1
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, Woo Y. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers (Basel) 2023; 15:5661. [PMID: 38067366 PMCID: PMC10705752 DOI: 10.3390/cancers15235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Audrey Jung
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Supriya Deshpande
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Anthony K. Park
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers (Basel) 2023; 15:5107. [PMID: 37894473 PMCID: PMC10605802 DOI: 10.3390/cancers15205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Peritoneal carcinomatosis originating from gastric/gastroesophageal junction cancer (GC-PC) occurs in a defined subset of gastric cancer patients with unique clinical, pathologic, molecular and immunologic characteristics that create significant obstacles to effective treatment with modern therapy. Although systemic chemo- and immuno- therapy have yielded disappointing results in GC-PC, recent advances in the characterization of GC-PC and peritoneal immune biology present new opportunities for targeted therapeutics. In this review article, we discuss the distinct properties of GC-PC and the peritoneal immune environment as they pertain to current and investigative treatment strategies. We discuss pre-clinical studies and clinical trials relevant to the modulation of the peritoneal environment as a therapeutic intervention in GC-PC. Finally, we present a road map for future combinatorial strategies based on the conception of the peritoneal cavity as a bioreactor. Within this isolated compartment, prevailing immunosuppressive conditions can be altered through regional interventions toward an adaptive phenotype that would support the effectiveness of regionally delivered cellular therapy products. It is hoped that novel combination strategies would promote efficacy not only in the sequestered peritoneal environment, but also via migration into the circulation of tumor-reactive lymphocytes to produce durable systemic disease control, thereby improving oncologic outcome and quality of life in patients with GC-PC.
Collapse
Affiliation(s)
- Catherine R. Lewis
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Samuel A. Yellin
- Department of Surgery, Lehigh Valley Health Network, Allentown, PA 18101, USA;
| | - Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Hillman Cancer Centers, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Albert D. Donnenberg
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Casey J. Allen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| |
Collapse
|
4
|
Fujino H, Sonoda-Fukuda E, Isoda L, Kawabe A, Takarada T, Kasahara N, Kubo S. Retroviral Replicating Vectors Mediated Prodrug Activator Gene Therapy in a Gastric Cancer Model. Int J Mol Sci 2023; 24:14823. [PMID: 37834271 PMCID: PMC10573151 DOI: 10.3390/ijms241914823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Retroviral replicating vectors (RRVs) selectively replicate and can specifically introduce prodrug-activating genes into tumor cells, whereby subsequent prodrug administration induces the death of the infected tumor cells. We assessed the ability of two distinct RRVs generated from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which infect cells via type-III sodium-dependent phosphate transporters, PiT-2 and PiT-1, respectively, to infect human gastric cancer (GC) cells. A quantitative RT-PCR showed that all tested GC cell lines had higher expression levels of PiT-2 than PiT-1. Accordingly, AMLV, encoding a green fluorescent protein gene, infected and replicated more efficiently than GALV in most GC cell lines, whereas both RRVs had a low infection rate in human fibroblasts. RRV encoding a cytosine deaminase prodrug activator gene, which converts the prodrug 5-flucytosine (5-FC) to the active drug 5-fluorouracil, showed that AMLV promoted superior 5-FC-induced cytotoxicity compared with GALV, which correlated with the viral receptor expression level and viral spread. In MKN-74 subcutaneous xenograft models, AMLV had significant antitumor effects compared with GALV. Furthermore, in the MKN-74 recurrent tumor model in which 5-FC was discontinued, the resumption of 5-FC administration reduced the tumor volume. Thus, RRV-mediated prodrug activator gene therapy might be beneficial for treating human GC.
