haemorrhagic disease, causing annually several hundreds of deaths in West Africa. This zoonotic disease is primarily transmitted to humans by rodents of the genus Mastomys, even though other rodents reportedly carry the Lassa virus, while secondary interhuman transmission accounts for approximately 20% of cases. Although this disease has been endemic in rural zones of Nigeria, Sierra Leone, Liberfia, and Guinea for hundreds of years, it is also characterised by epidemic outbreaks in the dry season, responsible for heavy death tolls. No licensed vaccine or satisfying treatment is currently available. Disease management is hindered by the incomplete knowledge of the epidemiology and distribution of the disease, resulting from an inadequate health and surveillance system. Additional scientific constraints such as the genetic diversity of the virus and the lack of understanding of the mechanisms of immune protection complexify the development of a vaccine. The intricate socio-economic context in the affected regions, and the lack of monetary incentive for drug development, allow the disease to persist in some of West Africa's poorest communities. The increase in the number of reported cases and in the fatality rate, the expansion of the endemic area, as well as the threat Lassa Fever represents internationally should urge the global community to work on the disease control and prevention. The disease control requires collaborative research for medical countermeasures and tailored public health policies. Lassa Fever, created by the interconnection between animals, humans, and ecosystems, and embedded in an intricate social context, should be addressed with a 'One Health' approach. This article provides an overview of Lassa Fever, focusing on Nigeria, and discusses the perspectives for the control of disease.
Collapse
Affiliation(s)
- Marianne E. Besson
- Department of Public Health, Royal Veterinary College, London NW1 0TU, UK
| | - Michel Pépin
- Department of Virology and Infectiology, VetAgro Sup Lyon University, 69280 Marcy L’Etoile, France;
| | | |
Collapse
|
3
|
Gorman J, Cheung CSF, Duan Z, Ou L, Wang M, Chen X, Cheng C, Biju A, Sun Y, Wang P, Yang Y, Zhang B, Boyington JC, Bylund T, Charaf S, Chen SJ, Du H, Henry AR, Liu T, Sarfo EK, Schramm CA, Shen CH, Stephens T, Teng IT, Todd JP, Tsybovsky Y, Verardi R, Wang D, Wang S, Wang Z, Zheng CY, Zhou T, Douek DC, Mascola JR, Ho DD, Ho M, Kwong PD. Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability. Nat Commun 2024; 15:285. [PMID: 38177144 PMCID: PMC10767048 DOI: 10.1038/s41467-023-44534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Zhijian Duan
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaping Sun
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Charaf
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haijuan Du
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danyi Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Ronk AJ, Lloyd NM, Zhang M, Atyeo C, Perrett HR, Mire CE, Hastie KM, Sanders RW, Brouwer PJM, Saphire EO, Ward AB, Ksiazek TG, Alvarez Moreno JC, Thaker HM, Alter G, Himansu S, Carfi A, Bukreyev A. A Lassa virus mRNA vaccine confers protection but does not require neutralizing antibody in a guinea pig model of infection. Nat Commun 2023; 14:5603. [PMID: 37699929 PMCID: PMC10497546 DOI: 10.1038/s41467-023-41376-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.
Collapse
Affiliation(s)
- Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Min Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Caroline Atyeo
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02139, US
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology California Campus, Scripps Research, La Jolla, CA, 92037, US
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Kathryn M Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, US
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Erica Olmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, US
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology California Campus, Scripps Research, La Jolla, CA, 92037, US
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | | | - Harshwardhan M Thaker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Galit Alter
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02139, US
| | | | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US.
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US.
| |
Collapse
|
5
|
Garry RF. Lassa Virus Structural Biology and Replication. Curr Top Microbiol Immunol 2023. [PMID: 37100973 DOI: 10.1007/82_2023_262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic fever that is endemic in West Africa. LASV virions are enveloped and contain two single-stranded RNA genome segments. Both segments are ambisense and encode two proteins. The nucleoprotein associates with viral RNAs forming ribonucleoprotein complexes. The glycoprotein complex mediates viral attachment and entry. The Zinc protein serves as the matrix protein. Large is a polymerase that catalyzes viral RNA transcription and replication. LASV virion entry occurs via a clathrin-independent endocytic pathway usually involving alpha-dystroglycan and lysosomal associated membrane protein 1 as surface and intracellular receptors, respectively. Advances in understanding LASV structural biology and replication have facilitated development of promising vaccine and drug candidates.
