1
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Wang L, Ge J, Han H, Jia Y, Qin Y. Crosstalk between the nervous system and tumor microenvironment: Functional aspects and potential therapeutic strategies. Cancer Lett 2024; 594:216986. [PMID: 38797233 DOI: 10.1016/j.canlet.2024.216986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recent advancements in understanding the tumor microenvironment (TME) have highlighted the critical role of the nervous system in cancer progression. This review comprehensively examines how the nervous system influences various aspects of tumorigenesis, including growth, motility, immune response, angiogenesis, and the behavior of cancer-associated fibroblasts (CAFs). We delineate the neurodevelopmental mechanisms associated with cancer, such as the secretion of neurotrophins and exosomes by cancer cells. Furthermore, we explore the emerging therapeutic strategy of targeting nerves associated with tumors. Evidence supporting this approach includes studies demonstrating direct tumor growth inhibition, enhanced efficacy of immunotherapy when combined with nervous system-modulating drugs, and the suppression of tumor blood vessel formation through nerve targeting. Finally, we discuss the current challenges in this field and emphasize the need for further exploration within cancer neuroscience.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Jingjing Ge
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, PR China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China.
| |
Collapse
|
3
|
Scaramuzzo RT, Crucitta S, del Re M, Cammalleri M, Bagnoli P, Dal Monte M, Pini A, Filippi L. β3-adREnoceptor Analysis in CORD Blood of Neonates (β3 RECORD): Study Protocol of a Pilot Clinical Investigation. Life (Basel) 2024; 14:776. [PMID: 38929758 PMCID: PMC11204445 DOI: 10.3390/life14060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Background and Objective: The embryo and the fetus develop in a physiologically hypoxic environment, where vascularization is sustained by HIF-1, VEGF, and the β-adrenergic system. In animals, β3-adrenoceptors (β3-ARs), up-regulated by hypoxia, favor global fetal wellness to such an extent that most diseases related to prematurity are hypothesized to be induced or aggravated by a precocious β3-AR down-regulation, due to premature exposure to a relatively hyperoxic environment. In animals, β3-AR pharmacological agonism is currently investigated as a possible new therapeutic opportunity to counteract oxygen-induced damages. Our goal is to translate the knowledge acquired in animals to humans. Recently, we have demonstrated that fetuses become progressively more hypoxemic from mid-gestation to near-term, but starting from the 33rd-34th week, oxygenation progressively increases until birth. The present paper aims to describe a clinical research protocol, evaluating whether the expression level of HIF-1, β3-ARs, and VEGF is modulated by oxygen during intrauterine and postnatal life, in a similar way to animals. Materials and Methods: In a prospective, non-profit, single-center observational study we will enroll 100 preterm (group A) and 100 full-term newborns (group B). We will collect cord blood samples (T0) and measure the RNA expression level of HIF-1, β3-ARs, and VEGF by digital PCR. In preterms, we will also measure gene expression at 48-72h (T1), 14 days (T2), and 30 days (T3) of life and at 40 ± 3 weeks of post-menstrual age (T4), regardless of the day of life. We will compare group A (T0) vs. group B (T0) and identify any correlations between the values obtained from serial samples in group A and the clinical data of the patients. Our protocol has been approved by the Pediatric Ethical Committee for Clinical Research of the Tuscany region (number 291/2022). Expected Results: The observation that in infants, the HIF-1/β3-ARs/VEGF axis shows similar modulation to that of animals could suggest that β3-ARs also promote fetal well-being in humans.
Collapse
Affiliation(s)
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Marzia del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Massimo Dal Monte
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Neonatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
5
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
6
|
Shiralkar J, Anthony T, McCallum GA, Durand DM. Neural recordings can differentiate between spontaneously metastasizing melanomas and melanomas with low metastatic potential. PLoS One 2024; 19:e0297281. [PMID: 38359031 PMCID: PMC10868782 DOI: 10.1371/journal.pone.0297281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple studies report that melanomas are innervated tumors with sensory and sympathetic fibers where these neural fibers play crucial functional roles in tumor growth and metastasis with branch specificity. Yet there is no study which reports the direct neural recording and its pattern during in-vivo progression of the cancer. We performed daily neural recordings from male and female mice bearing orthotopic metastasizing- melanomas and melanomas with low metastatic poential, derived from B16-F10 and B16-F1 cells, respectively. Further, to explore the origins of neural activity, 6-Hydroxidopamine mediated chemical sympathectomy was performed followed by daily microneurographic recordings. We also performed the daily bioluminescent imaging to track in vivo growth of primary tumors and distant metastasis to the cranial area. Our results show that metastasizing tumors display high levels of neural activity while tumors with low metastatic potential lack it indicating that the presence of neural activity is linked to the metastasizing potential of the tumors. Moreover, the neural activity is not continuous over the tumor progression and has a sex-specific temporal patterns where males have two peaks of high neural activity while females show a single peak. The neural peak activity originated in peripheral sympathetic nerves as sympathectomy completely eliminated the peak activity in both sexes. Peak activities were highly correlated with the distant metastasis in both sexes. These results show that sympathetic neural activity is crucially involved in tumor metastasis and has sex-specific role in malignancy initiation.
Collapse
Affiliation(s)
- Jay Shiralkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tiana Anthony
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Grant A. McCallum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dominique M. Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
8
|
Amato R, Lucchesi M, Marracci S, Filippi L, Dal Monte M. β-Adrenoceptors in Cancer: Old Players and New Perspectives. Handb Exp Pharmacol 2024; 285:665-688. [PMID: 37982890 DOI: 10.1007/164_2023_701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of β-adrenoceptors (β-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that β-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among β-ARs, β2-AR seems to be the main β-AR subtype involved in tumor development and progression. However, there are data indicating that also β1-AR and β3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three β-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of β-ARs as therapeutic targets in treating tumors.
