1
|
Yin L, Wei Y, Liu Y, Mo X, Song J, Cai W. Bio-responsive Au-miR-183 inhibitor enhances immunotherapy in hepatocellular carcinoma by inducing immunogenic cell death. J Control Release 2024; 368:498-517. [PMID: 38428529 DOI: 10.1016/j.jconrel.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The treatment of advanced hepatocellular carcinoma (HCC) is limited, and immunotherapy is the current research focus of multi-disciplinary collaborative comprehensive treatment of HCC. Herein, we constructed a bio-responsive Au-miR-183 inhibitor (Au@miR-183i) delivery system targeting liver cancer stem cells (LCSCs), and adopted the strategy of combining αPD-L1 immunotherapy. The multifunctional Au@miR-183i nanocomplexes (NCs), which self-assemble based on the tumor microenvironment, consume NADPH and H2O2, leading to redox homeostasis disturbance, ROS accumulation, regulation of the LCSC niche, and induction of stemness regression. Moreover, self-assembled Au@miR-183i NCs specifically target the delivery of miR-183i to LCSCs, triggering the immunogenic cell death (ICD) effect, promoting the maturation of dendritic cells, inducing infiltration of CD8+ T cells, and facilitating the transformation of 'cold' tumors into 'hot' tumors. More importantly, consistent with the results in vitro, Au@miR-183i NCs demonstrated effective tumor targeting and strong ICD induction in vivo, assisted in enhancing αPD-L1 immunotherapy, and activated a robust systemic anti-tumor immune response in tumor-bearing mouse models. Overall, we provide a simple and universal therapeutic strategy by constructing a multifunctional bio-responsive Au@miR-183i NCs delivery system with LCSC targeting capability. Furthermore, nanocomplex-based ICD inducers have great promise in enhancing anti-tumor immunity and the PD-1/PD-L1 blocking efficacy in HCC, which provides a theoretical basis for effectively eliminating LCSCs and achieving a high-efficiency synergistic treatment strategy for HCC.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology and Metabolism, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China; Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Yu Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Shihezi University Medical School, Shihezi 832008, China
| | - Ya Liu
- Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Xianwei Mo
- Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Jintong Song
- Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Weijuan Cai
- Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524000, China.
| |
Collapse
|
2
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Guo M, Ge X, Wang C, Yin Z, Jia Z, Hu T, Li M, Wang D, Han Z, Wang L, Xiong X, Chen F, Lei P. Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes after Intracerebral Hemorrhage by Regulating Neuroinflammation. Brain Sci 2023; 13:brainsci13040639. [PMID: 37190604 DOI: 10.3390/brainsci13040639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.
Collapse
Affiliation(s)
- Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zexi Jia
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiangyang Xiong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Oryani MA, Tavasoli A, Ghalavand MA, Ashtiani RZ, Rezaee A, Mahmoudi R, Golvari H, Owrangi S, Soleymani-Goloujeh M. Epigenetics and its therapeutic potential in colorectal cancer. Epigenomics 2022; 14:683-697. [PMID: 35473313 DOI: 10.2217/epi-2022-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alisam Rezaee
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Golvari
- School of Nursing & Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroor Owrangi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Müller Coan BG, Cesarman E, Acencio ML, Elgui de Oliveira D. Latent Membrane Protein 1 (LMP1) from Epstein-Barr Virus (EBV) Strains M81 and B95.8 Modulate miRNA Expression When Expressed in Immortalized Human Nasopharyngeal Cells. Genes (Basel) 2022; 13:353. [PMID: 35205397 PMCID: PMC8871543 DOI: 10.3390/genes13020353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous γ herpesvirus strongly associated with nasopharyngeal carcinomas, and the viral oncogenicity in part relies on cellular effects of the viral latent membrane protein 1 (LMP1). It was previously described that EBV strains B95.8 and M81 differ in cell tropism and the activation of the lytic cycle. Nonetheless, it is unknown whether LMP1 from these strains have different effects when expressed in nasopharyngeal cells. Thus, herein we evaluated the effects of EBV LMP1 derived from viral strains B95.8 and M81 and expressed in immortalized nasopharyngeal cells NP69SV40T in the regulation of 91 selected cellular miRNAs. We found that cells expressing either LMP1 behave similarly in terms of NF-kB activation and cell migration. Nonetheless, the miRs 100-5p, 192-5p, and 574-3p were expressed at higher levels in cells expressing LMP1 B95.8 compared to M81. Additionally, results generated by in silico pathway enrichment analysis indicated that LMP1 M81 distinctly regulate genes involved in cell cycle (i.e., RB1), mRNA processing (i.e., NUP50), and mitochondrial biogenesis (i.e., ATF2). In conclusion, LMP1 M81 was found to distinctively regulate miRs 100-5p, 192-5p, and 574-3p, and the in silico analysis provided valuable clues to dissect the molecular effects of EBV LMP1 expressed in nasopharyngeal cells.