Collapse
Affiliation(s)
- Hiroaki Fujino
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| | - Lisa Isoda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ayane Kawabe
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Hyogo 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA;
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| |
Collapse
|
5
|
Shao S, Yang X, Zhang YN, Wang XJ, Li K, Zhao YL, Mou XZ, Hu PY. Oncolytic Virotherapy in Peritoneal Metastasis Gastric Cancer: The Challenges and Achievements. Front Mol Biosci 2022; 9:835300. [PMID: 35295845 PMCID: PMC8918680 DOI: 10.3389/fmolb.2022.835300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer death globally. Although the mortality rate in some parts of the world, such as East Asia, is still high, new treatments and lifestyle changes have effectively reduced deaths from this type of cancer. One of the main challenges of this type of cancer is its late diagnosis and poor prognosis. GC patients are usually diagnosed in the advanced stages of the disease, which is often associated with peritoneal metastasis (PM) and significantly reduces survival. This type of metastasis in patients with GC poses a serious challenge due to limitations in common therapies such as surgery and tumor resection, as well as failure to respond to systemic chemotherapy. To solve this problem, researchers have used virotherapy such as reovirus-based anticancer therapy in patients with GC along with PM who are resistant to current chemotherapies because this therapeutic approach is able to overcome immune suppression by activating dendritic cells (DCs) and eventually lead to the intrinsic activity of antitumor effector T cells. This review summarizes the immunopathogenesis of peritoneal metastasis of gastric cancer (PMGC) and the details for using virotherapy as an effective anticancer treatment approach, as well as its challenges and opportunities.
Collapse
Affiliation(s)
- Su Shao
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Xue Yang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Ke Li
- Guangdong Techpool Bio-pharma Co., Ltd., Guangzhou, China
| | - Ya-Long Zhao
- Guangdong Techpool Bio-pharma Co., Ltd., Guangzhou, China
| | - Xiao-Zhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiao-Zhou Mou, ; Pei-Yang Hu,
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Xiao-Zhou Mou, ; Pei-Yang Hu,
| |
Collapse
|
6
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Sugawara K, Iwai M, Yajima S, Tanaka M, Yanagihara K, Seto Y, Todo T. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:205-215. [PMID: 32346610 PMCID: PMC7178322 DOI: 10.1016/j.omto.2020.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Advanced gastric cancer, especially scirrhous gastric cancer with peritoneal dissemination, remains refractory to conventional therapies. G47Δ, a third-generation oncolytic herpes simplex virus type 1, is an attractive novel therapeutic agent for solid cancer. In this study, we investigated the therapeutic potential of G47Δ for human gastric cancer. In vitro, G47Δ showed good cytopathic effects and replication capabilities in nine human gastric cancer cell lines tested. In vivo, intratumoral inoculations with G47Δ (2 × 105 or 1 × 106 plaque-forming units [PFU]) significantly inhibited the growth of subcutaneous tumors (MKN45, MKN74, and 44As3). To evaluate the efficacy of G47Δ for advanced-stage models of gastric cancer, we generated an orthotopic tumor model and peritoneal dissemination models of human scirrhous gastric cancer (MKN45-luc and 44As3Luc), which have features mimicking intractable scirrhous cancer patients. G47Δ (1 × 106 PFU) was constantly efficacious whether administered intratumorally or intraperitoneally in the clinically relevant models. Notably, G47Δ injected intraperitoneally readily distributed to, and selectively replicated in, disseminated tumors. Furthermore, flow cytometric analyses of tumor-infiltrating cells in subcutaneous tumors revealed that intratumoral G47Δ injections markedly decreased M2 macrophages while increasing M1 macrophages and natural killer (NK) cells. These findings indicate the usefulness of G47Δ for treating human gastric cancer, including scirrhous gastric cancer and the ones in advanced stages.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shoh Yajima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
8
|
Lv Y, Zhou D, Hao XQ, Zhu MY, Zhang CD, Zhou DM, Wang JH, Liu RX, Wang YL, Gu WZ, Shen HQ, Chen X, Zhao ZY. A recombinant measles virus vaccine strain rMV-Hu191 has oncolytic effect against human gastric cancer by inducing apoptotic cell death requiring integrity of lipid raft microdomains. Cancer Lett 2019; 460:108-118. [PMID: 31226409 DOI: 10.1016/j.canlet.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
Live-attenuated strain of measles virus (MV) has oncolytic effect. In this study, the antitumor effect of rMV-Hu191, a recombinant Chinese Hu191 MV generated in our laboratory by efficient reverse genetics system, was evaluated in gastric cancer (GC). From our data, rMV-Hu191 induced cytopathic effects and inhibited tumor proliferation both in vitro and in vivo by inducing caspase-dependent apoptosis. In mice bearing GC xenografts, tumor size was reduced and survival was prolonged significantly after intratumoral injections of rMV-Hu191. Furthermore, lipid rafts, a type of membrane microdomain with specific lipid compositions, played an important role in facilitating entry of rMV-Hu191. Integrity of lipid rafts was required for successful viral infection as well as subsequent cell apoptosis, but was not required for viral binding and replication. CD46, a MV membrane receptor, was found to be partially localized in lipid rafts microdomains. This is the first study to demonstrate that Chinese Hu191 MV vaccine strain could be used as a potentially effective therapeutic agent in GC treatment. As part of the underlying cellular mechanism, the integrity of lipid rafts is required for viral entry and to exercise the oncolytic effect.