Collapse
MESH Headings
- Humans
- Neoplasms/metabolism
- Neoplasms/drug therapy
- Neoplasms/pathology
- Animals
- Receptors, Adrenergic, beta-3/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Receptors, Adrenergic, beta-1/metabolism
- Signal Transduction
- Disease Progression
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
10
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Cammalleri M, Amato R, Dal Monte M, Filippi L, Bagnoli P. The β3 adrenoceptor in proliferative retinopathies: "Cinderella" steps out of its family shadow. Pharmacol Res 2023; 190:106713. [PMID: 36863427 DOI: 10.1016/j.phrs.2023.106713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (β-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the β-AR family, β1- and β2-AR have long been attracting attention because their pharmacology is intensely used for human health, while β3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, β3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of β3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of β3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that β3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting β3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
13
|
Li W, Ma Z, Du L, Li M. Development and Characterization of a Highly Selective Turn-On Fluorescent Ligand for β 3-Adrenergic Receptor. Anal Chem 2023; 95:2848-2856. [PMID: 36700797 DOI: 10.1021/acs.analchem.2c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For the precise visualization of GPCR, subtype selectivity of turn-on fluorescent ligands is of major relevance. Although there are many thriving β-adrenergic receptors (β-ARs) probes, none of them are selective to the β3-subtype, which severely limits the development of β3-AR investigations. Using a polyethylene glycol (PEG) chain to conjugate the Py-5 fluorophore with mirabegron, we present here a highly selective fluorescent ligand, H2, for β3-AR. It was established by the radioligand and NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding experiments that molecule H2 has a substantially higher affinity for β3-AR than the other two subtypes (1/3, 45-fold; 2/3, 16-fold). More crucially, when molecule H2 was incubated with β3-AR, the turn-on fluorescent signals could be quickly released. The subsequent investigations, which included cell imaging, tissue imaging, and flow-cytometry analysis, proved that molecule H2 may make it possible to quickly and accurately fluorescently identify β3-AR at different levels. We offer a prospective fluorescent turn-on ligand with exceptional selectivity for β3-AR as a result of our combined efforts.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
14
|
Nastasi N, Bruno G, Favre C, Calvani M. Role of β3-Adrenergic Receptor in Bone Marrow Transplant as Therapeutical Support in Cancer. Front Oncol 2022; 12:889634. [PMID: 35756654 PMCID: PMC9213652 DOI: 10.3389/fonc.2022.889634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
β3-adrenergic receptor (β3-AR) is the last β-adrenoceptor subtype identified. β3-AR is widely expressed and regulates numerous physiological processes, and it is also a potential target for the treatment of many diseases, including cancers. For some types of cancers, bone marrow transplant (BMT) represents a valid therapeutic support, especially in the case of the necessity of high-dose chemotherapy and radiotherapy. For a successful BMT, it is necessary that a donor’s hematopoietic stem cells (HSCs) correctly reach the staminal niche in the recipient’s bone marrow (BM) and contribute to restore normal hematopoiesis in order to rapidly repopulate BM and provide all the healthy blood cells of which the patient needs. Generally, it takes a long time. Control and accelerate homing and engraftment of HSCs could represent a helpful approach to avoid the complications and undesirable effects of BMT. The evidence that the β-adrenergic system has a role in the BM can be found in different studies, and this leads us to hypothesize that studying this field could be interesting to meliorate the most critical aspects of a BMT. Here, we collected the data present in literature about the role of β3-AR in the BM with the purpose of discovering a possible utility of β3-AR modulation in regulating HSC trafficking and hematopoiesis.
Collapse
Affiliation(s)
- Nicoletta Nastasi
- Department of Health Sciences, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Gennaro Bruno
- Department of Health Sciences, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
15
|
Janowska A, Iannone M, Fidanzi C, Romanelli M, Filippi L, Del Re M, Martins M, Dini V. The Genetic Basis of Dormancy and Awakening in Cutaneous Metastatic Melanoma. Cancers (Basel) 2022; 14:2104. [PMID: 35565234 PMCID: PMC9102235 DOI: 10.3390/cancers14092104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Immune dysregulation, in combination with genetic and epigenetic alterations, induces an excessive proliferation of uncontrolled melanoma cells followed by dissemination of the tumor cells to distant sites, invading organs and creating metastasis. Although immunotherapy, checkpoint inhibitors and molecular targeted therapies have been developed as treatment options for advanced melanoma, there are specific mechanisms by which cancer cells can escape treatment. One of the main factors associated with reduced response to therapy is the ability of residual tumor cells to persist in a dormant state, without proliferation. This comprehensive review aimed at understanding the genetic basis of dormancy/awakening phenomenon in metastatic melanoma will help identify the possible therapeutical strategies that might eliminate melanoma circulating tumor cells (CTCs) or keep them in the dormant state forever, thereby repressing tumor relapse and metastatic spread.
Collapse
Affiliation(s)
- Agata Janowska
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Michela Iannone
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Cristian Fidanzi
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Marco Romanelli
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Luca Filippi
- Unit of Neonatology, University of Pisa, 56126 Pisa, Italy;
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, University of Pisa, 56126 Pisa, Italy;
| | - Manuella Martins
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Valentina Dini
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| |
Collapse
|
16
|
Crosstalk between β2- and α2-Adrenergic Receptors in the Regulation of B16F10 Melanoma Cell Proliferation. Int J Mol Sci 2022; 23:ijms23094634. [PMID: 35563024 PMCID: PMC9100920 DOI: 10.3390/ijms23094634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Adrenergic receptors (AR) belong to the G protein-coupled receptor superfamily and regulate migration and proliferation in various cell types. The objective of this study was to evaluate whether β-AR stimulation affects the antiproliferative action of α2-AR agonists on B16F10 cells and, if so, to determine the relative contribution of β-AR subtypes. Using pharmacological approaches, evaluation of Ki-67 expression by flow cytometry and luciferase-based cAMP assay, we found that treatment with isoproterenol, a β-AR agonist, increased cAMP levels in B16F10 melanoma cells without affecting cell proliferation. Propranolol inhibited the cAMP response to isoproterenol. In addition, stimulation of α2-ARs with agonists such as clonidine, a well-known antihypertensive drug, decreased cancer cell proliferation. This effect on cell proliferation was suppressed by treatment with isoproterenol. In turn, the suppressive effects of isoproterenol were abolished by the treatment with either ICI 118,551, a β2-AR antagonist, or propranolol, suggesting that isoproterenol effects are mainly mediated by the β2-AR stimulation. We conclude that the crosstalk between the β2-AR and α2-AR signaling pathways regulates the proliferative activity of B16F10 cells and may therefore represent a therapeutic target for melanoma therapy.
Collapse
|
17
|
Batalla‐Covello J, Ali S, Xie T, Amit M. β-Adrenergic signaling in skin cancer. FASEB Bioadv 2022; 4:225-234. [PMID: 35415461 PMCID: PMC8984090 DOI: 10.1096/fba.2021-00097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Activation of the sympathetic nervous system releases catecholamines that can interact with β-adrenergic receptors on tumor cells. Preclinical models have shown that the signaling processes initiated by activation of β-adrenergic receptors increase tumorigenesis, stimulate cell proliferation, and inhibit apoptosis. Indeed, preclinical studies have also shown that β-adrenergic blockade can decrease tumor burden. Researchers have been studying the effects of β-adrenergic receptor blockers on tumor cells and how they may slow the progression of melanoma, basal cell carcinoma, and squamous cell carcinoma. Moreover, clinical data have shown improved prognosis in patients with skin cancer who take β-blockers. This review discusses the mechanisms of β-adrenergic signaling in cancer and immune cells, details preclinical models of sympathetic blockade, and considers clinical evidence of the effects of β-adrenergic blockade in skin cancers.
Collapse
Affiliation(s)
- Jennifer Batalla‐Covello
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Shahrukh Ali
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Tongxin Xie
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Moran Amit
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
18
|
Infantile hemangiomas β 3-adrenoceptor overexpression is associated with nonresponse to propranolol. Pediatr Res 2022; 91:163-170. [PMID: 33654276 DOI: 10.1038/s41390-021-01385-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Propranolol (antagonist of β1-/β2-AR but minimally active against β3-AR) is currently the first-line treatment for infantile hemangiomas (IH). Its efficacy is attributed to the blockade of β2-AR. However, its success rate is ~60%. Considering the growing interest in the angiogenic role of β3-ARs, we evaluated a possible relationship between β3-AR expression and response to propranolol. METHODS Fifteen samples of surgical biopsies were collected from patients with IH. Three were taken precociously from infants and then successfully treated with propranolol (responder group). Twelve were taken later, from residual lesions noncompletely responsive to propranolol (nonresponder group). A morphometrical analysis of the percentage of β1-, β2-, and β3-ARs positively stained area was compared between the two groups. RESULTS While no difference was found in both β1- and β2-AR expression level, a statistically significant increase of β3-AR positively stained area was observed in the nonresponder group. CONCLUSIONS Although the number of biopsies is insufficient to draw definitive conclusions, and the different β-AR pattern may be theoretically explained by the different timing of samplings, this study suggests a possible correlation between β3-AR expression and the reduced responsiveness to propranolol treatment. This study could pave the way for new therapeutic perspectives to manage IH. IMPACT Propranolol (unselective antagonist of β1 and β2-ARs) is currently the first-line treatment for IHs, with a success rate of ~60%. Its effectiveness has been attributed to its ability to block β2-ARs. However, β3-ARs (on which propranolol is minimally active) were significantly more expressed in hemangioma biopsies taken from patients nonresponsive to propranolol. This study suggests a possible role of β3-ARs in hemangioma pathogenesis and a possible new therapeutic target.