Collapse
Affiliation(s)
- Barbara G. Müller Coan
- Biosciences Institute of Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367 Luxembourg, Luxembourg;
| | - Deilson Elgui de Oliveira
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu, SP, 18618-687, Brazil
- ViriCan, Institute for Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu, SP, 18607-440, Brazil
| |
Collapse
|
7
|
Azimi M, Totonchi M, Ebrahimi M. Determining The Role of MicroRNAs in Self-Renewal, Metastasis and Resistance to Drugs in Human Gastric Cancer Based on Data Mining Approaches: A Systematic Review. CELL JOURNAL 2022; 24:1-6. [PMID: 35182058 PMCID: PMC8876259 DOI: 10.22074/cellj.2022.7173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. The major problems of patients
with GC are the lack of proper response to the treatment, drug resistance and metastasis attributed to the presence
of a subpopulation of cells inside the tumour that are called cancer stem cells (CSCs). In addition, deregulation of
microRNAs (miRNAs) has been reported in different stages of GC. The aim of the present study is to determine and
introduce miRNAs that contribute to regulation of stemness, metastasis and drug resistance in GC. A systematic
review, we conducted data mining of available datasets and a review of previous studies to select miRNAs that target
stemness, epithelial-mesenchymal transition (EMT) and drug resistance. All selected miRNAs were analysed by R
software to find a common miRNA target for all three processes. Then, the target prediction of miRNAs and their
related signalling pathways were obtained by using bioinformatics tools, ONCO.IO and KEGG databases, respectively.
We identified seven miRNAs (miR-34a, miR-23a, miR-27a, miR-30a, miR-19b, miR-107, miR-100) from our searching
approach. These miRNAs regulate pathways that contribute to stemness, EMT and drug resistance in GC. Four (miR-
34a, miR-23a, miR-30a, and miR-100) had significant interactions with each other and 52 target genes among them,
from which MYC, CDK6, NOTCH1, NOTCH2, SIRT1, CD44, CD24, and AXL were involved
in the regulation of several
biological processes. These data suggest that the three significant properties can be regulated by common miRNAs
(hsa-miR-34a, hsa-miR-23a, hsa-miR-30a and hsa-miR-100). Hence, targeting selected miRNAs or their targets might
be helpful to stop tumour growth and metastasis development, and increase tumour sensitivity to chemotherapy agents.
This signature can also be assumed for early detection of metastasis or drug resistance. However, there should be
additional experimentation to validate these results.
Collapse
Affiliation(s)
- Mahnaz Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedical Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
9
|
Zhou HZ, Chen B, Li XJ, Du JJ, Zhang N, Shao YX, Zhang K, Tong ZC. MicroRNA-545-5p regulates apoptosis, migration and invasion of osteosarcoma by targeting dimethyladenosine transferase 1. Oncol Lett 2021; 22:763. [PMID: 34539867 PMCID: PMC8436355 DOI: 10.3892/ol.2021.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Bo Chen
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiao-Ju Li
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Juan-Juan Du
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Nan Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yu-Xiong Shao
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhi-Chao Tong
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
10
|
Ameli-Mojarad M, Ameli-Mojarad M, Hadizadeh M, Young C, Babini H, Nazemalhosseini-Mojarad E, Bonab MA. The effective function of circular RNA in colorectal cancer. Cancer Cell Int 2021; 21:496. [PMID: 34535136 PMCID: PMC8447721 DOI: 10.1186/s12935-021-02196-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.
