1
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
2
|
Greco G, Agafonova A, Cosentino A, Cardullo N, Muccilli V, Puglia C, Anfuso CD, Sarpietro MG, Lupo G. Solid Lipid Nanoparticles Encapsulating a Benzoxanthene Derivative in a Model of the Human Blood-Brain Barrier: Modulation of Angiogenic Parameters and Inflammation in Vascular Endothelial Growth Factor-Stimulated Angiogenesis. Molecules 2024; 29:3103. [PMID: 38999055 PMCID: PMC11243179 DOI: 10.3390/molecules29133103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
4
|
Ganguly R, Singh SV, Jaiswal K, Kumar R, Pandey AK. Modulatory effect of caffeic acid in alleviating diabetes and associated complications. World J Diabetes 2023; 14:62-75. [PMID: 36926656 PMCID: PMC10011896 DOI: 10.4239/wjd.v14.i2.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 02/14/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common metabolic disorders characterized by elevated blood glucose levels. Prolonged uncontrolled hyperglycemia often leads to multi-organ damage including diabetic neuropathy, nephropathy, retinopathy, cardiovascular disorders, and diabetic foot ulcers. Excess production of free radicals causing oxidative stress in tissues is often considered to be the primary cause of onset and progression of DM and associated complications. Natural polyphenols can be used to induce or inhibit the expression of antioxidant enzymes such as glutathione peroxidase, heme oxygenase-1, superoxide dismutase, and catalase that are essential in maintaining redox balance, and ameliorate oxidative stress. Caffeic acid (CA) is a polyphenolderived from hydroxycinnamic acid and possesses numerous physiological properties includ-ing antioxidant, anti-inflammatory, anti-atherosclerotic, immune-stimulatory, cardioprotective, antiproliferative, and hepatoprotective activities. CA acts as a regulatory compound affecting numerous biochemical pathways and multiple targets. These include various transcription factors such as nuclear factor-B, tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor erythroid 2-related factor 2. Therefore, this review summarizes the pharmacological properties, molecular mechanisms, and pharmacokinetic profile of CA in mitigating the adverse effects of DM and associated complications. The bioavailability, drug delivery, and clinical trials of CA have also been discussed.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Kritika Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
5
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
6
|
Kim JH, Kim EY, Chung KJ, Lee JH, Choi HJ, Chung TW, Kim KJ. Mealworm Oil (MWO) Enhances Wound Healing Potential through the Activation of Fibroblast and Endothelial Cells. Molecules 2021; 26:molecules26040779. [PMID: 33546205 PMCID: PMC7913324 DOI: 10.3390/molecules26040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.
Collapse
Affiliation(s)
- Joung-Hee Kim
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
| | - Eun-Yeong Kim
- APROGEN, Inc., 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do 13215, Korea;
| | - Kyu Jin Chung
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu 42415, Korea;
| | - Jung-Hee Lee
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
| | - Hee-Jung Choi
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
| | - Tae-Wook Chung
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
- Correspondence: (T.-W.C.); (K.-J.K.)
| | - Keuk-Jun Kim
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
- Correspondence: (T.-W.C.); (K.-J.K.)
| |
Collapse
|
7
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2020; 13:E78. [PMID: 33383693 PMCID: PMC7823938 DOI: 10.3390/nu13010078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of alternative medicine products has increased tremendously in recent decades and it is estimated that approximately 80% of patients globally depend on them for some part of their primary health care. Propolis is a beekeeping product widely used in alternative medicine. It is a natural resinous product that bees collect from various plants and mix with beeswax and salivary enzymes and comprises a complex mixture of compounds. Various biomedical properties of propolis have been studied and reported in infectious and non-infectious diseases. However, the pharmacological activity and chemical composition of propolis is highly variable depending on its geographical origin, so it is important to describe and study the biomedical properties of propolis from different geographic regions. A number of chronic diseases, such as diabetes, obesity, and cancer, are the leading causes of global mortality, generating significant economic losses in many countries. In this review, we focus on compiling relevant information about propolis research related to diabetes, obesity, and cancer. The study of propolis could generate both new and accessible alternatives for the treatment of various diseases and will help to effectively evaluate the safety of its use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Claudia F. Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Adolfo R. Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico
| |
Collapse
|
8
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
9
|
Chang Y, Yuan Y, Zhang Q, Rong Y, Yang Y, Chi M, Liu Z, Zhang Y, Yu P, Teng Y. Effects of an isatin derivative on tumor cell migration and angiogenesis. RSC Adv 2020. [DOI: 10.1039/c9ra08448g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound5-61, a 5-(2-carboxyethenyl)isatin derivative was previously shown to have potent anticancer activity. Its effect on angiogenesis was further explored in this study.