Collapse
|
19
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
20
|
Maccari S, Buoncervello M, Ascione B, Stati T, Macchia D, Fidanza S, Catalano L, Matarrese P, Gabriele L, Marano G. α-adrenoceptor stimulation attenuates melanoma growth in mice. Br J Pharmacol 2021; 179:1371-1383. [PMID: 34766341 DOI: 10.1111/bph.15731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, β-adrenoceptor blockade has emerged as a potential strategy to inhibit melanoma growth. However, it remains to be ascertained whether β-adrenoceptor stimulation by circulating catecholamines increases melanoma growth in mice. EXPERIMENTAL APPROACH B16F10 melanoma-bearing mice were used to evaluate effects of adrenaline and specific adrenoceptor (AR) ligands on tumor volume. AR expression as well as effects of AR ligands on cell viability, production of mitochondrial reactive oxygen species (mROS) and proliferation activity in B16F10 cells were determined by biochemical analyses. KEY RESULTS qPCR analyses revealed that B16F10 cells express both α- (α1B-, α2A- and α2B-AR) and β-ARs (β2 -AR). We found that treatment with the α- and β-AR agonist adrenaline or with the synthetic catecholamine isoprenaline, that selectively stimulates β-ARs, did not affect melanoma growth. Conversely, adrenaline reduced tumor growth in mice co-treated with propranolol, a β1β2-AR antagonist. Adrenaline had no effect in tumor-bearing β1β2-AR knockout mice, in which β1- and β2-ARs are lacking, but it reduced tumor growth when co-administered with propranolol suggesting that tumor β2-ARs negatively regulate adrenaline antitumor activity. Additionally, we found that α1-AR stimulation with cirazoline yielded a decrease in B16F10 melanoma size. These effects on melanoma growth were paralleled by reduced cell viability and proliferation activity as well as increased mROS production in α1-AR-stimulated B16F10 cells. Decreased viability, proliferation and mitochondrial function in B16F10 cells also occurred after α2-AR stimulation by α2-AR agonist ST-91. CONCLUSIONS AND IMPLICATIONS In B16F10 melanoma model, stimulation of α-AR subtypes yields in vivo and in vitro anticancer activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Fidanza
- Center for animal experimentation and well-being, National Institute of Health, Rome, Italy
| | | | | | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine
| | | |
Collapse
|
21
|
The Adrenergic Nerve Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:271-294. [PMID: 34664245 DOI: 10.1007/978-3-030-73119-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.
Collapse
|
22
|
Bruno G, De Logu F, Souza Monteiro de Araujo D, Subbiani A, Lunardi F, Rettori S, Nassini R, Favre C, Calvani M. β2-and β3-Adrenergic Receptors Contribute to Cancer-Evoked Pain in a Mouse Model of Osteosarcoma via Modulation of Neural Macrophages. Front Pharmacol 2021; 12:697912. [PMID: 34646131 PMCID: PMC8502859 DOI: 10.3389/fphar.2021.697912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
The mechanisms involved in the development and maintenance of cancer pain remain largely unidentified. Recently, it has been reported that β-adrenergic receptors (β-ARs), mainly β2-and β3-ARs, contribute to tumor proliferation and progression and may favor cancer-associated pain and neuroinflammation. However, the mechanism underlying β-ARs in cancer pain is still unknown. Here, we investigated the role of β1-, β2-and β3-ARs in a mouse model of cancer pain generated by the para-tibial injection of K7M2 osteosarcoma cells. Results showed a rapid tumor growth in the soft tissue associated with the development of mechanical allodynia in the hind paw ipsilateral to the injected site. In addition to reduce tumor growth, both propranolol and SR59230A, β1-/β2-and β3-AR antagonists, respectively, attenuated mechanical allodynia, the number of macrophages and an oxidative stress by-product accumulated in the ipsilateral tibial nerve. The selective β1-AR antagonist atenolol was able to slightly reduce the tumor growth but showed no effect in reducing the development of mechanical allodynia. Results suggest that the development of the mechanical allodynia in K7M2 osteosarcoma-bearing mice is mediated by oxidative stress associated with the recruitment of neural macrophages, and that antagonism of β2-and β3-ARs contribute not solely to the reduction of tumor growth, but also in cancer pain. Thus, the targeting of the β2-and β3-ARs signaling may be a promising therapeutic strategy against both tumor progression and the development of cancer-evoke pain in osteosarcoma.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | | | - Angela Subbiani
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Federica Lunardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sofia Rettori
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
23
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
24
|
β3-Adrenoreceptors as ROS Balancer in Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:ijms22062835. [PMID: 33799536 PMCID: PMC8000316 DOI: 10.3390/ijms22062835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the therapeutic potential of hematopoietic stem cell transplantation (HSCT) has acquired a primary role in the management of a broad spectrum of diseases including cancer, hematologic conditions, immune system dysregulations, and inborn errors of metabolism. The different types of HSCT, autologous and allogeneic, include risks of severe complications including acute and chronic graft-versus-host disease (GvHD) complications, hepatic veno-occlusive disease, lung injury, and infections. Despite being a dangerous procedure, it improved patient survival. Hence, its use was extended to treat autoimmune diseases, metabolic disorders, malignant infantile disorders, and hereditary skeletal dysplasia. HSCT is performed to restore or treat various congenital conditions in which immunologic functions are compromised, for instance, by chemo- and radiotherapy, and involves the administration of hematopoietic stem cells (HSCs) in patients with depleted or dysfunctional bone marrow (BM). Since HSCs biology is tightly regulated by oxidative stress (OS), the control of reactive oxygen species (ROS) levels is important to maintain their self-renewal capacity. In quiescent HSCs, low ROS levels are essential for stemness maintenance; however, physiological ROS levels promote HSC proliferation and differentiation. High ROS levels are mainly involved in short-term repopulation, whereas low ROS levels are associated with long-term repopulating ability. In this review, we aim summarize the current state of knowledge about the role of β3-adrenoreceptors (β3-ARs) in regulating HSCs redox homeostasis. β3-ARs play a major role in regulating stromal cell differentiation, and the antagonist SR59230A promotes differentiation of different progenitor cells in hematopoietic tumors, suggesting that β3-ARs agonism and antagonism could be exploited for clinical benefit.