Collapse
Affiliation(s)
- Robert F Garry
- School of Medicine, Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
- Zalgen Labs, Frederick, MD, 21703, USA.
- Global Virus Network (GVN), Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Tripathi S, Sharma N, Naorem LD, Raghava GPS. ViralVacDB: A manually curated repository of viral vaccines. Drug Discov Today 2023; 28:103523. [PMID: 36764575 DOI: 10.1016/j.drudis.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Over the years, numerous vaccines have been developed against viral infections; however, a complete database that provides comprehensive information on viral vaccines has been lacking. In this review, along with our freely accessible database ViralVacDB, we provide details of the viral vaccines, their type, routes of administration and approving agencies. This repository systematically covers additional information such as disease name, adjuvant, manufacturer, clinical status, age and dosage against 422 viral vaccines, including 145 approved vaccines and 277 in clinical trials. We anticipate that this database will be highly beneficial to researchers and others working in pharmaceuticals and immuno-informatics.
Collapse
Affiliation(s)
- Sadhana Tripathi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| |
Collapse
|
7
|
Moradpour J, Chit A, Besada-Lombana S, Grootendorst P. Overview of the global vaccine ecosystem. Expert Rev Vaccines 2023; 22:749-763. [PMID: 37608523 DOI: 10.1080/14760584.2023.2250433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Vaccination is an effective, relatively inexpensive, and easy to deliver approach to combating infectious diseases. Widespread vaccination of children has led to the eradication of smallpox and allowed for regional elimination or control of diseases like polio, measles, mumps, tetanus, diphtheria, and whooping cough. But, as we learned from efforts to combat the COVID-19 pandemic, a successful global vaccination program must overcome several hurdles. Failure at any stage can limit vaccine uptake and disease control. AREAS COVERED In this review, we break down the vaccine journey from research and development to delivery into several steps. We also list all the important international organizations trying to support this ecosystem. Then we identify the role of each of these organizations in supporting each of the necessary steps for a successful vaccination program. EXPERT OPINION The bottlenecks in vaccination can be different for different countries, based on their income and geography. Policy makers need to identify the weaknesses of this ecosystem in different regions of the world and make sure there is adequate global and local support to fill the gaps in the system.
Collapse
Affiliation(s)
- Javad Moradpour
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ayman Chit
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Medical, Medical Head for International Region Sanofi, Lyon, France
| | | | - Paul Grootendorst
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D. Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the Coronaviridae and Togaviridae families (Review). Exp Ther Med 2022; 25:42. [PMID: 36569444 PMCID: PMC9768462 DOI: 10.3892/etm.2022.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of zoonotic viral diseases pose a severe threat to public health and economies worldwide, with this currently being more prominent than it previously was human history. These emergency zoonotic diseases that originated and transmitted from vertebrates to humans have been estimated to account for approximately one billion cases of illness and have caused millions of deaths worldwide annually. The recent emergence of severe acute respiratory syndrome coronavirus-2 (coronavirus disease 2019) is an excellent example of the unpredictable public health threat causing a pandemic. The present review summarizes the literature data regarding the main vaccine developments in human clinical phase I, II and III trials against the zoonotic positive-sense single-stranded RNA viruses belonging to the Coronavirus and Alphavirus genera, including severe acute respiratory syndrome, Middle east respiratory syndrome, Venezuelan equine encephalitis virus, Semliki Forest virus, Ross River virus, Chikungunya virus and O'nyong-nyong virus. That there are neither vaccines nor effective antiviral drugs available against most of these viruses is undeniable. Therefore, new explosive outbreaks of these zoonotic viruses may surely be expected. The present comprehensive review provides an update on the status of vaccine development in different clinical trials against these viruses, as well as an overview of the present results of these trials.