Collapse
|
10
|
Caffeic Acid Phenethyl Ester (CAPE) Induces VEGF Expression and Production in Rat Odontoblastic Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5390720. [PMID: 31930126 PMCID: PMC6942799 DOI: 10.1155/2019/5390720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 01/15/2023]
Abstract
Caffeic acid phenethyl ester (CAPE), the main component of propolis, has various biological activities including anti-inflammatory effect and wound healing promotion. Odontoblasts located in the outermost layer of dental pulp play crucial roles such as production of growth factors and formation of hard tissue termed reparative dentin in host defense against dental caries. In this study, we investigated the effects of CAPE on the upregulation of vascular endothelial growth factor (VEGF) and calcification activities of odontoblasts, leading to development of novel therapy for dental pulp inflammation caused by dental caries. CAPE significantly induced mRNA expression and production of VEGF in rat clonal odontoblast-like KN-3 cells cultured in normal medium or osteogenic induction medium. CAPE treatment enhanced nuclear factor-kappa B (NF-κB) transcription factor activation, and furthermore, the specific inhibitor of NF-κB significantly reduced VEGF production. The expression of VEGF receptor- (VEGFR-) 2, not VEGFR-1, was up regulated in KN-3 cells treated with CAPE. In addition, VEGF significantly increased mineralization activity in KN-3 cells. These findings suggest that CAPE might be useful as a novel biological material for the dental pulp conservative therapy.
Collapse
|
11
|
Chung TW, Kim EY, Choi HJ, Han CW, Jang SB, Kim KJ, Jin L, Koh YJ, Ha KT. 6'-Sialylgalactose inhibits vascular endothelial growth factor receptor 2-mediated angiogenesis. Exp Mol Med 2019; 51:1-13. [PMID: 31604908 PMCID: PMC6802645 DOI: 10.1038/s12276-019-0311-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023] Open
Abstract
Angiogenesis should be precisely regulated because disordered neovascularization is involved in the aggravation of multiple diseases. The vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2) axis is crucial for controlling angiogenic responses in vascular endothelial cells (ECs). Therefore, inactivating VEGFR-2 signaling may effectively suppress aberrant angiogenesis and alleviate related symptoms. In this study, we performed virtual screening, identified the synthetic disaccharide 6′-sialylgalactose (6SG) as a potent VEGFR-2-binding compound and verified its high binding affinity by Biacore assay. 6SG effectively suppressed VEGF-A-induced VEGFR-2 phosphorylation and subsequent in vitro angiogenesis in HUVECs without inducing cytotoxicity. 6SG also inhibited VEGF-A-induced extracellular-regulated kinase (ERK)/Akt activation and actin stress fiber formation in HUVECs. We demonstrated that 6SG inhibited retinal angiogenesis in a mouse model of retinopathy of prematurity and tumor angiogenesis in a xenograft mouse model. Our results suggest a potential therapeutic benefit of 6SG in inhibiting angiogenesis in proangiogenic diseases, such as retinopathy and cancer. Therapy based on a synthetic molecule can block abnormal blood vessel formation, limiting the progression of diabetic eye conditions and tumor growth in mice. The growth of new blood vessels from existing vessels, called angiogenesis, is critical to wound healing and embryonic development. The main angiogenesis signalling pathway involves growth factors, including one called VEGFR-2. Disruption to this pathway plays a significant part in the development of multiple diseases. A South Korean team led by Ki-Tae Ha at Pusan National University, Yangsan, and Young Jun Koh at Dongguk University, Seoul, identified and trialed a synthetic disaccharide capable of binding to and limiting the activity of VEGFR-2 during faulty signaling. Trials on mice with the diabetic eye condition retinopathy, and mice with implanted tumors, showed that the compound inhibited excessive angiogenesis and limited disease progression.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Eun-Yeong Kim
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Hee-Jung Choi
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjeong-gu, Busan, 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjeong-gu, Busan, 46241, Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongbuk, 38547, Korea
| | - Ling Jin
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea
| | - Young Jun Koh
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, 10326, Korea. .,GI Innovation, Inc., A-1116, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul, 05855, Korea.
