1
|
Qian L, Li N, Lu XC, Xu M, Liu Y, Li K, Zhang Y, Hu K, Qi YT, Yao J, Wu YL, Wen W, Huang S, Chen ZJ, Yin M, Lei QY. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat Metab 2023; 5:1159-1173. [PMID: 37337119 DOI: 10.1038/s42255-023-00818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Chen Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center; Institute of Pathology, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kewen Hu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ting Qi
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
3
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
4
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Xu Y, Feng Y, Sun Z, Li Q. RNF168 promotes RHOC degradation by ubiquitination to restrain gastric cancer progression via decreasing HDAC1 expression. Biochem Biophys Res Commun 2021; 557:135-142. [PMID: 33865221 DOI: 10.1016/j.bbrc.2021.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Gastric cancer (GC) is the most common cancer worldwide. Although advances in the treatments, the oncogenic mechanisms are still largely unknown. RNF168 (ring-finger nuclear factor 168) is an important regulator of DNA double-strand break (DSB) repair, and its defects have been involved in the pathogenesis of a number of human diseases including cancer. However, its effects on GC are still unclear. In the study, we demonstrated that RNF168 expression was remarkably down-regulated in human GC tissues, and its low expression showed worse overall survival rate in GC patients. Importantly, we here reported that RNF168 directly interacted with Ras homolog gene family member C (RHOC) and induced its ubiquitination to promote RHOC degradation. RHOC exhibited higher expression in human GC tissues, and its knockdown significantly restrained cell proliferation, migration and invasion in GC cell lines. Moreover, RHOC knockdown led to a significant reduction in GC tumor growth in a xenograft mouse model. Additionally, histone deacetylase 1 (HDAC1) was found to be markedly decreased in GC cells with RHOC knockdown. Intriguingly, RHOC suppression-ameliorated proliferative and migratory ability in GC cells were significantly diminished by HDAC1 over-expression. Our in vivo studies finally confirmed that RHOC inhibition dramatically reduced the lung metastasis in nude mice. Collectively, all our results demonstrated that RNF168 directly interacted with RHOC to induce its degradation via promoting its ubiquitination, contributing to the inhibition of cell proliferation and metastasis in GC through decreasing HDAC1. Thus, targeting RNF168/RHOC/HDAC1 axis might be promising to develop effective therapies for GC treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China
| | - Yanling Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China
| | - Zhongshang Sun
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China.
| |
Collapse
|
6
|
Wu Z, Liu H, Sun W, Du Y, He W, Guo S, Chen L, Zhao Z, Wang P, Liang H, Deng J. RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells. Cell Death Dis 2020; 11:881. [PMID: 33082325 PMCID: PMC7575565 DOI: 10.1038/s41419-020-03096-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Ring finger protein 180 (RNF180) is an important member of the E3 ubiquitin ligase family. As a tumor suppressor gene, RNF180 is significantly associated with the prognosis of patients with gastric cancer (GC) and can inhibit the proliferation, invasion, and migration of GC cells. Signal transducer and activator of transcription 3 (STAT3) are considered one of the most common oncogenes in human cancers with a key role in GC progression. In this study, we explored the molecular signaling pathways by which RNF180 could potentially regulate STAT3 through transcriptomics and proteomics experiments. Here, we found RNF180 overexpression could suppress STAT3 phosphorylation in GC cells. Ubiquitin label-free experiments showed that the ubiquitination level of Ras homolog gene family member C (RhoC) is significantly increased in GC cells transfected with an RNF180 expression vector (RNF180-GFP vector) compared with cells transfected with an empty vector (vehicle vector). We subsequently demonstrated that RNF180 could directly combine with RhoC and promote the ubiquitination and degradation of RhoC protein in GC cells. The phosphorylation level of STAT3 significantly decreased in GC cells after RhoC knockdown using small hairpin RNA (shRNA). Together, these results reveal RNF180 could inhibit GC progression by reducing the phosphorylation of STAT3 via the ubiquitination and degradation of RhoC protein in GC cells. Thus, the protein may be considered a novel therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Zizhen Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huifang Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weilin Sun
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingxin Du
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenting He
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shiwei Guo
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liqiao Chen
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenzhen Zhao
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengliang Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jingyu Deng
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
7
|
Rao M, Zhu Y, Qi L, Hu F, Gao P. Circular RNA profiling in plasma exosomes from patients with gastric cancer. Oncol Lett 2020; 20:2199-2208. [PMID: 32765789 PMCID: PMC7403632 DOI: 10.3892/ol.2020.11800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is among the most common cancer types worldwide with high mortality. Recent studies have shown that exosomes play a crucial role in the tumorigenesis of GC. The present study aimed to investigate the circular RNA (circRNA) profile in plasma exosomes from patients with gastric cancer (GC). Peripheral blood samples were collected from 5 patients with GC and 5 healthy donors, and exosomes were isolated from plasma. The high-throughput RNA sequencing (RNA-seq) method was applied to detect the differently expressed circRNAs (DE circRNAs). Subsequently, sequencing results were confirmed by reverse transcription quantitative (RT-q) PCR. The potential roles of DE circRNAs in GC were identified using Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analysis. Furthermore, MiRanda software was used to predict circRNA-micro-RNA (miRNA) interactions. A total of 67,880 circRNAs were identified in all samples and 1,060 significantly DE circRNAs were screened, including 620 upregulated and 440 downregulated ones. These results were further confirmed by RT-qPCR. GO and KEGG analyses revealed that these circRNAs were significantly associated with ‘cell cycle’, ‘cytoskeleton organization’, ‘cellular response to DNA damage’, ‘regulation of GTPase activity’, ‘phosphatidylinositol signaling pathway’, ‘MAPK signaling pathway’, ‘thyroid hormone signaling pathway’, ‘chemokine signaling pathway’ and ‘Wnt signaling pathway’. In addition, a circRNA-miRNA-mRNA interaction network was established. Taken together, these findings may help better understanding the underlying mechanisms of GC and identifying new molecular alterations in GC, and allow the enrichment of the circRNA profiling in human GC.