Collapse
|
25
|
Pini A, Fazi C, Nardini P, Calvani M, Fabbri S, Guerrini A, Forni G, La Marca G, Rosa AC, Filippi L. Effect of Beta 3 Adrenoreceptor Modulation on Patency of the Ductus Arteriosus. Cells 2020; 9:cells9122625. [PMID: 33297453 PMCID: PMC7762377 DOI: 10.3390/cells9122625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
β3-adrenoreceptor (β3-AR), a G-protein coupled receptor, has peculiar regulatory properties in response to oxygen and widespread localization. β3-AR is expressed in the most frequent neoplasms, also occurring in pregnant women, and its blockade reduces tumor growth, indicating β3-AR-blockers as a promising alternative to antineoplastic drugs during pregnancy. However, β3-AR involvement in prenatal morphogenesis and the consequences of its blockade for the fetus remain unknown. In this study, after the demonstrated expression of β3-AR in endothelial and smooth muscle cells of ductus arteriosus (DA), C57BL/6 pregnant mice were acutely treated at 18.5 of gestational day (GD) with indomethacin or with the selective β3-AR antagonist SR59230A, or chronically exposed to SR59230A from 15.5 to 18.5 GD. Six hours after the last treatment, fetuses were collected. Furthermore, newborn mice were treated straight after birth with BRL37344, a β3-AR agonist, and sacrificed after 7 h. SR59230A, at the doses demonstrated effective in reducing cancer progression (10 and 20 mg/kg) in acute and chronic mode, did not induce fetal DA constriction and did not impair the DA ability to close after birth, whereas at the highest dose (40 mg/kg), it was shown to cause DA constriction and preterm-delivery. BRL37344 administered immediately after birth did not alter the physiological DA closure.
Collapse
Affiliation(s)
- Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
- Correspondence: (A.P.); (L.F.); Tel.: +39-0552758155 (A.P.); +39-050993677 (L.F)
| | - Camilla Fazi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy;
| | - Sergio Fabbri
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy;
| | - Giulia Forni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pediatric Neurosciences, “A. Meyer” University Children’s Hospital, 50139 Florence, Italy; (G.F.); (G.L.M.)
| | - Giancarlo La Marca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pediatric Neurosciences, “A. Meyer” University Children’s Hospital, 50139 Florence, Italy; (G.F.); (G.L.M.)
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, 10125 Turin, Italy;
| | - Luca Filippi
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence: (A.P.); (L.F.); Tel.: +39-0552758155 (A.P.); +39-050993677 (L.F)
| |
Collapse
|
26
|
The Effect of Beta-Adrenergic Blocking Agents in Cutaneous Melanoma-A Nation-Wide Swedish Population-Based Retrospective Register Study. Cancers (Basel) 2020; 12:cancers12113228. [PMID: 33147744 PMCID: PMC7693684 DOI: 10.3390/cancers12113228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Previous smaller studies have showed that a common heart medication, beta-blockers, potentially could reduce the risk of recurrence in patients with malignant melanoma and thereby increase survival. By combining different Swedish population-based registries, a total of 12,738 patients with melanoma were identified. Out of these patients 3702 had been prescribed beta-blockers and the remaining 9036 patients served as the control group. In a statistical analysis adjusting for known risk factors there was no effect of beta-blockers in reducing the risk of dying from melanoma. In conclusion, this population-based registry study could not verify the hypothesis that the use of beta blockers would improve survival in patients with melanoma. Abstract Previous studies have demonstrated an anti-tumoral effect of beta-adrenergic blocking agents on cutaneous melanoma (CM). The aim of this study was to investigate if beta-adrenergic blocking agents have an impact on survival in Swedish patients with melanoma. A population-based retrospective registry study including all patients diagnosed with a primary invasive melanoma between 2009 and 2013 was performed. Data from the Swedish Melanoma Register were linked to the Swedish Prescribed Drug Registry and the Swedish Cause of Death Register. Cox regression analyses including competing risk assessments were performed. There were 12,738 patients included, out of which 3702 were exposed to beta-blockers vs. 9036 non-exposed patients. Age, male sex, Breslow thickness, ulceration, and nodal status were independent negative prognostic factors for melanoma-specific survival (MSS). Adding beta-blockers to the analysis did not add any prognostic value to the model (HR 1.00, p = 0.98), neither when adjusting for competing risks (HR 0.97, p = 0.61). When specifically analyzing the use of non-selective beta-blockers, the results were still without statistical significance (HR 0.76, p = 0.21). In conclusion, this population-based registry study could not verify that the use of beta-adrenergic blocking agents improve survival in patients with melanoma.
Collapse
|
27
|
Preliminary Study on β3-Adrenoreceptor as Predictor Marker of Relapse in Ewing Sarcoma Patients. Biomedicines 2020; 8:biomedicines8100413. [PMID: 33066095 PMCID: PMC7600453 DOI: 10.3390/biomedicines8100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/28/2022] Open
Abstract
Ewing sarcoma (EWS) is a paediatric aggressive malignant tumour of bones and soft tissues. Multidisciplinary chemotherapies, surgical resection, and radiation represent the only strategies counteracting the disease, however spreading and relapse of disease still remain a clinical issue. Circulating tumour cells (CTCs) are an important feature of EWS but the prognostic significance has not been, yet, clarified. CTCs have been found both in patients with localized disease and in those who recur or metastasize. The identification of markers that can detect recurrences and metastasis remains an important challenge for research. Unfortunately, even most of patients with localized cancer relapsed and the reason has not yet been fully understood. In this clinical study on EWS patients, we evaluated the expression of CD99 antigen and beta-3 adrenergic receptor (β3-AR) on CTCs and bioptic derived cells by flow cytometry. The preliminary data revealed a higher β3-AR expression on cells derived from metastatic or relapsed patients, suggesting a role for the β3-AR as a possible predictive maker of disease recurrence in both patients with metastatic and localized disease.
Collapse
|
28
|
Calvani M, Dabraio A, Subbiani A, Buonvicino D, De Gregorio V, Ciullini Mannurita S, Pini A, Nardini P, Favre C, Filippi L. β3-Adrenoceptors as Putative Regulator of Immune Tolerance in Cancer and Pregnancy. Front Immunol 2020; 11:2098. [PMID: 32983164 PMCID: PMC7492666 DOI: 10.3389/fimmu.2020.02098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms of immune tolerance is currently one of the most important challenges of scientific research. Pregnancy affects the immune system balance, leading the host to tolerate embryo alloantigens. Previous reports demonstrated that β-adrenergic receptor (β-AR) signaling promotes immune tolerance by modulation of NK and Treg, mainly through the activation of β2-ARs, but recently we have demonstrated that also β3-ARs induce an immune-tolerant phenotype in mice bearing melanoma. In this report, we demonstrate that β3-ARs support host immune tolerance in the maternal microenvironment by modulating the same immune cells populations as recently demonstrated in cancer. Considering that β3-ARs are modulated by oxygen levels, we hypothesize that hypoxia, through the upregulation of β3-AR, promotes the biological shift toward a tolerant immunophenotype and that this is the same trick that embryo and cancer use to create an aura of immune-tolerance in a competent immune environment. This study confirms the analogies between fetal development and tumor progression and suggests that the expression of β3-ARs represents one of the strategies to induce fetal and tumor immune tolerance.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Annalisa Dabraio
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Veronica De Gregorio
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Feto-Neonatal Department, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
29
|
Williams NM, Vincent LT, Rodriguez GA, Nouri K. Antihypertensives and melanoma: An updated review. Pigment Cell Melanoma Res 2020; 33:806-813. [PMID: 32757474 DOI: 10.1111/pcmr.12918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Antihypertensive medications are commonly prescribed and well-studied. Given the widespread use and potential side effects, various theories have been made about the relationship between antihypertensives and malignancy, including melanoma. This review describes the current understanding of the most commonly prescribed antihypertensives and their associations with melanoma. The literature demonstrates that diuretics, specifically hydrochlorothiazide and indapamide, may increase the risk of melanoma. While there is no evidence that antihypertensives have a role in melanoma prevention, non-selective β-blocker therapy has been associated with a decreased risk of disease progression and recurrence and may also improve outcomes in patients undergoing immunotherapy. In addition, experimental studies reveal that angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers have anti-tumor effects, meriting further study.