Collapse
Affiliation(s)
- Seyed Sajjad Babaeimarzangou
- Division of Poultry Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Himasadat Zaker
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | | | - Naeimeh Shamsi Gamchi
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | - Masoud Kazeminia
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Shima Tarighi
- Veterinary Office of West Azerbaijan Province, Urmia 5717617695, Iran
| | - Homayon Seyedian
- Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, 71307 Heraklion, Greece,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
9
|
Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, Olanbiwoninu AA, Adebayo EA. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front Pharmacol 2022; 13:952027. [PMID: 36071846 PMCID: PMC9441938 DOI: 10.3389/fphar.2022.952027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ganoderma lucidum is a well-known medicinal mushroom that has been used for the prevention and treatment of different ailments to enhance longevity and health specifically in China, Japan, and Korea. It was known as "God's herb" in ancient China as it was believed to prolong life, enhance the youthful spirit and sustain/preserve vitality. G. lucidum is seldom collected from nature and is substantially cultivated on wood logs and sawdust in plastic bags or bottles to meet the international market demand. Both in vitro and in vivo studies on the copious metabolic activities of G. lucidum have been carried out. Varied groups of chemical compounds including triterpenoids, polysaccharides, proteins, amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids, and enzymes with potent pharmacological activities have been isolated from the mycelia and fruiting bodies of G. lucidum. Several researchers have reported the abundance and diversification of its biological actions triggered by these chemical compounds. Triterpenoids and polysaccharides of G. lucidum have been reported to possess cytotoxic, hepatoprotective, antihypertensive, hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor, immunomodulatory and antiangiogenic activities. Various formulations have been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and pharmaceuticals from G. lucidum extracts and active compounds. Thus, this review presents current updates on emerging infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with a particular focus on Ganoderma lucidum, an unutilized natural medicine as a promising future solution to emerging diseases in Africa. However, details such as the chemical compound and mode of action of each bioactive against different emerging diseases were not discussed in this study.
Collapse
Affiliation(s)
- M. A. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - F. J. Afolabi
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| | - O. O. Oyeleke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - T. A. Kilani
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. R. Adeosun
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. A. Olanbiwoninu
- Department of Biological Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - E. A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| |
Collapse
|
10
|
Isaac AB, Karolina W, Temitope AA, Anuska R, Joanne E, Deborah A, Bianca OC, Filip T, Zofia P, Oluwasegun OI, Oluwaferanmi O, Grace BT. PROSPECTS OF LASSA FEVER CANDIDATE VACCINES. Afr J Infect Dis 2022; 16:46-58. [PMID: 36124324 PMCID: PMC9480887 DOI: 10.21010/ajid.v16i2s.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far. Materials and Methods We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included "vaccine" AND "Lassa fever" OR "Lassa virus" in the title/abstract. Results Thirty-four candidate vaccines were identified - 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine; both had progressed to clinical trials. Conclusions Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified.
Collapse
Affiliation(s)
- Ademusire Babatunde Isaac
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Wieczorek Karolina
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom,Corresponding author’s E-Mail:
| | - Alonge Aishat Temitope
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Rajen Anuska
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Egbe Joanne
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Adebambo Deborah
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Offorbuike Chiamaka Bianca
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Trojan Filip
- University College London, Medical School, London, United Kingdom
| | - Przypaśniak Zofia
- Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Oduguwa Ifeoluwa Oluwasegun
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Omitoyin Oluwaferanmi
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Balogun Toluwalogo Grace
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| |
Collapse
|
11
|
Sparrow E, Hasso-Agopsowicz M, Kaslow DC, Singh K, Rao R, Chibi M, Makubalo LE, Reeder JC, Kang G, Karron RA, Cravioto A, Lanata CF, Friede M, Abela-Ridder B, Solomon AW, Dagne DA, Giersing B. Leveraging mRNA Platform Technology to Accelerate Development of Vaccines for Some Emerging and Neglected Tropical Diseases Through Local Vaccine Production. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.844039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mRNA vaccine technology platform may enable rapid response to some emerging infectious diseases (EIDs), as demonstrated through the COVID-19 pandemic. Beyond the role it could play in future EID response, mRNA technology also could have an important role in accelerating the development of, and access to, vaccines for some neglected tropical diseases (NTDs), which occur mainly in impoverished regions of the world. Despite their significant disease burden, few vaccines against NTDs have been developed, in part because of the uncertain market and return on investment. In addition, the probability of technical and regulatory success is considered to be low for developing vaccines against multicellular parasites, or organisms that have sophisticated mechanisms for evading immunological surveillance, such as many of the NTD pathogens. The global 2021-2030 road map for neglected tropical diseases sets ambitious targets for the eradication, elimination, and control of NTDs. For some, effective interventions exist but are underutilized. For others, vaccines need to be developed or their use expanded to meet global targets on control and elimination. This article discusses the application of the mRNA technology platform to the development of vaccines for NTDs as well as EIDs, highlights the challenges in bringing these products to the market, and indicates potential areas which could be explored, including leveraging investment for vaccines with a more profitable market potential and enabling local manufacturing in regions where NTDs are endemic. Such regional production could include collaborations with the mRNA vaccine technology transfer hubs that are being established with the support of WHO and COVAX partners.