Collapse
Affiliation(s)
- Min Rao
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yonggang Zhu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lingzhi Qi
- Department of Gastroenterology, The People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Guo Y, Wang J, Zhou K, Lv J, Wang L, Gao S, Keller ET, Zhang ZS, Wang Q, Yao Z. Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. FASEB J 2020; 34:7927-7940. [PMID: 32314833 DOI: 10.1096/fj.201903266rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract infections, is associated with prostate and bladder cancers. Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin; however, its role in bladder cancer is unknown. In the present study, we found CNF1 induced bladder cancer cells to secrete vascular endothelial growth factor (VEGF) through activating Ras homolog family member C (RhoC), leading to subsequent angiogenesis in the bladder cancer microenvironment. We then investigated that CNF1-mediated RhoC activation modulated the stabilization of hypoxia-inducible factor 1α (HIF1α) to upregulate the VEGF. We demonstrated in vitro that active RhoC increased heat shock factor 1 (HSF1) phosphorylation, which induced the heat shock protein 90α (HSP90α) expression, leading to stabilization of HIF1α. Active RhoC elevated HSP90α, HIF1α, VEGF expression, and angiogenesis in the human bladder cancer xenografts. In addition, HSP90α, HIF1α, and VEGF expression were also found positively correlated with the human bladder cancer development. These results provide a potential mechanism through which UPEC contributes to bladder cancer progression, and may provide potential therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Yaxiu Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaichen Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junqiang Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Quan Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Thomas P, Pranatharthi A, Ross C, Srivastava S. RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:328. [PMID: 31340863 PMCID: PMC6651989 DOI: 10.1186/s13046-019-1327-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network, enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has contributed to several phenotypes during tumor progression. RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues. This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor phenotypes. Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the need to understand the protein and its functioning in greater detail to enable its development as a stem cell marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India.,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Annapurna Pranatharthi
- Rajiv Gandhi University of Health Sciences (RGUHS), Bangalore, 560041, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil Ross
- Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India.
| |
Collapse
|
10
|
Liu N, Cui W, Jiang X, Zhang Z, Gnosa S, Ali Z, Jensen L, Jönsson JI, Blockhuys S, Lam EWF, Zhao Z, Ping J, Xie N, Kopsida M, Wang X, Sun XF. The Critical Role of Dysregulated RhoB Signaling Pathway in Radioresistance of Colorectal Cancer. Int J Radiat Oncol Biol Phys 2019; 104:1153-1164. [PMID: 31039421 DOI: 10.1016/j.ijrobp.2019.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To explore whether the Rho protein is involved in the radioresistance of colorectal cancer and investigate the underlying mechanisms. METHODS AND MATERIALS Rho GTPase expression was measured after radiation treatment in colon cancer cells. RhoB knockout cell lines were established using the CRISPR/Cas9 system. In vitro assays and zebrafish embryos were used for analyzing radiosensitivity and invasive ability. Mass cytometry was used to detect RhoB downstream signaling factors. RhoB and Forkhead box M1 (FOXM1) expression were detected by immunohistochemistry in rectal cancer patients who participated in a radiation therapy trial. RESULTS RhoB expression was related to radiation resistance. Complete depletion of the RhoB protein increased radiosensitivity and impaired radiation-enhanced metastatic potential in vitro and in zebrafish models. Probing signaling using mass cytometry-based single-cell analysis showed that the Akt phosphorylation level was inhibited by RhoB depletion after radiation. FOXM1 was downregulated in RhoB knockout cells, and the inhibition of FOXM1 led to lower survival rates and attenuated migration and invasion abilities of the cells after radiation. In the patients who underwent radiation therapy, RhoB overexpression was related to high FOXM1, late Tumor, Node, Metastasis stage, high distant recurrence, and poor survival independent of other clinical factors. CONCLUSIONS RhoB plays a critical role in radioresistance of colorectal cancer through Akt and FOXM1 pathways.
Collapse
Affiliation(s)
- Na Liu
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiyingqi Cui
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xia Jiang
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of General Surgery, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Zhang
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sebastian Gnosa
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Zaheer Ali
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jan-Ingvar Jönsson
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Stéphanie Blockhuys
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Zengren Zhao
- Department of General Surgery, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Ping
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ning Xie
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maria Kopsida
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Wang
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Li X, Jiang M, Chen D, Xu B, Wang R, Chu Y, Wang W, Zhou L, Lei Z, Nie Y, Fan D, Shang Y, Wu K, Liang J. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:71. [PMID: 29587866 PMCID: PMC5872400 DOI: 10.1186/s13046-018-0729-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Background Our previous work showed that some Rho GTPases, including Rho, Rac1 and Cdc42, play critical roles in gastric cancer (GC); however, how they are regulated in GC remains largely unknown. In this study, we aimed to investigate the roles and molecular mechanisms of Dock6, an atypical Rho guanine nucleotide exchange factor (GEF), in GC metastasis. Methods The expression levels of Dock6 and miR-148b-3p in GC tissues and paired nontumor tissues were determined by immunohistochemistry (IHC) and in situ hybridization (ISH), respectively. The correlation between Dock6/miR-148b-3p expression and the overall survival of GC patients was calculated by the Kaplan-Meier method and log-rank test. The roles of Dock6 and miR-148b-3p in GC were investigated by in vitro and in vivo functional studies. Rac1 and Cdc42 activation was investigated by GST pull-down assays. The inhibition of Dock6 transcription by miR-148b-3p was determined by luciferase reporter assays. Results A significant increase in Dock6 expression was found in GC tissues compared with nontumor tissues, and its positive expression was associated with lymph node metastasis and a higher TNM stage. Patients with positive Dock6 expression exhibited shorter overall survival periods than patients with negative Dock6 expression. Dock6 promoted GC migration and invasion by increasing the activation of Rac1 and Cdc42. miR-148b-3p expression was negatively correlated with Dock6 expression in GC, and it decreased the motility of GC cells by inhibiting the Dock6/Rac1/Cdc42 axis. Conclusions Dock6 was over-expressed in GC tissues, and its positive expression was associated with GC metastasis and indicated poor prognosis of GC patients. Targeting of Dock6 by miR-148b-3p could activate Rac1 and Cdc42, directly affecting the motility of GC cells. Targeting the Dock6-Rac1/Cdc42 axis could serve as a new therapeutic strategy for GC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0729-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Di Chen
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China.,Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Rui Wang
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotheraphy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weijie Wang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhijie Lei