Collapse
Affiliation(s)
- Yao Lv
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Duo Zhou
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Xiao-Qiang Hao
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Meng-Ying Zhu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Chu-di Zhang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China.
| | - Jin-Hu Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China.
| | - Rong-Xian Liu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Yi-Long Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China.
| | - Wei-Zhong Gu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, 310052, Zhejiang, China.
| | - Hong-Qiang Shen
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, 310052, Zhejiang, China.
| | - Xi Chen
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China; Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, 310052, Zhejiang, China.
| | - Zheng-Yan Zhao
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China; Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
9
|
Zhao X, Zhang G, Liu S, Chen X, Peng R, Dai L, Qu X, Li S, Song H, Gao Z, Yuan P, Liu Z, Li C, Shang Z, Li Y, Zhang M, Qi J, Wang H, Du N, Wu Y, Bi Y, Gao S, Shi Y, Yan J, Zhang Y, Xie Z, Wei W, Gao GF. Human Neonatal Fc Receptor Is the Cellular Uncoating Receptor for Enterovirus B. Cell 2019; 177:1553-1565.e16. [PMID: 31104841 PMCID: PMC7111318 DOI: 10.1016/j.cell.2019.04.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023]
Abstract
Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.
Collapse
Affiliation(s)
- Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Guigen Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Sheng Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiangpeng Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Virology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhengrong Gao
- KunMing Institute of Zoology, Chinese Academy of Sciences, 650223 KunMing, China
| | - Pengfei Yuan
- EdiGene Inc, Life Science Park, 22 KeXueYuan Road, Changping District, 102206 Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Changyao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zifang Shang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Meifan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Han Wang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ning Du
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Wu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206 Beijing, China; WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Virology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206 Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
10
|
McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing Picornaviruses for Cancer Therapy. Cancers (Basel) 2019; 11:E685. [PMID: 31100962 PMCID: PMC6562951 DOI: 10.3390/cancers11050685] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
11
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
12
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
13
|
Takahashi R, Yokobori T, Osone K, Tatsuki H, Takada T, Suto T, Yajima R, Kato T, Fujii T, Tsutsumi S, Kuwano H, Asao T. Establishment of a novel method to evaluate peritoneal microdissemination and therapeutic effect using luciferase assay. Cancer Sci 2016; 107:341-6. [PMID: 26716425 PMCID: PMC4814254 DOI: 10.1111/cas.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 11/28/2022] Open
Abstract
Peritoneal dissemination is a major cause of recurrence in patients with malignant tumors in the peritoneal cavity. Effective anticancer agents and treatment protocols are necessary to improve outcomes in these patients. However, previous studies using mouse models of peritoneal dissemination have not detected any drug effect against peritoneal micrometastasis. Here we used the luciferase assay to evaluate peritoneal micrometastasis in living animals and established an accurate mouse model of early peritoneal microdissemination to evaluate tumorigenesis and drug efficacy. There was a positive correlation between luminescence intensity in in vivo luciferase assay and the extent of tumor dissemination evaluated by ex vivo luciferase assay and mesenteric weight. This model has advantages over previous models because optimal luciferin concentration without cell damage was validated and peritoneal microdissemination could be quantitatively evaluated. Therefore, it is a useful model to validate peritoneal micrometastasis formation and to evaluate drug efficacy without killing mice.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Department of Molecular Pharmacology and Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hironori Tatsuki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takahiro Takada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshinaga Suto