Collapse
|
12
|
Lerch A, Ten Bosch QA, L'Azou Jackson M, Bettis AA, Bernuzzi M, Murphy GAV, Tran QM, Huber JH, Siraj AS, Bron GM, Elliott M, Hartlage CS, Koh S, Strimbu K, Walters M, Perkins TA, Moore SM. Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Med 2022; 20:202. [PMID: 35705986 PMCID: PMC9200440 DOI: 10.1186/s12916-022-02405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. METHODS We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. RESULTS Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0-3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0-8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. CONCLUSIONS Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Collapse
Affiliation(s)
- Anita Lerch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Quirine A Ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Alison A Bettis
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mauro Bernuzzi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Quan M Tran
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gebbiena M Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Margaret Elliott
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carson S Hartlage
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sojung Koh
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Kathyrn Strimbu
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Magdalene Walters
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Sean M Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
13
|
Sandbrink JB, Koblentz GD. Biosecurity risks associated with vaccine platform technologies. Vaccine 2022; 40:2514-2523. [PMID: 33640142 PMCID: PMC7904460 DOI: 10.1016/j.vaccine.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Vaccine platforms have been critical for accelerating the timeline of COVID-19 vaccine development. Faster vaccine timelines demand further development of these technologies. Currently investigated platform approaches include virally vectored and RNA-based vaccines, as well as DNA vaccines and recombinant protein expression system platforms, each featuring different advantages and challenges. Viral vector-based and DNA vaccines in particular have received a large share of research funding to date. Platform vaccine technologies may feature dual-use potential through informing or enabling pathogen engineering, which may raise the risk for the occurrence of deliberate, anthropogenic biological events. Research on virally vectored vaccines exhibits relatively high dual-use potential for two reasons. First, development of virally vectored vaccines may generate insights of particular dual-use concern such as techniques for circumventing pre-existing anti-vector immunity. Second, while the amount of work on viral vectors for gene therapy exceeds that for vaccine research, work on virally vectored vaccines may increase the number of individuals capable of engineering viruses of particular concern, such as ones closely related to smallpox. Other platform vaccine approaches, such as RNA vaccines, feature relatively little dual-use potential. The biosecurity risk associated with platform advancement may be minimised by focusing preferentially on circumventing anti-vector immunity with non-genetic rather than genetic modifications, using vectors that are not based on viruses pathogenic to humans, or preferential investment into promising RNA-based vaccine approaches. To reduce the risk of anthropogenic pandemics, structures for the governance of biotechnology and life science research with dual-use potential need to be reworked. Scientists outside of the pathogen research community, for instance those who work on viral vectors or oncolytic viruses, need to become more aware of the dual-use risks associated with their research. Both public and private research-funding bodies need to prioritise the evaluation and reduction of biosecurity risks.
Collapse
Affiliation(s)
- Jonas B Sandbrink
- Future of Humanity Institute, University of Oxford, Trajan House, Mill St, Oxford, OX2 0AN, UK; Medical Sciences Division, University of Oxford, Medical Sciences Office, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Gregory D Koblentz
- Schar School of Policy and Government, George Mason University, Van Metre Hall, 678 3351 Fairfax Drive Arlington, VA 22201, USA.
| |
Collapse
|
14
|
Middle East Respiratory Syndrome coronavirus vaccine development: updating clinical studies using platform technologies. J Microbiol 2022; 60:238-246. [PMID: 35089585 PMCID: PMC8795722 DOI: 10.1007/s12275-022-1547-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV), a contagious zoonotic virus, causes severe respiratory infection with a case fatality rate of approximately 35% in humans. Intermittent sporadic cases in communities and healthcare facility outbreaks have continued to occur since its first identification in 2012. The World Health Organization has declared MERS-CoV a priority pathogen for worldwide research and vaccine development due to its epidemic potential and the insufficient countermeasures available. The Coalition for Epidemic Preparedness Innovations is supporting vaccine development against emerging diseases, including MERS-CoV, based on platform technologies using DNA, mRNA, viral vector, and protein subunit vaccines. In this paper, we review the usefulness and structure of a spike glycoprotein as a MERS-CoV vaccine candidate molecule, and provide an update on the status of MERS-CoV vaccine development. Vaccine candidates based on both DNA and viral vectors coding MERS-CoV spike gene have completed early phase clinical trials. A harmonized approach is required to assess the immunogenicity of various candidate vaccine platforms. Platform technologies accelerated COVID-19 vaccine development and can also be applied to developing vaccines against other emerging viral diseases.