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jie Liang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Srinivasan S, Ashok V, Mohanty S, Das A, Das S, Kumar S, Sen S, Purwar R. Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells. Oncotarget 2017; 8:21418-21428. [PMID: 28199964 PMCID: PMC5400594 DOI: 10.18632/oncotarget.15248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Recent studies have implicated the roles of cancer stem like cells (CSCs) in cancer metastasis. However, very limited knowledge exists at the molecular and cellular level to target CSCs for prevention of cancer metastasis. In this study, we examined the roles of contractile dynamics of CSCs in cell invasion and delineated the underlying molecular mechanisms of their distinct cell invasion potential. Using de-adhesion assay and atomic force microscopy, we show that CSCs derived from melanoma and breast cancer cell lines exhibit increased contractility compared to non-CSCs across all tumor types. In addition, CSCs possess increased ECM remodeling capacity as quantified by collagen degradation assay. More importantly, pharmacological blockade of Rho-associated protein kinase completely abolished the contractility and collagen degradation capacity of both CSCs and non-CSCs. In conclusion, our study demonstrates the importance of cell contractility in regulating invasiveness of CSCs and suggests that pharmacological targeting of ROCK pathway represents a novel strategy for targeting both CSCs and bulk population for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Srisathya Srinivasan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Vandhana Ashok
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Sagarajit Mohanty
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Alakesh Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Sreya Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Wu DD, Chen X, Sun KX, Wang LL, Chen S, Zhao Y. Role of the lncRNA ABHD11-AS 1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol Cancer 2017; 16:138. [PMID: 28818073 PMCID: PMC5561620 DOI: 10.1186/s12943-017-0709-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is increasing evidence in support of the role of lncRNAs in tumor cell proliferation, differentiation and apoptosis. METHODS We examined the expression of the lncRNA ABHD11-AS1 in epithelial ovarian cancer (EOC) tissues and normal ovarian tissues by real-time quantitative PCR (qRT-PCR). After inducing ABHD11-AS1 downregulation by small interfering RNA (siRNA) or ABHD11-AS1 overexpression by plasmid transfection, we examined the EOC cell phenotypes and expression of related molecules. RESULTS Expression of the lncRNA ABHD11-AS1 in EOC tissues was higher than that in normal ovarian tissue. It was positively associated with the tumor stage (stage I/II vs. stage III/IV), and it was lower in the well-differentiated group than in the poorly/moderately differentiated group. Overexpression of ABHD11-AS1 in the ovarian cancer cell lines A2780 and OVCAR3 promoted ovarian cancer cell proliferation, invasion and migration, and inhibited apoptosis. Silencing of ABHD11-AS1 had the opposite effect. Subcutaneous injection of tumor cells in nude mice showed that ABHD11-AS1 could significantly promote tumor growth. In addition, intraperitoneal injection of tumor cells in the nude mice resulted in an increase in the metastatic ability of the tumor. Further, overexpression of ABHD11-AS1 upregulated the expression of RhoC and its downstream molecules P70s6k, MMP2 and BCL-xL. Silencing of ABHD11-AS1 had the opposite effect. The RNA pull-down assay showed that ABHD11-AS1 can combine directly with RhoC. Silencing of RhoC was found to inhibit the cancer-promoting effects of lncRNA ABHD11-AS1. Thus, it seems that RhoC is a major target of the lncRNA ABHD11-AS1. CONCLUSIONS This is the first study to demonstrate the role of RhoC in the tumor-promoting effects of the lncRNA ABHD11-AS1. The present findings shed light on new therapeutic targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Xi Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Kai-Xuan Sun
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Li-Li Wang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
14
|
Liu BL, Sun KX, Zong ZH, Chen S, Zhao Y. MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC). Oncotarget 2017; 7:6649-64. [PMID: 26673619 PMCID: PMC4872740 DOI: 10.18632/oncotarget.6544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 01/29/2023] Open
Abstract
Here we explore the role of microRNA-372 (miR-372) in tumorigenesis and development of endometrial adenocarcinoma (EC) and analyze the underlying mechanism. We found that miR-372 expression is much lower in EC than normal endometrial specimens. Cell function experiments demonstrated that miR-372 overexpression suppressed cell proliferation, migration, and invasion, and led to a G1 phase arrest and promoted the apoptosis of endometrial carcinoma cells in vitro. The nude mouse xenograft assay demonstrated that miR-372 overexpression suppressed tumor growth. RT-PCR and Western blot assays detected the expression of known targets of miR-372 in other malignant tumors and found Cyclin A1 and Cyclin-dependent Kinase 2 (CDK2) was downregulated by miR-372. Bioinformatic predictions and dual-luciferase reporter assays found that RhoC was a possible target of miR-372. RT-PCR and Western blot assays demonstrated that miR-372 transfection reduced the expression of RhoC, matrix metalloproteinase 2 (MMP2) and MMP9, while it increased the expression of cleaved poly (ADP ribose) polymerase (PARP) and bcl-2-associated X protein (Bax). The cell function experiments that transfected siRNA with RhoC showed the same trend as those which were transfected with miR-372. Taken together, our results demonstrated for the first time that miR-372 suppresses tumorigenesis and the development of EC; RhoC is a new and potentially important therapeutic target.
Collapse
Affiliation(s)
- Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 100013, China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
15
|
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene 2016; 36:3213-3222. [PMID: 27991930 PMCID: PMC5464989 DOI: 10.1038/onc.2016.473] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumors. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.
Collapse
Affiliation(s)
- I Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - J C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Y Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Zhong J, Chen Y, Wang LJ. Emerging molecular basis of hematogenous metastasis in gastric cancer. World J Gastroenterol 2016; 22:2434-2440. [PMID: 26937132 PMCID: PMC4768190 DOI: 10.3748/wjg.v22.i8.2434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lymphatic metastasis is commonly observed in gastric cancer (GC), but hematogenous metastasis is more likely responsible for the cancer-related mortality. Since Stephen Paget first introduced the “seed and soil hypothesis” a century ago, growing evidence recognizes that numerous essential secreted factors and signaling pathway effectors participate in the pre-metastatic niche formation and distant organ metastasis. The cross-talk between GC cells and surrounding microenvironment may consist of a series of interrelated steps, including epithelial mesenchymal transition, intravasation into blood vessels, circulating tumor cell translocation, and secondary organ metastasis. Secreted factors including vascular endothelial growth factor (VEGF), matrix metalloproteinases and cancer-derived extracellular vesicles, especially exosomes, are essential in formation of premetastatic niche. Circulating tumor cells and microRNAs represent as ‘‘metastatic intermediates’’ between primary tumors and sites of dissemination. Many biomarkers have been identified as novel metastatic markers and prognostic effectors. In addition, molecular therapy has been designed to target biomarkers such as growth factors (human epidermal growth factor receptor 2, VEGF) and chemokines, although they have not clearly proven to be effective in inhibiting GC metastasis in clinical trials. In this review, we will systematically discuss the emerging molecules and their microenvironment in hematogenous metastasis of GC, which may help us to find new therapeutic strategies in the future.