Collapse
Affiliation(s)
- Natalie M Williams
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Louis T Vincent
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Gregor A Rodriguez
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Keyvan Nouri
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Calvani M, Subbiani A, Bruno G, Favre C. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7534693. [PMID: 32855766 PMCID: PMC7443044 DOI: 10.1155/2020/7534693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of β-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with β-blockers in neuroblastoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gennaro Bruno
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
31
|
Calvani M, Dabraio A, Bruno G, De Gregorio V, Coronnello M, Bogani C, Ciullini S, la Marca G, Vignoli M, Chiarugi P, Nardi M, Vannucchi AM, Filippi L, Favre C. β3-Adrenoreceptor Blockade Reduces Hypoxic Myeloid Leukemic Cells Survival and Chemoresistance. Int J Mol Sci 2020; 21:E4210. [PMID: 32545695 PMCID: PMC7352890 DOI: 10.3390/ijms21124210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias.
Collapse
MESH Headings
- Adrenergic beta-3 Receptor Antagonists/pharmacology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Fetal Blood/cytology
- Fetal Blood/drug effects
- Fetal Blood/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Propanolamines/pharmacology
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| | - Annalisa Dabraio
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Gennaro Bruno
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Veronica De Gregorio
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Marcella Coronnello
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Costanza Bogani
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (A.M.V.)
| | - Sara Ciullini
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (G.l.M.); (P.C.)
| | - Marina Vignoli
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (G.l.M.); (P.C.)
| | - Margherita Nardi
- Onco-Hematologic Pediatric Center, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (A.M.V.)
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children’s Hospital, 50139 Florence, Italy;
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| |
Collapse
|
32
|
ADRB3 expression in tumor cells is a poor prognostic factor and promotes proliferation in non-small cell lung carcinoma. Cancer Immunol Immunother 2020; 69:2345-2355. [PMID: 32514619 PMCID: PMC7568706 DOI: 10.1007/s00262-020-02627-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
The cross-talk between cancer cells and monocyte-derived alveolar macrophages (Mo-AMs) promotes non-small cell lung carcinoma (NSCLC) progression. In this study, we report that both cancer cells and Mo-AMs robustly express beta 3-adrenergic receptor (ADRB3) in NSCLC. ADRB3 supports lung cancer cells proliferation and promotes chronic inflammation. Genetic and pharmacologic inhibition of ADRB3 reverses tumor growth and inflammation in mouse. Furthermore, we demonstrate that M5D1, a novel anti-ADRB3 monoclonal antibody, inhibits human lung cancer cells proliferation and inflammation via affecting the intracellular mTOR pathway and activating p53. In NSCLC patients, we confirmed that upregulation of ADRB3 expression correlates with tumor progression and poor prognosis. Altogether, these results shed light on the role of ADRB3 in NSCLC and suggest that M5D1 could become powerful antitumor weapons.
Collapse
|
33
|
Filippi L, Bruno G, Domazetovic V, Favre C, Calvani M. Current Therapies and New Targets to Fight Melanoma: A Promising Role for the β3-Adrenoreceptor. Cancers (Basel) 2020; 12:cancers12061415. [PMID: 32486190 PMCID: PMC7352170 DOI: 10.3390/cancers12061415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer and the most deadly skin cancer. According to World Health Organization, about 132,000 melanoma skin cancers occur globally each year. Thanks to the efficacy of new therapies, life expectation has been improved over the last years. However, some malignant melanomas still remain unresponsive to these therapies. The β-adrenergic system, among its many physiological roles, has been recognized as the main mediator of stress-related tumorigenic events. In particular, catecholamine activation of β-adrenergic receptors (β-ARs) affects several processes that sustain cancer progression. Among the β-AR subtypes, the β3-AR is emerging as an important regulator of tumorigenesis. In this review, we summarize data of different experimental studies focused on β3-AR involvement in tumor development in various types of cancer and, particularly, in melanoma. Taken together, the preclinical evidences reported in this review demonstrate the crucial role of β3-AR in regulating the complex signaling network driving melanoma progression. Therefore, a need exists to further disseminate this new concept and to investigate more deeply the role of β3-AR as a possible therapeutic target for counteracting melanoma progression at clinical level.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Feto-Neonatal Department, A. Meyer University Children’s Hospital, 50139 Florence, Italy
- Correspondence: (L.F.); (G.B.)
| | - Gennaro Bruno
- Department of Health Science, University of Florence, 50139 Florence, Italy;
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy; (C.F.); (M.C.)
- Correspondence: (L.F.); (G.B.)
| | - Vladana Domazetovic
- Department of Health Science, University of Florence, 50139 Florence, Italy;
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy; (C.F.); (M.C.)
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy; (C.F.); (M.C.)
| | - Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy; (C.F.); (M.C.)
| |
Collapse
|
34
|
Bautista M, Krishnan A. The Autonomic Regulation of Tumor Growth and the Missing Links. Front Oncol 2020; 10:744. [PMID: 32477953 PMCID: PMC7237572 DOI: 10.3389/fonc.2020.00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence now indicates that peripheral nerves and solid tumors mutually support the growth of each other. Tumor-derived molecular cues guide nerve infiltration to the tumor milieu, while the tumor-infiltrating nerves provide molecular support to promote tumor growth and dissemination. In this mini-review, we discuss the unique roles of sympathetic and parasympathetic nerves in promoting tumor growth and metastasis. The contribution of adrenergic and cholinergic signals, the specific receptors involved, and the downstream molecular links in both cancer cells and stromal cells are discussed for their intrinsic capacity to modulate tumor growth. We identified unappreciated niche areas in the field, an investigation of which are critical to filling the knowledge gap in understanding the biology of neuromodulation of cancers.
Collapse
Affiliation(s)
- Maricris Bautista
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Cameco MS Neuroscience Research Centre (CMSNRC), University of Saskatchewan, Saskatoon, SK, Canada
| | - Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Cameco MS Neuroscience Research Centre (CMSNRC), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Effects of Beta-Blockers on Melanoma Microenvironment and Disease Survival in Human. Cancers (Basel) 2020; 12:cancers12051094. [PMID: 32353988 PMCID: PMC7281512 DOI: 10.3390/cancers12051094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The regulation of melanoma by noradrenergic signaling has gain attention since pre-clinical and clinical studies suggested a benefit of using beta-blockers to control disease progression. We need to confirm that human melanoma recapitulates the mechanisms described from pre-clinical models. Methods: The sources and targets of norepinephrine in the microenvironment of 20 human melanoma samples was investigated using immunostaining. The effect of an exposure to beta-blockers on immune cell type distribution and expression of immune response markers was assessed with immunostaining on 212 human primary melanoma. A statistical analysis explored the effect of an exposure to beta-blockers on progression free survival, melanoma related survival, and overall survival on the 286 eligible patients. Results: Tumor cells and macrophages may be a source of norepinephrine in melanoma microenvironment. Tumors from patients exposed to wide spectrum beta-blockers recapitulate the increased infiltration of T-lymphocytes and the increased production of granzyme B observed in pre-clinical models. An exposure to beta-blockers is associated with a better outcome in our cohort of melanoma patients. Conclusion: This study shows the association between an exposure to wide spectrum beta-blockers and markers of an effective anti-tumor immune response as well as the protective effect of beta-blockers in human melanoma patients.
