1
|
Dang X, Coimbra R, Mao L, Podvin S, Li X, Yu H, Costantini TW, Zeng X, Larocca D, Eliceiri BP, Baird A. Open reading frame mining identifies a TLR4 binding domain in the primary sequence of ECRG4. Cell Mol Life Sci 2019; 76:5027-5039. [PMID: 31190084 PMCID: PMC11105628 DOI: 10.1007/s00018-019-03159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
Abstract
The embedding of small peptide ligands within large inactive pre-pro-precursor proteins encoded by orphan open reading frames (ORFs) makes them difficult to identify and study. To address this problem, we generated oligonucleotide (< 100-400 base pair) combinatorial libraries from either the epidermal growth factor (EGF) ORF that encodes the > 1200 amino acid EGF precursor protein or the orphan ECRG4 ORF, that encodes a 148 amino acid Esophageal Cancer Related Gene 4 (ECRG4), a putative cytokine precursor protein of up to eight ligands. After phage display and 3-4 rounds of biopanning for phage internalization into prostate cancer epithelial cells, sequencing identified the 53-amino acid EGF ligand encoded by the 5' region of the EGF ORF and three distinct domains within the primary sequence of ECRG4: its membrane targeting hydrophobic signal peptide, an unanticipated amino terminus domain at ECRG437-63 and a C-terminus ECRG4133-148 domain. Using HEK-blue cells transfected with the innate immunity receptor complex, we show that both ECRG437-63 and ECRG4133-148 enter cells by interaction with the TLR4 immune complex but neither stimulate NFkB. Taken together, the results help establish that phage display can be used to identify cryptic domains within ORFs of the human secretome and identify a novel TLR4-targeted internalization domain in the amino terminus of ECRG4 that may contribute to its effects on cell migration, immune cell activation and tumor suppression.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Raul Coimbra
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Sonia Podvin
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xue Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Hua Yu
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Todd W Costantini
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xiaorong Zeng
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | | | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Surgery, University of California San Diego, La Jolla, San Diego, CA, 98896, USA.
| |
Collapse
|
2
|
Li Y, Zhao D. Basics of Molecular Biology. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2013. [PMCID: PMC7122053 DOI: 10.1007/978-3-642-34303-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Molecular biology is the study of biology on molecular level. The field overlaps with areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA (deoxyribonucleic acid), RNA (Ribonucleic acid) and protein biosynthesis as well as learning how these interactions are regulated[1].
Collapse
|
3
|
Affiliation(s)
- P. L. Starokadomskyy
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
4
|
Saska I, Craik DJ. Protease-catalysed protein splicing: a new post-translational modification? Trends Biochem Sci 2008; 33:363-8. [DOI: 10.1016/j.tibs.2008.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
|
5
|
Abstract
The majority of cellular proteins are degraded by proteasomes within the ubiquitin-proteasome ATP-dependent degradation pathway. Products of proteasomal activity are short peptides that are further hydrolysed by proteases to single amino acids. However, some peptides can escape this degradation, being selected and taken up by major histocompatibility complex (MHC) class I molecules for presentation to the immune system on the cell surface. MHC class I molecules are highly selective and specific in terms of ligand binding. Variability of peptides produced in living cells arises in a variety of ways, ensuring fast and efficient immune responses. Substitution of constitutive proteasomal subunits with immunosubunits leads to conformational changes in the substrate binding channels, resulting in a modified protein cleavage pattern and consequently in the generation of new antigenic peptides. The recently discovered event of proteasomal peptide splicing opens new horizons in the understanding of additional functions that proteasomes apparently possess. Whether peptide splicing is an occasional side product of proteasomal activity still needs to be clarified. Both gamma-interferon-induced immunoproteasomes and peptide splicing represent two significant events providing increased diversity of antigenic peptides for flexible and fine-tuned immune response.
Collapse
Affiliation(s)
- Ljudmila Borissenko
- Charité (CCM), Institut für Biochemie, AG Strukturforschung, Monbijoustrasse 2, D-10117 Berlin, Germany
| | | |
Collapse
|
6
|
Abstract
Intein-mediated protein splicing is a self-catalytic process in which the intervening intein sequence is removed from a precursor protein and the flanking extein segments are ligated with a native peptide bond. Splice junction proximal residues and internal residues within the intein direct these reactions. The identity of these residues varies in each intein, as groups of related residues populate conserved motifs. Although the basics of the four-step protein splicing pathway are known, mechanistic details are still unknown. Structural and kinetic analyses are beginning to shed some light. Several structures were reported for precursor proteins with mutations in catalytic residues, which stabilize the precursors for crystallographic study. Progress is being made despite limitations inherent in using mutated precursors. However, no uniform mechanism has emerged. Kinetic parameters were determined using conditional trans-splicing (splicing of split precursor fragments after intein reassembly). Several groups concluded that the rate of the initial acyl rearrangement step is rapid and Asn cyclization (step 3) is slow, suggesting that this latter step is rate limiting. Understanding the protein splicing pathway has allowed scientists to harness inteins for numerous applications.
Collapse
Affiliation(s)
- Lana Saleh
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
7
|
Meiring HD, Soethout EC, de Jong APJM, van Els CACM. Targeted identification of infection-related HLA class I-presented epitopes by stable isotope tagging of epitopes (SITE). CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 16:16.3.1-16.3.20. [PMID: 18432987 DOI: 10.1002/0471142735.im1603s77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of peptides presented in human leukocyte antigen (HLA) class I molecules after viral infection is of strategic importance for immunology and vaccine development. A powerful strategy aimed at the rapid, unambiguous identification of naturally processed HLA class I-associated peptides, which are induced by viral infection, is presented here. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues for the human leukocyte antigen allele of interest. Subsequently, these cells are mixed with an equal number of noninfected cells, which are cultured in normal medium. Finally, peptides are acid-eluted from immunoprecipitated HLA molecules and subjected to two-dimensional nanoscale liquid chromatography-mass spectrometry analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules.
Collapse
Affiliation(s)
- H D Meiring
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - E C Soethout
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | | | | |
Collapse
|