Collapse
|
17
|
Inhibition of Ovarian Epithelial Carcinoma Tumorigenesis and Progression by microRNA 106b Mediated through the RhoC Pathway. PLoS One 2015; 10:e0125714. [PMID: 25933027 PMCID: PMC4416747 DOI: 10.1371/journal.pone.0125714] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of the gynecological malignancies. Exploring the molecular mechanisms and major factors of invasion and metastasis could have great significance for the treatment and prognosis of EOC. Studies have demonstrated that microRNA 106b (miR-106b) may be a promising therapeutic target for inhibiting breast cancer bone metastasis, but the role of miR-106b in EOC is largely unknown. In this work, miRNA-106b expression was quantified in various ovarian tissues and tumors. Ovarian carcinoma cell lines were transfected with miR-106b, after which, cell phenotype and expression of relevant molecules was assayed. Dual-luciferase reporter assays and xenograft mouse models were also used to investigate miR-106b and its target gene. MiR-106b mRNA expression was found to be significantly higher in normal ovarian tissues and benign tumors than in ovarian carcinomas and borderline tumors (p < 0.01), and was negatively associated with differentiation (Well vs. Por & Mod) and the International Federation of Gynecology and Obstetrics (FIGO) staging (stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05). MiR-106b transfection reduced cell proliferation; promoted G1 or S arrest and apoptosis (p < 0.05); suppressed cell migration and invasion (p < 0.05); reduced Ras homolog gene family member C (RhoC), P70 ribosomal S6 kinase (P70S6K), Bcl-xL, Matrix metallopeptidase 2 (MMP2), MMP9 mRNA and protein expression; and induced p53 expression (p < 0.05). Dual-luciferase reporter assays indicated that miR-106b directly targets RhoC by binding its 3’UTR. MiR-106b transfection also suppressed tumor development and RhoC expression in vivo in xenograft mouse models. This is the first demonstration that miR-106b may inhibit tumorigenesis and progression of EOC by targeting RhoC. The involvement of miR-106b-mediated RhoC downregulation in EOC aggression may give extended insights into molecular mechanisms underlying cancer aggression. Approaches aimed at overexpressing miR-106b may serve as promising therapeutic strategies for treating EOC patients.
Collapse
|
18
|
Ji Y, Wei Y, Wang J, Gong K, Zhang Y, Zuo H. Correlation of microRNA-10b upregulation and poor prognosis in human gliomas. Tumour Biol 2015; 36:6249-54. [PMID: 25773393 DOI: 10.1007/s13277-015-3310-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to detect the association between the microRNA-10b (miR-10b) expression level and prognosis in glioma patients. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to measure the expression of miR-10b levels in different-grade glioma tissues and normal brain tissues. The relationship between miR-10b expression levels and clinical pathological characteristics was statistically analyzed. The influence of miR-10b on survival of glioma patients was also analyzed. As a result, miR-10b expression levels in glioma tissues were significantly increased compared to those of normal brain tissues (p < 0.001). And the increased expression levels were associated with the advanced glioma grade (p < 0.001) and larger tumor size (p < 0.001). Moreover, the results of the Kaplan-Meier survival curve indicated that overall survival (OS) and progression-free survival (PFS) were significantly poorer in the high-expression-level group than those in the low-expression-level group (p < 0.001). Finally, the results of the multivariate Cox regression model indicated that the miR-10b expression level was an independent prognostic factor for glioma patients. Taken together, these findings offer convincing evidence that increased miR-10b expression may be an independent marker to predict poor prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Yuchen Ji
- Medical Center, Tsinghua University, Haidian District, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
19
|
Chen X, Chen S, Xiu YL, Sun KX, Zong ZH, Zhao Y. RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer 2015; 14:31. [PMID: 25649143 PMCID: PMC4328068 DOI: 10.1186/s12943-015-0304-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/25/2015] [Indexed: 12/27/2022] Open
Abstract
Background An increasing amount of evidence has revealed that microRNAs regulate various biological processes, including cell differentiation, cell proliferation, apoptosis, drug resistance, and fat metabolism. Studies have shown that miR-93’s targetome in cancer has not been fully defined. Moreover, the role of miR-93 in epithelial ovarian carcinoma (EOC) remains largely unknown. Methods MIR-93 mRNA expression in normal ovarian tissue, benign tumors, borderline tumors, primary ovarian carcinomas, and metastatic omentum was quantified. The ovarian carcinoma cell lines OVCAR3, SKOV3/DDP, and HO8910-PM were transfected with miR-93-5P, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-93 and its target gene RHOC (Ras homolog gene family member C). Results MIR-93 mRNA expression was significantly lower in ovarian carcinomas and borderline tumors than in normal ovarian tissues (p < 0.05), and was lower in metastatic omentum than in relative primary ovarian carcinomas (p < 0.05). MIR-93 mRNA expression was also negatively associated with differentiation (well vs. poor and moderate) and International Federation of Gynecology and Obstetrics staging (FIGO stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05), besides, miR-93 was higher expressed in mucinous adenocarcinoma than the other types (p < 0.05). MiR-93-5P overexpression reduced proliferation (p < 0.05); promoted G1 or S arrest and apoptosis (p < 0.05); suppressed migration and invasion (p < 0.05); and reduced RhoC, P70S6 kinase, Bcl-xL, matrix metalloproteinase 9 (MMP9) mRNA or protein expression; conversely, it induced P53 and cleaved PARP expression (p < 0.05). Dual-luciferase reporter assay indicated that miR-93 directly targeted RhoC by binding its 3′ untranslated region. MiR-93-5P transfection also suppressed tumor development and RhoC expression (determined by immunohistochemistry) in vivo in the xenograft mouse model (p < 0.05). Conclusions This is the first demonstration that miR-93-5P may inhibit EOC tumorigenesis and progression by targeting RhoC. These findings indicate that miR-93-5P is a potential suppressor of ovarian cellular proliferation. The involvement of miR-93-5P–mediated RhoC downregulation in inhibiting EOC aggressiveness may provide extended insight into the molecular mechanisms underlying cancer aggressiveness.
Collapse
Affiliation(s)
- Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, P. R. China.
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| |
Collapse
|
20
|
Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol 2014; 20:13756-13766. [PMID: 25320513 PMCID: PMC4194559 DOI: 10.3748/wjg.v20.i38.13756] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 04/21/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases (ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition, the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility, there are two modes of tumor cell movement: mesenchymal and amoeboid. In addition, cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer. In addition, we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.