Collapse
|
36
|
Calvani M, Bruno G, Dabraio A, Subbiani A, Bianchini F, Fontani F, Casazza G, Vignoli M, De Logu F, Frenos S, Filippi L, Favre C. β3-Adrenoreceptor Blockade Induces Stem Cells Differentiation in Melanoma Microenvironment. Int J Mol Sci 2020; 21:ijms21041420. [PMID: 32093135 PMCID: PMC7073111 DOI: 10.3390/ijms21041420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Although there is an increasing evidence that cancer stem cell (CSC) niches in the tumor microenvironment (TME) plays a crucial role in sustaining solid tumors progression, several molecular players involved in this regulation still remain unknown. The role of β-adrenergic signaling in enhancing tumor growth through β2-adrenoreceptors (β2-ARs) has been confirmed in different cancer models, but the role played by the β3-adrenergic receptor (β3-AR) has recently emerged. Previous studies showed that β3-AR promotes cancer growth through the activation of different stromal cells in the TME, and leads to melanoma malignancy progression through inflammation, angiogenesis, and immunotolerance. Here we show that in B16 melanoma-bearing mice, the pharmacological β3-AR blockade is able to reduce the expression of CSC markers, and to induce a differentiated phenotype of hematopoietic subpopulations in TME. In particular, cytofluorimetric analysis (FACS) of the tumor mass shows that β3-AR antagonist SR59230A promotes hematopoietic differentiation as indicated by increased ratios of lymphoid/hematopoietic stem cells (HSCs) and of myeloid progenitor cells/HSCs, and increases the number of Ter119 and natural killer (NK) precursor cells, and of granulocyte precursors, indicating active hematopoiesis within the tumor tissue. Moreover, pharmacological antagonism of β3-AR induces mesenchymal stem cell (MSC) differentiation into adipocytes subtracting a potential renewal of the stem compartment by these cells. Here we demonstrate that β3-AR blockade in the TME by inducing the differentiation of different stromal cells at the expense of stemness traits could possibly have a favorable effect on the control of melanoma progression.
Collapse
Affiliation(s)
- Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Correspondence: ; Tel.: +39-055-7944573
| | - Gennaro Bruno
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Annalisa Dabraio
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Angela Subbiani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy;
| | - Filippo Fontani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Gabriella Casazza
- Paediatric Hematology Oncology, Bone Marrow Transplant, S. Chiara University Hospital of Pisa, 56126 Pisa, Italy;
| | - Marina Vignoli
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (G.B.); (A.D.); (A.S.); (F.F.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Stefano Frenos
- Hematology-Oncology Department, “Anna Meyer Children’s Hospital”, 50139 Florence, Italy; (S.F.); (C.F.)
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer “University Children’s Hospital, 50139 Florence, Italy;
| | - Claudio Favre
- Hematology-Oncology Department, “Anna Meyer Children’s Hospital”, 50139 Florence, Italy; (S.F.); (C.F.)
| |
Collapse
|
37
|
Dal Monte M, Evans BA, Arioglu-Inan E, Michel MC. Upregulation of β 3-adrenoceptors-a general marker of and protective mechanism against hypoxia? Naunyn Schmiedebergs Arch Pharmacol 2019; 393:141-146. [PMID: 31853614 DOI: 10.1007/s00210-019-01780-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
β3-Adrenoceptors exhibit a restricted expression pattern, particularly in humans. However, they have been found to be upregulated in various cancers and under several conditions associated with hypoperfusion such as congestive heart failure and diabetes for instance in the heart and other tissues. These conditions are frequently associated with hypoxia. Furthermore, direct induction of hypoxia has consistently been reported to cause upregulation of β3-adrenoceptors across various tissues of multiple species including humans, rats, dogs, and fish. While a canonical hypoxia-response element in the promoter of the human β3-adrenoceptor gene may play a role in this, no such sequence was found in rodent homologs. Moreover, not all upregulation of β3-adrenoceptor protein is accompanied by increased expression of corresponding mRNA, indicating that the upregulation may involve factors other than transcriptional changes. We propose that upregulation of β3-adrenoceptors at the mRNA and/or protein level is a general marker of hypoxic conditions. Moreover, it may be an additional pathway whereby cells and tissues adapt to reduced oxygen levels.
Collapse
Affiliation(s)
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ebru Arioglu-Inan
- Department. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department. of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
38
|
Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6346529. [PMID: 31934266 PMCID: PMC6942895 DOI: 10.1155/2019/6346529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
The role of ROS and RNS is a long-standing debate in cancer. Increasing the concentration of ROS reaching the toxic threshold can be an effective strategy for the reduction of tumor cell viability. On the other hand, cancer cells, by maintaining intracellular ROS concentration at an intermediate level called “mild oxidative stress,” promote the activation of signaling that favors tumor progression by increasing cell viability and dangerous tumor phenotype. Many chemotherapeutic treatments induce cell death by rising intracellular ROS concentration. The persistent drug stimulation leads tumor cells to simulate a process called hormesis by which cancer cells exhibit a biphasic response to exposure to drugs used. After a first strong response to a low dose of chemotherapeutic agent, cancer cells start to decrease the response even if high doses of drugs were used. In this framework, β3-adrenoreceptors (β3-ARs) fit with an emerging antioxidant role in cancer. β3-ARs are involved in tumor proliferation, angiogenesis, metastasis, and immune tolerance. Its inhibition, by the selective β3-ARs antagonist (SR59230A), leads cancer cells to increase ROS concentration thus inducing cell death and to decrease NO levels thus inhibiting angiogenesis. In this review, we report an overview on reactive oxygen biology in cancer cells focusing on β3-ARs as new players in the antioxidant pathway.
Collapse
|
39
|
Leo S, Gattuso A, Mazza R, Filice M, Cerra MC, Imbrogno S. Cardiac influence of the β3-adrenoceptor in the goldfish ( Carassius auratus): a protective role under hypoxia? ACTA ACUST UNITED AC 2019; 222:jeb.211334. [PMID: 31527180 DOI: 10.1242/jeb.211334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
The goldfish (Carassius auratus) exhibits a remarkable capacity to survive and remain active under prolonged and severe hypoxia, making it a good model for studying cardiac function when oxygen availability is a limiting factor. Under hypoxia, the goldfish heart increases its performance, representing a putative component of hypoxia tolerance; however, the underlying mechanisms have not yet been elucidated. Here, we aimed to investigate the role of β3-adrenoreceptors (ARs) in the mechanisms that modulate goldfish heart performance along with the impact of oxygen levels. By western blotting analysis, we found that the goldfish heart expresses β3-ARs, and this expression increases under hypoxia. The effects of β3-AR stimulation were analysed by using an ex vivo working heart preparation. Under normoxia, the β3-AR-selective agonist BRL37344 (10-12 to 10-7 mol l-1) elicited a concentration-dependent increase of contractility that was abolished by a specific β3-AR antagonist (SR59230A; 10-8 mol l-1), but not by α/β1/β2-AR inhibitors (phentolamine, nadolol and ICI118,551; 10-7 mol l-1). Under acute hypoxia, BRL37344 did not affect goldfish heart performance. However, SR59230A, but not phentolamine, nadolol or ICI118,551, abolished the time-dependent enhancement of contractility that characterizes the hypoxic goldfish heart. Under both normoxia and hypoxia, adenylate cyclase and cAMP were found to be involved in the β3-AR-dependent downstream transduction pathway. In summary, we show the presence of functional β3-ARs in the goldfish heart, whose activation modulates basal performance and contributes to a hypoxia-dependent increase of contractility.