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Korea.
| |
Collapse
|
12
|
Kim EY, Jin BR, Chung TW, Bae SJ, Park H, Ryu D, Jin L, An HJ, Ha KT. 6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis. BMB Rep 2019. [PMID: 31383249 PMCID: PMC6774418 DOI: 10.5483/bmbrep.2019.52.9.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)-induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs.
Collapse
Affiliation(s)
- Eun-Yeong Kim
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju 26339, Korea
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Sung-Jin Bae
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Hyerin Park
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ling Jin
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju 26339, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
13
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
14
|
Ha SH, Kwon KM, Park JY, Abekura F, Lee YC, Chung TW, Ha KT, Chang HW, Cho SH, Kim JS, Kim CH. Esculentoside H inhibits colon cancer cell migration and growth through suppression of MMP-9 gene expression via NF-kB signaling pathway. J Cell Biochem 2018; 120:9810-9819. [PMID: 30525244 DOI: 10.1002/jcb.28261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023]
Abstract
A water-soluble saponin, Esculentoside H (EsH), 3-O-(O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl)-28-β-d-glucopyranosylphytolaccagenin has been isolated and purified from the root extract of perennial plant Phytolacca esculenta. EsH is known to be an anticancer compound, having a capacity for TNF-α release. However, the effects of EsH on migration and growth in tumor cells have not yet been reported. In the current study, the suppressive effects of EsH on phorbol 12-myristate 13-acetate (PMA)-induced cell migration were examined in murine colon cancer CT26 cells and human colon cancer HCT116 cells. Interestingly, the transwell assay and wound healing show that EsH suppresses the PMA-induced migration and growth potential of HCT116 and CT26 colon cancer cells, respectively. EsH dose-dependently suppressed matrix metalloproteinases-9 (MMP-9) expression that was upregulated upon PMA treatment in messenger RNA levels and protein secretion. Since the expression of MMP-9 is correlated with nuclear factor-κB (NF-κB) signaling, it has been examined whether EsH inhibits PMA-induced IκB phosphorylation that leads to the suppression of NK-κB nuclear translocation. EsH repressed the phosphorylation level of JNK, but not extracellular signal-regulated kinase and p38 signaling when the cells were treated with PMA. Overall, these results demonstrated that EsH could suppress cancer migration through blockage of the JNK1/2 and NF-κB signaling-mediated MMP-9 expression.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon, Kyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon, Kyunggi-Do, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon, Kyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon, Kyunggi-Do, Korea
| | - Young-Choon Lee
- Department of Biological Sciences, Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hyeun Wook Chang
- Department of Pharmacy, Yeungnam University, Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Baekje-daero, Deokjin-gu, Jeonju, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon, Kyunggi-Do, Korea
| |
Collapse
|
15
|
Zhang Q, Teng Y, Yuan Y, Ruan T, Wang Q, Gao X, Zhou Y, Han K, Yu P, Lu K. Synthesis and cytotoxic studies of novel 5-phenylisatin derivatives and their anti-migration and anti-angiogenic evaluation. Eur J Med Chem 2018; 156:800-814. [PMID: 30055465 PMCID: PMC7115506 DOI: 10.1016/j.ejmech.2018.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023]
Abstract