Collapse
|
21
|
Gou WF, Zhao Y, Lu H, Yang XF, Xiu YL, Zhao S, Liu JM, Zhu ZT, Sun HZ, Liu YP, Xu F, Takano Y, Zheng HC. The role of RhoC in epithelial-to-mesenchymal transition of ovarian carcinoma cells. BMC Cancer 2014; 14:477. [PMID: 24986540 PMCID: PMC4226981 DOI: 10.1186/1471-2407-14-477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/19/2014] [Indexed: 01/16/2023] Open
Abstract
Background RhoC is a small G protein/GTPase and involved in tumor mobility, invasion and metastasis. Previously, up-regulated RhoC expression is found to play an important role in ovarian carcinogenesis and subsequent progression by modulating proliferation, apoptosis, migration and invasion. Methods We transfected RhoC-expressing plasmid and RhoC siRNA into CAOV3 and OVCAR3 cells respectively. These cells and transfectants were exposed to vascular epithelial growth factor (VEGF), transforming growth factor (TGF)-β1 or their receptor inhibitors with the phenotypes and their related-molecules examined. Results TGF-β1R or VEGFR inhibitor suppressed the proliferation, migration, invasion and lamellipodia formation, the expression of N-cadherin, α-SMA, snail and Notch1 mRNA or protein, and enhanced E-cadherin mRNA and protein expression in CAOV3 and its RhoC-overexpressing transfectants, whereas both growth factors had the opposite effects in OVCAR3 cells and their RhoC-hypoexpressing transfectants. Ectopic RhoC expression enhanced migration, invasion, lamellipodia formation and the alteration in epithelial to mesenchymal transition (EMT) markers of CAOV3 cells regardless of the treatment of VEGFR or TGF-β1R inhibitor, whereas RhoC knockdown resulted in the converse in OVCAR3 cells even with the exposure to VEGF or TGF-β1. Conclusion RhoC expression might be involved in EMT of ovarian epithelial carcinoma cells, stimulated by TGF-β1 and VEGF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hua-chuan Zheng
- Cancer Research Center, The First Affiliated Hospital of Liaoning Medical University, 121001 Jinzhou, China.
| |
Collapse
|
22
|
Clinical and pathological features of miR-10b and RHOC gene expression in hepatocellular carcinoma. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Abstract
Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho GTPases, and their function in tumor stem cells and tumor stroma. This review summarizes these novel findings and tries to define challenging questions for future research.
Collapse
Affiliation(s)
- Hui Li
- University of Copenhagen, BRIC, BMI, 2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Gao L, Xie H, Dong L, Zou J, Fu J, Gao X, Ou L, Xiang S, Song H. Gankyrin is essential for hypoxia enhanced metastatic potential in breast cancer cells. Mol Med Rep 2013; 9:1032-6. [PMID: 24337075 DOI: 10.3892/mmr.2013.1860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Hypoxia, a critical regulator of tumor growth and metastasis, induces the transcriptional activation of several pathways involved in proliferation, migration and invasion. Gankyrin was found to be overexpressed, and also promoted the metastasis in breast cancer cells, which is also involved in the regulation of hypoxia inducible factor‑1 and hypoxia‑inducible factor‑1α. The present study showed that gankyrin mRNA and protein expression were increased under hypoxic conditions in the BT474 breast cancer cell line, accompanied with increased ability of cell migration and invasion. Lentivirus‑mediated siRNA targeting gankyrin was transfected into BT474 cells. Wound‑healing and transwell experiments showed that gankyrin deletion abrogated the increased migration and invasion of BT474 cells due to hypoxia. In addition, E‑cadherin was found to be involved in the gankyrin induced invasion of breast cancer cells due to hypoxia. The present study indicated that gankyrin deletion abrogated the increased metastatic potential of breast cancer cells under hypoxic conditions partly through regulating E‑cadherin, suggesting that an improved understanding of gankyrin may offer a potential therapeutic target for the treatment of human breast cancer metastasis.
Collapse
Affiliation(s)
- Liucun Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Huahong Xie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Lihou Dong
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Jia Zou
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Jie Fu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xin Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Lun Ou
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Shensi Xiang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
25
|
Feng B, Li K, Zhong H, Ren G, Wang H, Shang Y, Bai M, Liang J, Wang X, Fan D. RhoE promotes metastasis in gastric cancer through a mechanism dependent on enhanced expression of CXCR4. PLoS One 2013; 8:e81709. [PMID: 24312338 PMCID: PMC3843694 DOI: 10.1371/journal.pone.0081709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
RhoE, a novel member of the Rho protein family, is a key regulator of the cytoskeleton and cell migration. Our group has previously shown that RhoE as a direct target for HIF-1α and mediates hypoxia-induced epithelial to mesenchymal transition in gastric cancer cells. Therefore, we assumed that RhoE might play an important role in gastric cancer metastasis. In the present study, we have explored the role of RhoE expression in gastric cancer, cell invasion and metastasis, and the influence of RhoE on regulating the potential expression of down-stream genes. RhoE expression was elevated in gastric cancer tissues as compared with normal gastric tissues. We also found a close correlation between the histological grade and the diagnosis of the patient. Up-regulation of RhoE significantly enhanced the migratory and invasive abilities of gastric cancer cells both in vitro and in vivo. Moreover, down-regulation of RhoE diminished the metastatic potential of cancer cells. PCR array and subsequent transwell assay showed that the regulation of gastric cancer metastasis by RhoE was partially mediated by CXCR4. This observation suggested that CXCR4 might be a downstream effector for RhoE. In summary, our study identified RhoE as a novel prognostic biomarker and metastatic-promoting gene of gastric cancer.