Collapse
|
15
|
Xu Z, Ho M, Bordoloi D, Kudchodkar S, Khoshnejad M, Giron L, Zaidi F, Jeong M, Roberts CC, Park YK, Maslow J, Abdel-Mohsen M, Muthumani K. Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods Mol Biol 2022; 2410:229-263. [PMID: 34914050 DOI: 10.1007/978-1-0716-1884-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Makan Khoshnejad
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Faraz Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Joel Maslow
- GeneOne Life Science Inc., Seoul, South Korea
| | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
- GeneOne Life Science Inc., Seoul, South Korea.
| |
Collapse
|
16
|
Viana Invenção MDC, Melo ARDS, de Macêdo LS, da Costa Neves TSP, de Melo CML, Cordeiro MN, de Aragão Batista MV, de Freitas AC. Development of synthetic antigen vaccines for COVID-19. Hum Vaccin Immunother 2021; 17:3855-3870. [PMID: 34613880 PMCID: PMC8506811 DOI: 10.1080/21645515.2021.1974288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/04/2022] Open
Abstract
The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine against COVID-19 took place, and some vaccines have been approved for emergency use in several countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives by redirecting knowledge of other vaccines, and/or the development of new strategies using available tools, mainly in the areas of genomics and bioinformatics. The current review highlights the development of synthetic antigen vaccines, focusing on the usage of bioinformatics tools for the selection and construction of antigens on the different vaccine constructions under development, as well as strategies to optimize vaccines for COVID-19.
Collapse
Affiliation(s)
- Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alanne Rayssa da Silva Melo
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thaís Souto Paula da Costa Neves
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Nazário Cordeiro
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Ratcliffe NA, Castro HC, Paixão IC, Mello CB. COVID-19: Innovative Antiviral Drugs Required for Long-Term Prevention and Control of Coronavirus Diseases. Curr Med Chem 2021; 28:3554-3567. [PMID: 33109030 DOI: 10.2174/0929867327666201027152400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has had global catastrophic effects on financial markets, jobs and peoples' lives. Future prevention/therapy of COVID-19 will rely heavily on vaccine development and attempts to repurpose drugs previously used for other microbial diseases. Little attention, however, has been paid to possible difficulties and delays in producing these drugs. Sometimes, unfortunately, these endeavours have been politicized and if these two approaches founder in any way or resistance subsequently occurs, then the world will be left once again to the mercy of these devastating viral pandemics. This review, therefore, briefly outlines the challenges in the development of vaccines and repurposed antiviral drugs, which will hopefully lead to new treatments for COVID-19. It also concludes, however, that the armoury against COVID-19 urgently needs to be enlarging due to the potential severity and likely future reoccurrence of new emergent viruses. Therefore, serious consideration is given to alternative ways of preventing and controlling these pathogens that have received scant attention from the media in the present pandemic. The development of innovative, broad-spectrum, antiviral drugs from natural products is therefore particularly advocated with the challenges involved by new regulatory and scientific initiatives.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Helena C Castro
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Izabel C Paixão
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Cicero B Mello
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| |
Collapse
|
18
|
Meurens F, Dunoyer C, Fourichon C, Gerdts V, Haddad N, Kortekaas J, Lewandowska M, Monchatre-Leroy E, Summerfield A, Wichgers Schreur PJ, van der Poel WHM, Zhu J. Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal 2021; 15:100241. [PMID: 34091225 PMCID: PMC8172357 DOI: 10.1016/j.animal.2021.100241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 19s pandemic has yet again demonstrated the importance of the human-animal interface in the emergence of zoonotic diseases, and in particular the role of wildlife and livestock species as potential hosts and virus reservoirs. As most diseases emerge out of the human-animal interface, a better understanding of the specific drivers and mechanisms involved is crucial to prepare for future disease outbreaks. Interactions between wildlife and livestock systems contribute to the emergence of zoonotic diseases, especially in the face of globalization, habitat fragmentation and destruction and climate change. As several groups of viruses and bacteria are more likely to emerge, we focus on pathogenic viruses of the Bunyavirales, Coronaviridae, Flaviviridae, Orthomyxoviridae, and Paramyxoviridae, as well as bacterial species including Mycobacterium sp., Brucella sp., Bacillus anthracis and Coxiella burnetii. Noteworthy, it was difficult to predict the drivers of disease emergence in the past, even for well-known pathogens. Thus, an improved surveillance in hotspot areas and the availability of fast, effective, and adaptable control measures would definitely contribute to preparedness. We here propose strategies to mitigate the risk of emergence and/or re-emergence of prioritized pathogens to prevent future epidemics.