A number of 5-arylisatin derivatives were synthesized in 5–6 steps from readily available starting materials. Their structures were confirmed by 1H NMR and 13C NMR as well as LC/MS. The cytotoxicity of these novel isatins against human leukemia K562 cells were evaluated by MTT assay in vitro. SAR studies indicated that the N-substituted benzyl and C-5 substituted phenyl groups greatly enhance their cytotoxic activity, whereas an intact carbonyl functionality on C-3 present in the parent ring is required to maintain such a potency. Particularly, N-(p-methoxybenzyl)-5-(p-methoxyphenyl)isatin (compound 2m) showed the highest antitumor activity against K562 cell lines (IC50 = 0.03 μM). Moreover, treatment with compound 2m significantly inhibited liver cancer HepG2 cells proliferation and migration, which could also reduce the human umbilical vein endothelial cells (HUVEC) tube formation. In conclusion, compound 2m exhibited very good cancer cells proliferation inhibition by angiogenesis responses in vitro, and 2m might be a promising angiogenesis inhibitor for cancer treatment. The antitumor SAR studies of novel 5-phenylisatin derivatives were performed. The methoxyl groups of C-5 and N-substitution may enhance their cytotoxicy. Compound 2m displayed the most potent cytotoxic activity (IC50 = 0.03 μM) against K562 cell lines. 2m inhibited the proliferation of tumor cells by decreasing migration and angiogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tingting Ruan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qi Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xing Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yao Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kailin Han
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
16
|
Guo Q, Zheng K, Fan D, Zhao Y, Li L, Bian Y, Qiu X, Liu X, Zhang G, Ma C, He X, Lu A. Wu-Tou Decoction in Rheumatoid Arthritis: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. Front Pharmacol 2017; 8:230. [PMID: 28515692 PMCID: PMC5414545 DOI: 10.3389/fphar.2017.00230] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Purpose: This study aimed to explore underlying action mechanism of Wu-Tou decoction (WTD) in rheumatoid arthritis (RA) through network pharmacology prediction and experimental verification. Methods: Chemical compounds and human target proteins of WTD as well as RA-related human genes were obtained from TCM Database @ Taiwan, PubChem and GenBank, respectively. Subsequently, molecular networks and canonical pathways presumably involved in the treatment of WTD on RA were generated by ingenuity pathway analysis (IPA) software. Furthermore, experimental validation was carried out with MIP-1β-induced U937 cell model and collagen induced arthritis (CIA) rat model. Results: CCR5 signaling pathway in macrophages was shown to be the top one shared signaling pathway associated with both cell immune response and cytokine signaling. In addition, protein kinase C (PKC) δ and p38 in this pathway were treated as target proteins of WTD in RA. In vitro experiments indicated that WTD inhibited MIP-1β-induced production of TNF-α, MIP-1α, and RANTES as well as phosphorylation of CCR5, PKC δ, and p38 in U937 cells. WTD treatment maintained the inhibitory effects on production of TNF-α and RANTES in MIP-1β-induced U937 cells after CCR5 knockdown. In vivo experiments demonstrated that WTD ameliorated symptoms in CIA rats, decreased the levels of IL-1β, IL-2, IL-6, TNF-α, MIP-1α, MIP-2, RANTES, and IP-10 in serum of CIA rats, as well as mRNA levels of MIP-1α, MIP-2, RANTES, and IP-10 in ankle joints of CIA rats. Furthermore, WTD also lowered the phosphorylation levels of CCR5, PKC δ and p38 in both ankle joints and macrophages in ankle joints from CIA rats. Conclusion: It was demonstrated in this research that WTD played a role in inhibiting inflammatory response in RA which was closely connected with the modulation effect of WTD on CCR5 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qingqing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Kang Zheng
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Yukun Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China.,School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Yanqin Bian
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xuemei Qiu
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Xue Liu
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Chaoying Ma
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China.,Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong.,School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
17
|