Collapse
Affiliation(s)
- Bin Feng
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kai Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gui Ren
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hefei Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ming Bai
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| | - Xin Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| |
Collapse
|
26
|
Zhao Y, Zheng HC, Chen S, Gou WF, Xiao LJ, Niu ZF. The role of RhoC in ovarian epithelial carcinoma: a marker for carcinogenesis, progression, prognosis, and target therapy. Gynecol Oncol 2013; 130:570-8. [PMID: 23764197 DOI: 10.1016/j.ygyno.2013.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ras homolog gene family member C (RhoC) is a small G protein/guanosine triphosphatase involved in tumor mobility, invasion, and metastasis. METHODS After RhoC siRNA transfection, we measured the changes in phenotypes and some relevant molecules in ovarian carcinoma cell, OVCAR3. The mRNA and protein expression of RhoC was detected in ovarian tumors. RESULTS RhoC siRNA transfection resulted in low growth, G1 arrest, and apoptotic induction in the OVCAR3 in comparison with the control and mock. Following RhoC knockdown, there was reduced mRNA or protein expression of protein kinase B (Akt), signal transducer and activator of transcription 3 (stat3), bcl-xL, surviving and phosphorylated p70S6 kinase (p-p70s6k), while the converse was true for Bax and caspase-3. Lovastatin induced apoptosis, suppressed proliferation, migration and invasion, and disrupted lamellipodia formation in OVCAR3. Lovastatin exposure induced lower RhoC, bcl-2, matrix metalloproteinase-9 (MMP-9), survivin, Akt, bcl-xL, vascular endothelial growth factor (VEGF), and p-p70s6k expression in OVCAR3 compared to the control, but higher caspase-3 and Bax expression. RhoC mRNA and protein expression was significantly higher in ovarian carcinoma than in benign tumors and normal ovary tissue (p<0.05) and was positively associated with dedifferentiation, FIGO staging and p-p70s6k expression of ovarian carcinoma (p<0.05). CONCLUSIONS The up-regulated RhoC expression may affect ovarian carcinogenesis and should be considered a good biomarker for the differentiation and progression of ovarian carcinoma. RhoC plays an important role in apoptosis by modulating the relevant genes and the phosphorylation of downstream p70s6k.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Caspase 3/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Female
- G1 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Inhibitor of Apoptosis Proteins/metabolism
- Lovastatin/pharmacology
- Matrix Metalloproteinase 9/metabolism
- Middle Aged
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovary/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- STAT3 Transcription Factor/metabolism
- Survivin
- Tissue Array Analysis
- Transfection
- Vascular Endothelial Growth Factor A/metabolism
- Young Adult
- bcl-2-Associated X Protein/metabolism
- bcl-X Protein/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoC GTP-Binding Protein
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | | | | | | | | | | |
Collapse
|
27
|
Overexpression of Ras homologous C (RhoC) induces malignant transformation of hepatocytes in vitro and in nude mouse xenografts. PLoS One 2013; 8:e54493. [PMID: 23382905 PMCID: PMC3559837 DOI: 10.1371/journal.pone.0054493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/12/2012] [Indexed: 01/25/2023] Open
Abstract
Ras homologous C (RhoC) is expressed in various cancers, including hepatocellular carcinoma (HCC). In this study, we first analyzed RhoC expression in 46 HCC tissue specimens and found that RhoC expression was significantly increased in HCC tissues compared to the adjacent normal liver tissues. Next, we investigated the role of RhoC in malignant transformation of normal hepatocytes. The HL7702 cell line was stably transfected with a RhoC expression vector and then subjected to cell proliferation, differentiation, colony formation, migration and invasion assays, as well as nude mouse xenograft assays. Gene expressions in these cells were determined using RT-PCR and Western blot. Overexpression of RhoC significantly promoted proliferation and anchorage-independent growth of HL7702 cells, but suppressed cell differentiation, as compared with the parental cells and the empty vector-transfected control cells. Moreover, RhoC overexpression induced migration and invasion of HL7702 cells in vitro. Molecularly, RhoC increased the expression of cell cycle-related genes, matrix metalloprotease 2 (MMP2), MMP9 and vascular endothelial growth factor (VEGF). In addition, RhoC-transfected cells formed tumors in nude mice, whereas vector-transfected HL7702 cells did not form any tumors in nude mice. This study demonstrated the role of RhoC overexpression in malignant transformation of normal human hepatocytes, suggesting that RhoC may function as an oncogene in hepatocytes.
Collapse
|
28
|
Utility of RhoC and ZAG protein expression as biomarkers for prediction of pSa failure following radical prostatectomy for high grade prostate cancer. Pathology 2012; 44:513-8. [DOI: 10.1097/pat.0b013e3283581780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Unsal-Kacmaz K, Ragunathan S, Rosfjord E, Dann S, Upeslacis E, Grillo M, Hernandez R, Mack F, Klippel A. The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol 2011; 6:284-98. [PMID: 22217540 DOI: 10.1016/j.molonc.2011.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 12/24/2022] Open
Abstract
PKN3 is an AGC-family protein kinase implicated in growth of metastatic prostate cancer cells with phosphoinositide 3-kinase pathway deregulation. The molecular mechanism, however, by which PKN3 contributes to malignant growth and tumorigenesis is not well understood. Using orthotopic mouse tumor models, we now show that inducible knockdown of PKN3 protein not only blocks metastasis, but also impairs primary prostate and breast tumor growth. Correspondingly, overexpression of exogenous PKN3 in breast cancer cells further increases their malignant behavior and invasiveness in-vitro. Mechanistically, we demonstrate that PKN3 physically interacts with Rho-family GTPases, and preferentially with RhoC, a known mediator of tumor invasion and metastasis in epithelial cancers. Likewise, RhoC predominantly associates with PKN3 compared to its closely related PKN family members. Unlike the majority of Rho GTPases and PKN molecules, which are ubiquitously expressed, both PKN3 and RhoC show limited expression in normal tissues and become upregulated in late-stage malignancies. Since PKN3 catalytic activity is increased in the presence of Rho GTPases, the co-expression and preferential interaction of PKN3 and RhoC in tumor cells are functionally relevant. Our findings provide novel insight into the regulation and function of PKN3 and suggest that the PKN3-RhoC complex represents an attractive therapeutic target in late-stage malignancies.
Collapse
Affiliation(s)
- Keziban Unsal-Kacmaz
- Oncology Research Unit, Pfizer Oncology, Pfizer Worldwide Research and Development, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang SY, Zhang L, Zhang H, Du WL, Zhang Z, Wang JL, Wu XY, He Y, Zeng X, Liu C, Jiao X. Establishment and preliminary identification of a mouse hepatocellular carcinoma cell line with high metastatic potential to the lung. Shijie Huaren Xiaohua Zazhi 2011; 19:1674-1679. [DOI: 10.11569/wcjd.v19.i16.1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To establish a mouse H22 hepatocellular carcinoma cell line with high metastatic potential to the lung to provide a suitable model for the study of metastasis-related molecular mechanisms.
METHODS: H22 hepatocellular ascitic tumor cells (M0) were inoculated into mice via the vena caudalis, and pulmonary metastatic lesions were harvested to refabricate ascitic tumor cells. The obtained cells were inoculated into mice again via the vena caudalis to form pulmonary metastatic nodes. The same procedure was repeated four times to obtain a cell line with high metastatic potential to the lung (M4). The metastatic ability in vivo, proliferation capability in vitro, cell division index, and cell cycle distribution of M4 cells were measured. The mRNA expression of the RhoC gene in M4 cells was detected by RT-PCR.
RESULTS: After injection via the vena caudalis, M4 cells produced pulmonary metastasis earlier and formed more and larger nodes. Compared to M0 cells, the doubling time of M4 cells was shortened by 38.73%; cell division index significantly increased (P = 0.014); and the proportion of cells in S phase was significantly higher (P = 0.022). The number of chromatosomes was comparable between M0 and M4 cells, while heteromorphism was more obvious in M4 cells. The mRNA expression of the RhoC gene was significantly higher in M4 cells than in M0 cells (1.011 ± 0.163 vs 0.486 ± 0.045, P = 0.0029).