Collapse
Affiliation(s)
- Serena Leo
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Alfonsina Gattuso
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Rosa Mazza
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Mariacristina Filice
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Sandra Imbrogno
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy
| |
Collapse
|
40
|
De Giorgi V, Geppetti P, Lupi C, Benemei S. The Role of β-Blockers in Melanoma. J Neuroimmune Pharmacol 2019; 15:17-26. [PMID: 31482435 DOI: 10.1007/s11481-019-09876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
Melanoma is one of the most aggressive and less chemotherapy-responsive human cancers, representing a major public health issue worldwide. The early diagnosis still represents the best approach in order to reduce mortality, especially in advanced stages. Preclinical evidence, collected through several in vitro and in vivo models, has been accumulating about the pathophysiological involvement of β-adrenoceptors in melanoma progression. This involvement has been paralleled by the evidence that drugs blocking β-adrenoceptors (β-blockers) may have a relevant role in the treatment of melanoma and in the prevention of its progression. β-blockers are a class of drugs extensively used in clinical practice, not limited to cardiovascular therapeutics. Evidence collected through retrospective and prospective observational studies suggests that treatment with β-blockers, mainly propranolol, is able to delay melanoma progression. Although conclusive evidence is still lacking, current knowledge proposes β-blockers as an opportunity for antitumor treatment in melanoma. Clinical trials are needed in order to prove their claimed efficacy. Graphical Abstract.
Collapse
Affiliation(s)
- Vincenzo De Giorgi
- Division of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Pierangelo Geppetti
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Chiara Lupi
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Silvia Benemei
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
41
|
β3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P 2 modulation. Oncogene 2019; 39:368-384. [PMID: 31477835 PMCID: PMC6949192 DOI: 10.1038/s41388-019-0993-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is the most frequently observed among extracranial pediatric solid tumors. It displays an extreme clinical heterogeneity, in particular for the presentation at diagnosis and response to treatment, often depending on cancer cell differentiation/stemness. The frequent presence of elevated hematic and urinary levels of catecholamines in patients affected by NB suggests that the dissection of adrenergic system is crucial for a better understanding of this cancer. β3-adrenoreceptor (β3-AR) is the last identified member of adrenergic receptors, involved in different tumor conditions, such as melanoma. Multiple studies have shown that the dysregulation of the bioactive lipid sphingosine 1-phosphate (S1P) metabolism and signaling is involved in many pathological diseases including cancer. However, whether S1P is crucial for NB progression and aggressiveness is still under investigation. Here we provide experimental evidence that β3-AR is expressed in NB, both human specimens and cell lines, where it is critically involved in the activation of proliferation and the regulation between stemness/differentiation, via its functional cross-talk with sphingosine kinase 2 (SK2)/S1P receptor 2 (S1P2) axis. The specific antagonism of β3-AR by SR59230A inhibits NB growth and tumor progression, by switching from stemness to cell differentiation both in vivo and in vitro through the specific blockade of SK2/S1P2 signaling.
Collapse
|
42
|
Montoya A, Varela-Ramirez A, Dickerson E, Pasquier E, Torabi A, Aguilera R, Nahleh Z, Bryan B. The beta adrenergic receptor antagonist propranolol alters mitogenic and apoptotic signaling in late stage breast cancer. Biomed J 2019; 42:155-165. [PMID: 31466709 PMCID: PMC6717753 DOI: 10.1016/j.bj.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Substantial evidence supports the use of inexpensive β-AR antagonists (beta blockers) against a variety of cancers, and the β-AR antagonist propranolol was recently approved by the European Medicines Agency for the treatment of soft tissue sarcomas. Prospective and retrospective data published by our group and others suggest that non-selective β-AR antagonists are effective at reducing proliferative rates in breast cancers, however the mechanism by which this occurs is largely unknown. Methods In this study, we measured changes in tumor proliferation and apoptosis in a late stage breast cancer patient treated with neoadjuvant propranolol. We expounded upon these clinical findings by employing an in vitro breast cancer model, where we used cell-based assays to evaluate propranolol-mediated molecular alterations related to cell proliferation and apoptosis. Results Neoadjuvant propranolol decreased expression of the pro-proliferative Ki-67 and pro-survival Bcl-2 markers, and increased pro-apoptotic p53 expression in a patient with stage III breast cancer. Molecular analysis revealed that β-AR antagonism disrupted cell cycle progression and steady state levels of cyclins. Furthermore, propranolol treatment of breast cancer cells increased p53 levels, enhanced caspase cleavage, and induced apoptosis. Conclusion Collectively, these data provide support for the incorporation of β-AR antagonists into the clinical management of breast cancer, and elucidate a partial molecular mechanism explaining the efficacy of β-AR antagonists against this disease.
Collapse
Affiliation(s)
- Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Biology, University of Texas, El Paso, TX, USA
| | - Armando Varela-Ramirez
- Department of Biology, University of Texas, El Paso, TX, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, USA
| | - Erin Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eddy Pasquier
- CNRS, INSERM, Aix-Marseille University, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Marseille, France
| | - Alireza Torabi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Renato Aguilera
- Department of Biology, University of Texas, El Paso, TX, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, USA
| | - Zeina Nahleh
- Department of Hematology and Medical Oncology, Cleveland Clinic, Weston, FL, USA
| | - Brad Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
43
|
Hanns P, Paczulla AM, Medinger M, Konantz M, Lengerke C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019; 3:221-235. [PMID: 31338489 PMCID: PMC6612892 DOI: 10.15698/cst2019.07.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High vascularization and locally secreted factors make the bone marrow (BM) microenvironment particularly hospitable for tumor cells and bones to a preferred metastatic site for disseminated cancer cells of different origins. Cancer cell homing and proliferation in the BM are amongst other regulated by complex interactions with BM niche cells (e.g. osteoblasts, endothelial cells and mesenchymal stromal cells (MSCs)), resident hematopoietic stem and progenitor cells (HSPCs) and pro-angiogenic cytokines leading to enhanced BM microvessel densities during malignant progression. Stress and catecholamine neurotransmitters released in response to activation of the sympathetic nervous system (SNS) reportedly modulate various BM cells and may thereby influence cancer progression. Here we review the role of catecholamines during tumorigenesis with particular focus on pro-tumorigenic effects mediated by the BM niche.