Collapse
Affiliation(s)
- François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France; Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada.
| | - Charlotte Dunoyer
- Direction de l'évaluation des risques, Anses, 94700 Maisons-Alfort, France
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Nadia Haddad
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Marta Lewandowska
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Paul J Wichgers Schreur
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, 225009 Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, 225009 Yangzhou, China
| |
Collapse
|
19
|
Patel A, Reuschel EL, Xu Z, Zaidi FI, Kim KY, Scott DP, Mendoza J, Ramos S, Stoltz R, Feldmann F, Okumura A, Meade-White K, Haddock E, Thomas T, Rosenke R, Lovaglio J, Hanley PW, Saturday G, Muthumani K, Feldmann H, Humeau LM, Broderick KE, Weiner DB. Intradermal delivery of a synthetic DNA vaccine protects macaques from Middle East respiratory syndrome coronavirus. JCI Insight 2021; 6:146082. [PMID: 33886507 PMCID: PMC8262283 DOI: 10.1172/jci.insight.146082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.
Collapse
Affiliation(s)
- Ami Patel
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Emma L. Reuschel
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Faraz I. Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kevin Y. Kim
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Janess Mendoza
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania, USA
| | - Stephanie Ramos
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania, USA
| | - Regina Stoltz
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | | | - David B. Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines (Basel) 2021; 9:vaccines9030284. [PMID: 33808708 PMCID: PMC8003535 DOI: 10.3390/vaccines9030284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-human primates (NHPs) are used extensively in the development of vaccines and therapeutics for human disease. High standards in the design, conduct, and reporting of NHP vaccine studies are crucial for maximizing their scientific value and translation, and for making efficient use of precious resources. A key aspect is consideration of the 3Rs principles of replacement, reduction, and refinement. Funders of NHP research are placing increasing emphasis on the 3Rs, helping to ensure such studies are legitimate, ethical, and high-quality. The UK's National Centre for the 3Rs (NC3Rs) and the Coalition for Epidemic Preparedness Innovations (CEPI) have collaborated on a range of initiatives to support vaccine developers to implement the 3Rs, including hosting an international workshop in 2019. The workshop identified opportunities to refine NHP vaccine studies to minimize harm and improve welfare, which can yield better quality, more reproducible data. Careful animal selection, social housing, extensive environmental enrichment, training for cooperation with husbandry and procedures, provision of supportive care, and implementation of early humane endpoints are features of contemporary good practice that should and can be adopted more widely. The requirement for high-level biocontainment for some pathogens imposes challenges to implementing refinement but these are not insurmountable.
Collapse
|
21
|
ElBagoury M, Tolba MM, Nasser HA, Jabbar A, Elagouz AM, Aktham Y, Hutchinson A. The find of COVID-19 vaccine: Challenges and opportunities. J Infect Public Health 2021; 14:389-416. [PMID: 33647555 PMCID: PMC7773313 DOI: 10.1016/j.jiph.2020.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel corona virus, causing COVID-19 with Flu-like symptoms is the first alarming pandemic of the third millennium. SARS-CoV-2 belongs to beta coronavirus as Middle East respiratory syndrome coronavirus (MERS-CoV). Pandemic COVID-19 owes devastating mortality and destructively exceptional consequences on Socio-Economics life around the world. Therefore, the current review is redirected to the scientific community to owe comprehensive visualization about SARS-CoV-2 to tackle the current pandemic. As systematically shown through the current review, it indexes unmet medical problem of COVID-19 in view of public health and vaccination discovery for the infectious SARS-CoV-2; it is currently under-investigational therapeutic protocols, and next possible vaccines. Furthermore, the review extensively reports the precautionary measures to achieve" COVID-19/Flatten the curve". It is concluded that vaccines formulation within exceptional no time in this pandemic is highly recommended, via following the same protocols of previous pandemics; MERS-CoV and SARS-CoV, and excluding some initial steps of vaccination development process.