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Reina Yajima
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshihide Kato
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takaaki Fujii
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Souichi Tsutsumi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
14
|
Zhang C, Awasthi N, Schwarz MA, Schwarz RE. Establishing a peritoneal dissemination xenograft mouse model for survival outcome assessment of experimental gastric cancer. J Surg Res 2012. [PMID: 23201270 DOI: 10.1016/j.jss.2012.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Peritoneal dissemination of gastric cancer is a common reason for unresectability, a frequent recurrence mechanism, and a common cause for death. The present study was performed to test peritoneal dissemination gastric cancer xenografts mouse models that would support survival outcome analyses. MATERIALS AND METHODS Human gastric cancer cell lines AGS, NCI-N87, and SNU-16 were intraperitoneally injected into nude mice and severe combined immunodeficiency (SCID) mice. The peritoneal tumor formation and mouse survival were compared among different groups. Mice were treated with oxaliplatin (5 mg/kg) and NVP-BEZ235 (10 mg/kg). RESULTS The formation rate of peritoneal cancer after intraperitoneal injection of 5 × 10(6) SNU16, NCI-N87, and AGS cells was 2/8, 6/8, and 0/8 in nude mice, and 6/6, 6/6, and 0/6 in SCID mice, respectively. Median animal survival with peritoneal dissemination was 74 d for NCI-N87 cells (10 × 10(6)), 95 d for SNU16 cells (10 × 10(6)), 78 d for SNU16 cells (20 × 10(6)), and 44 d for SNU16 cells (40 × 10(6)). In a therapeutic experiment with 40 × 10(6) SNU16 cells, animal survival was significantly improved by oxaliplatin treatment compared with the control group (58.5 d versus 45 d, P < 0.001), but not by NVP-BEZ235 (48 d versus 45 d, P = 0.249) treatment. In the accompanying subcutaneous SNU16 mouse model, relative tumor volume compared with controls was not significantly decreased by oxaliplatin treatment (P = 0.151) but by NVP-BEZ235 therapy (P = 0.008). CONCLUSIONS Peritoneal gastric cancer xenografts were successfully established after intraperitoneal injection NCI-N87 and SNU16 cells. These findings provide a useful survival outcome assessment model for experimental gastric cancer research.
Collapse
Affiliation(s)
- Changhua Zhang
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas,TX 75390-8548, USA
| | | | | | | |
Collapse
|
15
|
Chumakov PM, Morozova VV, Babkin IV, Baikov IK, Netesov SV, Tikunova NV. Oncolytic enteroviruses. Mol Biol 2012. [DOI: 10.1134/s0026893312050032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Israelsson S, Jonsson N, Gullberg M, Lindberg AM. Cytolytic replication of echoviruses in colon cancer cell lines. Virol J 2011; 8:473. [PMID: 21999585 PMCID: PMC3213228 DOI: 10.1186/1743-422x-8-473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/14/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers in the world, killing nearly 50% of patients afflicted. Though progress is being made within surgery and other complementary treatments, there is still need for new and more effective treatments. Oncolytic virotherapy, meaning that a cancer is cured by viral infection, is a promising field for finding new and improved treatments. We have investigated the oncolytic potential of several low-pathogenic echoviruses with rare clinical occurrence. Echoviruses are members of the enterovirus genus within the family Picornaviridae. METHODS Six colon cancer cell lines (CaCo-2, HT29, LoVo, SW480, SW620 and T84) were infected by the human enterovirus B species echovirus 12, 15, 17, 26 and 29, and cytopathic effects as well as viral replication efficacy were investigated. Infectivity was also tested in spheroids grown from HT29 cells. RESULTS Echovirus 12, 17, 26 and 29 replicated efficiently in almost all cell lines and were considered highly cytolytic. The infectivity of these four viruses was further evaluated in artificial tumors (spheroids), where it was found that echovirus 12, 17 and 26 easily infected the spheroids. CONCLUSIONS We have found that echovirus 12, 17 and 26 have potential as oncolytic agents against colon cancer, by comparing the cytolytic capacity of five low-pathogenic echoviruses in six colon cancer cell lines and in artificial tumors.
Collapse
Affiliation(s)
- Stina Israelsson
- School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|