Collapse
Affiliation(s)
- Pauline Hanns
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anna M Paczulla
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
44
|
Calvani M, Bruno G, Dal Monte M, Nassini R, Fontani F, Casini A, Cavallini L, Becatti M, Bianchini F, De Logu F, Forni G, la Marca G, Calorini L, Bagnoli P, Chiarugi P, Pupi A, Azzari C, Geppetti P, Favre C, Filippi L. β 3 -Adrenoceptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol 2019; 176:2509-2524. [PMID: 30874296 DOI: 10.1111/bph.14660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Stress-related catecholamines have a role in cancer and β-adrenoceptors; specifically, β2 -adrenoceptors have been identified as new targets in treating melanoma. Recently, β3 -adrenoceptors have shown a pleiotropic effect on melanoma micro-environment leading to cancer progression. However, the mechanisms by which β3 -adrenoceptors promote this progression remain poorly understood. Catecholamines affect the immune system by modulating several factors that can alter immune cell sub-population homeostasis. Understanding the mechanisms of cancer immune-tolerance is one of the most intriguing challenges in modern research. This study investigates the potential role of β3 -adrenoceptors in immune-tolerance regulation. EXPERIMENTAL APPROACH A mouse model of melanoma in which syngeneic B16-F10 cells were injected in C57BL-6 mice was used to evaluate the effect of β-adrenoceptor blockade on the number and activity of immune cell sub-populations (Treg, NK, CD8, MDSC, macrophages, and neutrophils). Pharmacological and molecular approaches with β-blockers (propranolol and SR59230A) and specific β-adrenoceptor siRNAs targeting β2 - or β3 -adrenoceptors were used. KEY RESULTS Only β3 -, but not β2 -adrenoceptors, were up-regulated under hypoxia in peripheral blood mononuclear cells and selectively expressed in immune cell sub-populations including Treg, MDSC, and NK. SR59230A and β3 -adrenoceptor siRNAs increased NK and CD8 number and cytotoxicity, while they attenuated Treg and MDSC sub-populations in the tumour mass, blood, and spleen. SR59230A and β3 -adrenoceptor siRNAs increased the ratio of M1/M2 macrophages and N1 granulocytes. CONCLUSIONS AND IMPLICATIONS Our data suggest that β3 -adrenoceptors are involved in immune-tolerance, which opens the way for new strategic therapies to overcome melanoma growth. LINKED ARTICLES This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Maura Calvani
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Gennaro Bruno
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Massimo Dal Monte
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Romina Nassini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Fontani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Arianna Casini
- Division of Immunology, Section of Pediatrics, Meyer University Children's Hospital, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Forni
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Giancarlo la Marca
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Claudio Favre
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
45
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
46
|
Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P. β-Adrenoceptors as drug targets in melanoma: novel preclinical evidence for a role of β 3 -adrenoceptors. Br J Pharmacol 2018; 176:2496-2508. [PMID: 30471093 DOI: 10.1111/bph.14552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress plays a role in tumourigenesis through catecholamines acting at β-adrenoceptors including β1 -, β2 - and β3 -adrenoceptors, and the use of β-adrenoceptor antagonists seems to counteract tumour growth and progression. Preclinical evidence and meta-analysis data demonstrate that melanoma shows a positive response to β-adrenoceptor blockers and in particular to propranolol acting mainly at β1 - and β2 -adrenoceptors. Although evidence suggesting that β3 -adrenoceptors may play a role as a therapeutic target in infantile haemangiomas has been recently reviewed, a comprehensive analysis of the data available from preclinical studies supporting a possible role of β3 -adrenoceptors in melanoma was not available. Here, we review data from the literature demonstrating that propranolol may be effective at counteracting melanoma growth, and we provide preclinical evidence that β3 -adrenoceptors may also play a role in the pathophysiology of melanoma, thus opening the door for further clinical assays trying to explore β3 -adrenoceptor blockers as novel alternatives for its treatment. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
| | - Maura Calvani
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | | | - Claudio Favre
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
47
|
β3-Adrenoreceptors Control Mitochondrial Dormancy in Melanoma and Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6816508. [PMID: 30538804 PMCID: PMC6258109 DOI: 10.1155/2018/6816508] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 01/10/2023]
Abstract
The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that β3-adrenergic receptor (β3-AR) is involved in tumor progression, playing an important role in metastasis. Among β-adrenergic receptors, β3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. β3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, β3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that β3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The β3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific β3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of β3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.
Collapse
|
48
|
Benemei S, Geppetti P, De Giorgi V. Improving the Propranolol Treatment of Melanoma-Reply. JAMA Oncol 2018; 4:1013-1014. [PMID: 29800985 DOI: 10.1001/jamaoncol.2018.0619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Silvia Benemei
- Section of Oncology and Clinical Pharmacology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Section of Oncology and Clinical Pharmacology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Vincenzo De Giorgi
- Department of Dermatology, Azienda Sanitaria Toscana Centro, University of Florence, Florence, Italy
| |
Collapse
|
49
|
Amaya CN, Perkins M, Belmont A, Herrera C, Nasrazadani A, Vargas A, Khayou T, Montoya A, Ballou Y, Galvan D, Rivas A, Rains S, Patel L, Ortega V, Lopez C, Chow W, Dickerson EB, Bryan BA. Non-selective beta blockers inhibit angiosarcoma cell viability and increase progression free- and overall-survival in patients diagnosed with metastatic angiosarcoma. Oncoscience 2018; 5:109-119. [PMID: 29854879 PMCID: PMC5978448 DOI: 10.18632/oncoscience.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with metastatic angiosarcoma undergoing chemotherapy, radiation, and/or surgery experience a median progression free survival of less than 6 months and a median overall survival of less than 12 months. Given the aggressive nature of this cancer, angiosarcoma clinical responses to chemotherapy or targeted therapeutics are generally very poor. Inhibition of beta adrenergic receptor (β-AR) signaling has recently been shown to decrease angiosarcoma tumor cell viability, abrogate tumor growth in mouse models, and decrease proliferation rates in preclinical and clinical settings. In the current study we used cell and animal tumor models to show that β-AR antagonism abrogates mitogenic signaling and reduces angiosarcoma tumor cell viability, and these molecular alterations translated into patient tumors. We demonstrated that non-selective β-AR antagonists are superior to selective β-AR antagonists at inhibiting angiosarcoma cell viability. A prospective analysis of non- selective β-AR antagonists in a single arm clinical study of metastatic angiosarcoma patients revealed that incorporation of either propranolol or carvedilol into patients' treatment regimens leads to a median progression free and overall survival of 9 and 36 months, respectively. These data suggest that incorporation of non-selective β-AR antagonists into existing therapies against metastatic angiosarcoma can enhance clinical outcomes.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mariah Perkins
- Department of Biochemistry, Baylor University, Waco, TX, USA
| | - Andres Belmont
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Connie Herrera
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Arezo Nasrazadani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alejandro Vargas
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Thuraieh Khayou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Department of Biology, University of Texas, El Paso, TX, USA
| | - Yessenia Ballou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Dana Galvan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexandria Rivas
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven Rains
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Luv Patel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Vanessa Ortega
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Christopher Lopez
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - William Chow
- Mohs Micrographic Surgery and Cutaneous Oncology, San Leandro, CA, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
50
|
Jean Wrobel L, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 2018; 7:77825-77837. [PMID: 27788481 PMCID: PMC5363624 DOI: 10.18632/oncotarget.12833] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells.
Collapse
Affiliation(s)
- Ludovic Jean Wrobel
- Hôpitaux Universitaires de Genève, Service de Dermatologie, Genève, Switzerland
| | - Lloyd Bod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Renée Lengagne
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Armelle Prévost-Blondel
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | |
Collapse
|