CONCLUSION: A mouse hepatocellular carcinoma cell line with high metastatic potential to the lung has been established successfully.
Collapse
|
31
|
Shimoyama S. Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers. Cancer Chemother Pharmacol 2011; 67:729-39. [DOI: 10.1007/s00280-011-1583-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
|
32
|
Zhou J, Zhu Y, Zhang G, Liu N, Sun L, Liu M, Qiu M, Luo D, Tang Q, Liao Z, Zheng Y, Bi F. A distinct role of RhoB in gastric cancer suppression. Int J Cancer 2011; 128:1057-68. [PMID: 20473933 DOI: 10.1002/ijc.25445] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although Rho family GTPases RhoA, RhoB and RhoC share more than 85% amino acid sequence identity, they may play distinct roles in tumor progression. RhoA and RhoC have been suggested to have positive effects on tumor progression, but the role of RhoB in cancer, particularly in gastric cancer, remains unclear. In our study, we have examined the expression levels of these three Rho GTPases in a large panel of specimens from gastric cancer patients by immunohistochemistry. We found that RhoA and RhoC expression were significantly elevated, while RhoB was reduced or absent, in surgically removed gastric cancer tissues when compared to normal gastric tissues. The significant reduction of RhoB expression was confirmed in another group of gastric cancer samples in comparison to the adjacent non-neoplastic tissues. Then we transfected the plasmids containing RhoA, RhoB or RhoC cDNA into two gastric cancer cell lines, SGC7901 and AGS cells, respectively. By overexpression experiments, we found that RhoA promoted the gastric cancer cell proliferation and RhoC stimulated migration and invasion of the cancer cell. RhoB expression, however, significantly inhibited the proliferation, migration and invasion of the gastric cancer cells and also enhanced the chemosensitivity of these cells to anticancer drugs. It appears that RhoB plays an opposing role from that of RhoA and/or RhoC in gastric cancer cells. Our work suggests that RhoB may play a tumor suppressor role and subsequently may have potential implications in future targeted therapy.
Collapse
Affiliation(s)
- Jitao Zhou
- Department of Medical Oncology and Laboratory of Signal Transduction and Molecular Targeting Therapy, The State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Evelyn CR, Bell JL, Ryu JG, Wade SM, Kocab A, Harzdorf NL, Showalter HDH, Neubig RR, Larsen SD. Design, synthesis and prostate cancer cell-based studies of analogs of the Rho/MKL1 transcriptional pathway inhibitor, CCG-1423. Bioorg Med Chem Lett 2010; 20:665-72. [PMID: 19963382 PMCID: PMC2818594 DOI: 10.1016/j.bmcl.2009.11.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
We recently identified bis(amide) CCG-1423 (1) as a novel inhibitor of RhoA/C-mediated gene transcription that is capable of inhibiting invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. An initial structure-activity relationship study focusing on bioisosteric replacement of the amides and conformational restriction identified two compounds, 4g and 8, with improved selectivity for inhibition of RhoA/C-mediated gene transcription and attenuated cytotoxicity relative to 1. Both compounds were also capable of inhibiting cell invasion with equal efficacy to 1 but with less attendant cytotoxicity.
Collapse
Affiliation(s)
- Chris R. Evelyn
- Department of Pharmacology-University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica L. Bell
- Department of Medicinal Chemistry-College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenny G. Ryu
- Department of Medicinal Chemistry-College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan M. Wade
- Department of Pharmacology-University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew Kocab
- Department of Pharmacology-University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole L. Harzdorf
- Department of Medicinal Chemistry-College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - H. D. Hollis Showalter
- Department of Medicinal Chemistry-College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard R. Neubig
- Department of Pharmacology-University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott D. Larsen
- Department of Medicinal Chemistry-College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 2009; 125:1407-13. [PMID: 19536818 DOI: 10.1002/ijc.24522] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are effective post-transcriptional regulators of gene expression and are important in many biological processes. Although the oncogenic and tumor suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumor invasion and migration remains largely unexplored. Recently, miR-10b was identified as an miRNA highly expressed in metastatic breast cancer, promoting cell migration and invasion. Here, we performed real-time reverse transcriptase polymerase chain reaction (RT-PCR) assays on 43 glioma samples (17 glioblastoma, 6 anaplastic astrocytoma, 10 low-grade astrocytoma, 6 oligodendroglioma and 4 ependymoma) and 6 glioma cell lines. We found that miR-10b expression was upregulated in all glioma samples compared to non-neoplastic brain tissues. The expression levels of miR-10b were associated with higher grade glioma. In addition, mRNA expressions of RhoC and urokinase-type plasminogen activator receptor (uPAR), which were thought to be regulated by miR-10b via HOXD10, were statistically significantly correlated with the expression of miR-10b (p < 0.001, p = 0.001, respectively). Also, protein expression levels of RhoC and uPAR were associated with expression levels of miR-10b (p = 0.009, p = 0.014, respectively). Finally, multifocal lesions on enhanced MRI of 7 malignant gliomas were associated with higher expression levels of miR-10b (p = 0.02). Our data indicated that miR-10b might play some role in the invasion of glioma cells.
Collapse
Affiliation(s)
- Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Japan.
| | | | | | | | | |
Collapse
|
35
|
Boone B, Van Gele M, Lambert J, Haspeslagh M, Brochez L. The role of RhoC in growth and metastatic capacity of melanoma. J Cutan Pathol 2009; 36:629-36. [DOI: 10.1111/j.1600-0560.2008.01117.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Hutchison N, Hendry BM, Sharpe CC. Rho isoforms have distinct and specific functions in the process of epithelial to mesenchymal transition in renal proximal tubular cells. Cell Signal 2009; 21:1522-31. [PMID: 19477269 DOI: 10.1016/j.cellsig.2009.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 05/07/2009] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is involved in embryological development, cancerous metastatic spread and organ fibrosis, including the kidney. This process is largely driven by transforming growth factor-beta and recent evidence has implicated Rho as a key intracellular signalling molecule. In this study we have used RNA interference to silence the genetically distinct Rho (A, B and C) isoforms to define their individual functions in human kidney epithelial cells undergoing EMT. We demonstrate that the downregulation of the epithelial cell marker E-cadherin is dependent upon the Rho effector, Rho-kinase. However, silencing RhoA or RhoC expression also results in E-cadherin loss, though each by different mechanisms. Loss of RhoA leads to an upregulation of Snail1 and a reduction in the transcription of E-cadherin whereas loss of RhoC upregulates its breakdown via proteasomal degradation. During EMT, the upregulation of alpha-smooth muscle actin can be blocked by inhibiting the expression of RhoA, but not by that of RhoB or RhoC. This effect is independent of Rho-kinase activity. RhoC is the isoform solely responsible for stress fibre formation and inhibiting its expression reduces EMT-induced migration by 50%. RhoB appears to play a role in cell survival as inhibiting its expression leads to >300% increase in cell apoptosis and a relocalization of focal adhesion kinase. We conclude that Rho is a key signalling molecule in the process of EMT but that each isoform has a distinct and specific role.