Collapse
Affiliation(s)
- Marwan ElBagoury
- University of South Wales, Pontypridd, Wales, United Kingdom; The Student Science and Technology Online Research Coop, Ontario, Canada.
| | - Mahmoud M Tolba
- Pharmaceutical division, ministry of health and population, Cairo, Egypt
| | - Hebatallah A Nasser
- Microbiology and Public Health Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Abdul Jabbar
- Department of Clinical Medicine, University of Veterinary and Animal Sciences, Lahore Punjab Pakistan
| | - Ahmed M Elagouz
- University of South Wales, Pontypridd, Wales, United Kingdom
| | - Yahia Aktham
- University of South Wales, Pontypridd, Wales, United Kingdom
| | - Amy Hutchinson
- The Student Science and Technology Online Research Coop, Ontario, Canada; McMaster University, Hamilton, Canada
| |
Collapse
|
22
|
Monrad JT, Sandbrink JB, Cherian NG. Promoting versatile vaccine development for emerging pandemics. NPJ Vaccines 2021; 6:26. [PMID: 33574335 PMCID: PMC7878788 DOI: 10.1038/s41541-021-00290-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated the importance of rapid and versatile development of emergency medical countermeasures such as vaccines. We discuss the role of platform vaccines and prototype pathogen research in modern vaccine development, and outline how previous pathogen-specific funding approaches can be improved to adequately promote vaccine R&D for emerging pandemics. We present a more comprehensive approach to financing vaccine R&D, which maximises biomedical pandemic preparedness by promoting flexible vaccine platforms and translatable research into prototype pathogens. As the numerous platform-based SARS-CoV-2 vaccines show, funders can accelerate pandemic vaccine development by proactively investing in versatile platform technologies. For certain emerging infectious diseases, where vaccine research can translate to other related pathogens with pandemic potential, investment decisions should reflect the full social value of increasing overall preparedness, rather than just the value of bringing a vaccine to market for individual pathogens.
Collapse
Affiliation(s)
- Joshua T Monrad
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Health Policy, London School of Economics, London, UK.
- Future of Humanity Institute, University of Oxford, Oxford, UK.
| | - Jonas B Sandbrink
- Future of Humanity Institute, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Neil G Cherian
- The Coalition of Epidemic Preparedness Innovations, Oslo, Norway
- Johns Hopkins Center for Health Security, Baltimore, USA
| |
Collapse
|
23
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
24
|
Sanicas M, Sanicas M, Diop D, Montomoli E. A review of COVID-19 vaccines in development: 6 months into the pandemic. Pan Afr Med J 2020; 37:124. [PMID: 33425157 PMCID: PMC7755367 DOI: 10.11604/pamj.2020.37.124.24973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
The advent of the COVID-19 pandemic and the dynamics of its spread is unprecedented. Therefore, the need for a vaccine against the virus is huge. Researchers worldwide are working around the clock to find a vaccine. Experts estimate that a fast-tracked vaccine development process could speed a successful candidate to market in approximately 12-18 months. The objective of this review was to describe the coronavirus vaccines candidates in development and the important considerations. The review was conducted through a thematic analysis of the literature on COVID-19 vaccines in development. It only included data until the end of June 2020, 6 months after the emergence of the COVID-19. Different approaches are currently used to develop COVID-19 vaccines from traditional live-attenuated, inactivated, subunit vaccines, to more novel technologies such as DNA or mRNA vaccines. The race is on to find both medicines and vaccines for the COVID-19 pandemic. As with drugs, vaccine candidates go through pre-clinical testing first before they go through the three phases of clinical trials in humans. Of the over 130 vaccine candidates, 17 are in clinical trials while others are expected to move to clinical testing after the animal studies.
Collapse
Affiliation(s)
- Merlin Sanicas
- Centre de Recherche en Cancérologie de Marseille, Université Aix-Marseille, Marseille, France
| | - Melvin Sanicas
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi Life Science Research, Siena, Italy
| |
Collapse
|
25
|
Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci Rep 2020; 10:16030. [PMID: 32994446 PMCID: PMC7525497 DOI: 10.1038/s41598-020-72539-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI's (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II-IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.
Collapse
|
26
|
Abstract
Lassa fever was first described as a clinical entity fifty years ago. The causative agent Lassa virus was isolated from these first known cases. This chapter reviews the key publications on Lassa fever research that appeared in the scientific literature at that time and over the ensuing decades.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA. .,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, MD, 20876, USA.