Chung TW, Kim EY, Kim SJ, Choi HJ, Jang SB, Kim KJ, Ha SH, Abekura F, Kwak CH, Kim CH, Ha KT. Sialyllactose suppresses angiogenesis by inhibiting VEGFR-2 activation, and tumor progression. Oncotarget 2017; 8:58152-58162. [PMID: 28938544 PMCID: PMC5601640 DOI: 10.18632/oncotarget.16192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/15/2017] [Indexed: 02/02/2023] Open
Abstract
The oligosaccharides in human milk have various biological functions. However, the molecular mechanism(s) underlying the anti-angiogenic action of sialylated human milk oligosaccharides (HMOs) are still unclear. Here, we show that siallylactose (SL) found in human milk can inhibit the activation of vascular endothelial growth factor (VEGF)-mediated VEGF receptor-2 (VEGFR-2) by binding to its VEGF binding site (second and third IgG-like domains), thus blocking downstream signal activation. SL also inhibits growth of VEGF-stimulated endothelial cells. In endothelial cells treated with VEGF, SL diminished tube formation, migration, and the arrangement of actin filament. In addition, SL clearly suppressed VEGF-induced neovascularization in an in vivo Matrigel plug assay. Notably, SL prevented the growth of tumor cells, and angiogenesis on tumor tissues in in vivo mice models allotransplanted with Lewis lung carcinoma, melanoma, and colon carcinoma cells. Taken together, we have demonstrated that the sialylated milk oligosaccharide sialyllactose functions as an inhibitor of angiogenesis through suppression of VEGF-mediated VEGFR-2 activation in endothelial cells, Accordingly, it could be a novel candidate for the development of anti-angiogenic drugs without any side effects.
Collapse
Affiliation(s)
- Tae-Wook Chung
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Eun-Young Kim
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Seok-Jo Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Hee-Jung Choi
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan 38547, Republic of Korea
| | - Sun-Hyung Ha
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Fukushi Abekura
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Choong-Hwan Kwak
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
18
|
Kosova F, Kurt FO, Olmez E, Tuğlu I, Arı Z. Effects of caffeic acid phenethyl ester on matrix molecules and angiogenetic and anti-angiogenetic factors in gastric cancer cells cultured on different substrates. Biotech Histochem 2015; 91:38-47. [DOI: 10.3109/10520295.2015.1072769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Fuentes E, Palomo I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascul Pharmacol 2014; 63:155-61. [DOI: 10.1016/j.vph.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
|
20
|
Lee JY, Choi HJ, Chung TW, Kim CH, Jeong HS, Ha KT. Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor. JOURNAL OF NATURAL PRODUCTS 2013; 76:1399-1405. [PMID: 23876066 DOI: 10.1021/np400129z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Caffeic acid phenethyl ester (1), a natural compound found in various plants and propolis, is a well-known anti-inflammatory, immunomodulatory, and cytotoxic agent. The present study aimed to investigate the molecular events underlying the antimelanogenic activity of 1 in alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16-F10 melanoma cells. In this investigation, 1 effectively reduced α-MSH-stimulated melanin synthesis by suppressing expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2), although this compound did not directly inhibit tyrosinase enzyme activity. On the other hand, the expression and nuclear translocation of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis were not affected by treatment with 1. The upstream signaling pathways including cAMP response element-binding protein (CREB), glycogen synthase kinase-3β (GSK-3β), and Akt for activation and expression of MITF were also not influenced by 1. Interestingly, 1 inhibited transcriptional activity of a tyrosinase promoter by suppressing the interaction of MITF protein with an M-box containing a CATGTG motif on the tyrosinase promoter. Given the important role of MITF in melanogenesis, suppression of 1 on the function of MITF to transactivate tyrosinase promoter may present a novel therapeutic approach to treat hyperpigmentation disorders.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University , Yangsan, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|