Collapse
Affiliation(s)
- Nicol Hutchison
- King's College London, Department of Renal Medicine, London, UK
| | | | | |
Collapse
|
37
|
Rho GTPase function in tumorigenesis. Biochim Biophys Acta Rev Cancer 2009; 1796:91-8. [PMID: 19327386 DOI: 10.1016/j.bbcan.2009.03.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 02/07/2023]
Abstract
Malignant tumor cells display uncontrolled proliferation, loss of epithelial cell polarity, altered interactions with neighboring cells and the surrounding extracellular matrix, and enhanced migratory properties. Proteins of the Rho GTPase family regulate all these processes in cell culture and, for that reason, Rho GTPases, their regulators, and their effectors have been suggested to control tumor formation and progression in humans. However, while the tumor-relevant functions of Rho GTPases are very well documented in vitro, we are only now beginning to assess their contribution to cancer in human patients and in animal models. This review will give a very brief overview of Rho GTPase function in general and then focus on in vivo evidence for a role of Rho GTPases in malignant tumors, both in human patients and in genetically modified mice.
Collapse
|
38
|
The effect of RhoC siRNA on the invasiveness and proliferation of human cervical cancer cell line SiHa cells. ACTA ACUST UNITED AC 2008; 28:665-9. [PMID: 19107362 DOI: 10.1007/s11596-008-0611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Indexed: 10/19/2022]
Abstract
This study investigated the effect of RhoC GTPase on the proliferation and metastasis of cervical cancer cells, SiHa cells, in vitro. RhoC siRNA was introduced into SiHa cells to silence the RhoC gene. The mRNA and protein expression of RhoC, before and after RhoC siRNA transfection, was examined by RT-PCR and Western blotting, respectively. The proliferation and apoptosis of SiHa cells were examined by MTT assay and flow cytometry (FACS), respectively. Adhesive rate was evaluated by Matrigel adhesive assay, and the invasive capability and migration capability were assessed by transwell invasive assay and migration assay, respectively. The results showed that after the RhoC siRNA transfection, the mRNA and protein expression of RhoC was down-regulated in SiHa cells. The down-regulation of RhoC GTPase did not affect the cell proliferation and apoptosis (P>0.05), but it did suppress SiHa cells' adhesion to matrigel (P<0.01), the invasive capability (P<0.01) and the migration capability (P<0.01). It was concluded that RhoC obviously promotes the adhesion, invasion and migration of SiHa cells in vitro, but not proliferation and apoptosis, suggesting that RhoC plays an important role in the progression in cervical cancer.
Collapse
|
39
|
Carbone A, Bernardini L, Valenzano F, Bottillo I, De Simone C, Capizzi R, Capalbo A, Romano F, Novelli A, Dallapiccola B, Amerio P. Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF. Genes Chromosomes Cancer 2008; 47:1067-75. [PMID: 18663754 DOI: 10.1002/gcc.20601] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The etiology of mycosis fungoides (MF), the most frequent form of cutaneous T cell lymphoma (CTCL), is poorly understood. No specific genetic aberration has been detected, especially in early-stage disease, possibly due to the clinical and histological heterogeneity of patient series and to the different sources of malignant cells (skin, blood, or lymph node) included in most studies. Frozen skin biopsies from 16 patients with early-stage MF were studied using array-based comparative genomic hybridization. A DNA pool from healthy donors was used as the reference. Results demonstrated recurrent loss of 19, 7p22.1-p22.3, 7q11.1-q11.23, 9q34.12, 12q24.31, and 16q22.3-q23.1, and gain of 8q22.3-q23.1 and 21q22.12. The 12q24.31 region was recurrently deleted in 7/16 patients. Real-time PCR investigation for deletion of genes BCL7A, SMAC/DIABLO, and RHOF-three tumor suppressor genes with a putative role in hematological malignancies-demonstrated that they were deleted in 9, 10, and 13 cases, respectively. The identified genomic alterations and individual genes could yield important insights into the early steps of MF pathogenesis.
Collapse
Affiliation(s)
- Angelo Carbone
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9:690-701. [PMID: 18719708 DOI: 10.1038/nrm2476] [Citation(s) in RCA: 1448] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rho GTPases are key regulators of cytoskeletal dynamics and affect many cellular processes, including cell polarity, migration, vesicle trafficking and cytokinesis. These proteins are conserved from plants and yeast to mammals, and function by interacting with and stimulating various downstream targets, including actin nucleators, protein kinases and phospholipases. The roles of Rho GTPases have been extensively studied in different mammalian cell types using mainly dominant negative and constitutively active mutants. The recent availability of knockout mice for several members of the Rho family reveals new information about their roles in signalling to the cytoskeleton and in development.
Collapse
Affiliation(s)
- Sarah J Heasman
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK.
| | | |
Collapse
|
41
|
Rho GTPases: functions and association with cancer. Clin Exp Metastasis 2007; 24:657-72. [DOI: 10.1007/s10585-007-9119-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/16/2007] [Indexed: 12/18/2022]
|
42
|
Pukrop T, Binder C. The complex pathways of Wnt 5a in cancer progression. J Mol Med (Berl) 2007; 86:259-66. [PMID: 17952396 DOI: 10.1007/s00109-007-0266-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 01/08/2023]
Abstract
In contrast to the transforming members of the Wnt family, shown to be upregulated in many cancers, the role of Wnt 5a is still controversial. While it has been attributed a tumour suppressor function in some malignancies, there is increasing evidence of promigratory and proinvasive effects in others, mediated predominantly through the planar cell polarity pathway and activation of protein kinase C. Obviously, the outcome of an individual Wnt 5a signal is dependent on a multitude of variables, ranging from availability of receptors, downstream effectors, and inhibitors to external influences coming from the tumour microenvironment and the extracellular matrix.
Collapse
Affiliation(s)
- Tobias Pukrop
- Department of Haematology/Oncology, Georg-August-University, Robert Koch street, 40, 37099 Göttingen, Germany
| | | |
Collapse
|