| |
Collapse
|
27
|
Boisen ML, Uyigue E, Aiyepada J, Siddle KJ, Oestereich L, Nelson DKS, Bush DJ, Rowland MM, Heinrich ML, Eromon P, Kayode AT, Odia I, Adomeh DI, Muoebonam EB, Akhilomen P, Okonofua G, Osiemi B, Omoregie O, Airende M, Agbukor J, Ehikhametalor S, Aire CO, Duraffour S, Pahlmann M, Böhm W, Barnes KG, Mehta S, Momoh M, Sandi JD, Goba A, Folarin OA, Ogbaini-Emovan E, Asogun DA, Tobin EA, Akpede GO, Okogbenin SA, Okokhere PO, Grant DS, Schieffelin JS, Sabeti PC, Günther S, Happi CT, Branco LM, Garry RF. Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Sci Rep 2020; 10:8724. [PMID: 32457420 PMCID: PMC7250850 DOI: 10.1038/s41598-020-65736-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), an often-fatal hemorrhagic disease. LF is endemic in Nigeria, Sierra Leone and other West African countries. Diagnosis of LASV infection is challenged by the genetic diversity of the virus, which is greatest in Nigeria. The ReLASV Pan-Lassa Antigen Rapid Test (Pan-Lassa RDT) is a point-of-care, in vitro diagnostic test that utilizes a mixture of polyclonal antibodies raised against recombinant nucleoproteins of representative strains from the three most prevalent LASV lineages (II, III and IV). We compared the performance of the Pan-LASV RDT to available quantitative PCR (qPCR) assays during the 2018 LF outbreak in Nigeria. For patients with acute LF (RDT positive, IgG/IgM negative) during initial screening, RDT performance was 83.3% sensitivity and 92.8% specificity when compared to composite results of two qPCR assays. 100% of samples that gave Ct values below 22 on both qPCR assays were positive on the Pan-Lassa RDT. There were significantly elevated case fatality rates and elevated liver transaminase levels in subjects whose samples were RDT positive compared to RDT negative.
Collapse
Affiliation(s)
| | - Eghosa Uyigue
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - John Aiyepada
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Katherine J Siddle
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | | | | | | | | | - Philomena Eromon
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Adeyemi T Kayode
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Donatus I Adomeh
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekene B Muoebonam
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Patience Akhilomen
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Grace Okonofua
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Blessing Osiemi
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Omigie Omoregie
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Jacqueline Agbukor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Solomon Ehikhametalor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Chris Okafi Aire
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sophie Duraffour
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Meike Pahlmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Wiebke Böhm
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Kayla G Barnes
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samar Mehta
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Division of Infectious Diseases, Boston, MA, USA
| | - Mambu Momoh
- Eastern Polytechnic Institute, Kenema, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Onikepe A Folarin
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ephraim Ogbaini-Emovan
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekaete A Tobin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Peter O Okokhere
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - John S Schieffelin
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Pardis C Sabeti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Christian T Happi
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria.
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | | | - Robert F Garry
- Zalgen Labs, LLC, Germantown, MD, USA.
- Tulane Health Sciences Center, Tulane University, New Orleans, LA, USA.
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA.
| |
Collapse
|
28
|
Stronsky SM, Cooper CL, Steffens J, Van Tongeren S, Bavari S, Martins KA, Petrovsky N. Adjuvant selection impacts the correlates of vaccine protection against Ebola infection. Vaccine 2020; 38:4601-4608. [PMID: 32418798 DOI: 10.1016/j.vaccine.2020.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/23/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
The establishment of correlates of protection is particularly relevant in the context of rare, highly lethal pathogens such as filoviruses. We previously demonstrated that an Ebola glycoprotein virus-like particle (VLP) vaccine, when given as two intramuscular doses, conferred protection from challenge in a murine challenge model. In this study, we compared the ability of Advax inulin-based adjuvant formulations (Advax1-4) to enhance Ebola VLP vaccine protection in mice. After two immunizations, Advax-adjuvants that included a TLR9 agonist component induced high IgG responses, with complete protection against Ebola virus challenge. Although anti-Ebola IgG levels waned over time, protection was durable and was still evident 150 days post-immunization. Mice were protected after just a single VLP immunization with Advax-2 or -4 adjuvants. Advax-adjuvanted VLPs induced a stronger IFN-γ, TNF and IL-12 signature and serum transferred from Advax-adjuvanted vaccinees was able to transfer protection to naïve animals, showing that Ebola protection can be achieved by antibodies in the absence of cellular immunity. By contrast, serum from vaccinees incorporating a pICLC adjuvant did not transfer protection despite high IgG levels on ELISA. These data highlight the importance of adjuvant selection for development of a successful Ebola VLP vaccine.
Collapse
Affiliation(s)
- Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Jesse Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Sean Van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Karen A Martins
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; Flinders University, Adelaide 5042, Australia.
| |
Collapse
|