Collapse
Affiliation(s)
| | - Melika Ameli-Mojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Mahrooyeh Hadizadeh
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| | - Chris Young
- Institute of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Hosna Babini
- Department of Cell & Molecular Biology, Faculty of Science, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Ashrafian Bonab
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| |
Collapse
|
11
|
Lin CC, Liao WT, Yang TY, Lu HJ, Hsu SL, Wu CC. MicroRNA‑10b modulates cisplatin tolerance by targeting p53 directly in lung cancer cells. Oncol Rep 2021; 46:167. [PMID: 34165168 DOI: 10.3892/or.2021.8118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA or miR)‑10b is an oncogenic miRNA associated with metastasis that is present in various types of tumor, including lung cancer. However, whether miR‑10b is involved in different malignant characteristics, such as drug resistance or stemness, remains unclear. Therefore, the present study investigated whether miR‑10b is an upstream regulator of p53. Ectopic expression of miR‑10b‑agomir decreased the expression of p53 and its downstream effectors, such as Bax and p53 upregulated modulator of apoptosis. Two non‑canonical sites, including 1,580‑1,587 and 2,029‑2,035, located in p53 3'‑untranslated region (UTR) were affected by the presence of miR‑10b. In functional assays, upregulation of the p53 signaling pathway following cisplatin treatment was associated with decreased levels of miR‑10b and upregulation of the luciferase activity of wild‑type, but not 1,584, 2,032‑dual‑mutant, p53 3'‑UTR. The ectopic expression of miR‑10b‑agomir attenuated the stability of p53 3'‑UTR and the expression of p53 and its downstream effectors induced by cisplatin. By contrast, the knockdown of miR‑10b induced the stability of p53 3'‑UTR and increased levels of p53 and the sensitivity of A549 cells to cisplatin treatment. Similar results were also observed for Beas 2B cells. In the clinical investigation, p53 exhibited two distinct associations (cocurrent and countercurrent) with miR‑10b in patients with lung cancer. Patients with lung cancer with low p53 and high miR‑10b levels exhibited the poorest prognosis, while those with high p53 and low miR‑10b exhibited the most favorable prognosis. These findings indicate a novel pathway in which cisplatin induces the levels of p53 by increasing mRNA stability via miR‑10b, indicating a novel oncogenic role of miR‑10b in promoting the malignant characteristics of non‑small cell lung carcinoma.
Collapse
Affiliation(s)
- Chen-Chu Lin
- Institute of Medicine, Chung‑Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Wan-Ting Liao
- Institute of Medicine, Chung‑Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - Hsueh-Ju Lu
- Division of Medical Oncology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - Chun-Chi Wu
- Institute of Medicine, Chung‑Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
12
|
Wen XQ, Qian XL, Sun HK, Zheng LL, Zhu WQ, Li TY, Hu JP. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. Onco Targets Ther 2020; 13:10851-10866. [PMID: 33149603 PMCID: PMC7602903 DOI: 10.2147/ott.s265580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third-commonest malignant cancer, and its metastasis is the major reason for cancer-related death. The process of metastasis is highly coordinated and involves a complex cascade of multiple steps. In recent years, miRNAs, as highly conserved, endogenous, noncoding, single-stranded RNA, has been confirmed to be involved in the development of various cancers. Considering that miRNA is also involved in a series of biological behaviors, regulating CRC occurrence and development, we review and summarize the role of miRNAs and related signaling pathways in several CRC-metastasis stages, including invasion and migration, mobility, metabolism, epithelial-mesenchymal transition, tumor-microenvironment communication, angiogenesis, anoikis, premetastatic-niche formation, and cancer stemness. In addition, we review the application of miRNAs as diagnostic CRC markers and in clinical treatment resistance. This review can contribute to understanding of the mechanism of miRNAs in CRC progression and provide a theoretical basis for clinical CRC treatment.
Collapse
Affiliation(s)
- Xiang-Qiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xian-Ling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Medical Imaging, Shanghai Medical College,Fudan University, Shanghai, 200032, People's Republic of China
| | - Huan-Kui Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lin-Lin Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Wei-Quan Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jia-Ping Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
13
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
14
|
Wu KJ. The role of miRNA biogenesis and DDX17 in tumorigenesis and cancer stemness. Biomed J 2020; 43:107-114. [PMID: 32513392 PMCID: PMC7283569 DOI: 10.1016/j.bj.2020.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer stemness represents one of the major mechanisms that predispose patients to tumor aggressiveness, metastasis, and treatment resistance. MicroRNA biogenesis is an important process controlling miRNA processing and maturation. Deregulation of miRNA biogenesis can lead to tumorigenesis and cancer stemness. DDX17 is a co-factor of the miRNA microprocessor. Misregulation of DDX17 can be associated with cancer stemness. K63-linked polyubiquitination of DDX17 presents a concerted mechanism of decreased synthesis of stemness-inhibiting miRNAs and increased transcriptional activation of stemness-related gene expression. K63-linked polyubiquitination of HAUSP serves as a scaffold to anchor HIF-1α, CBP, the mediator complex, and the super-elongation complex to enhance HIF-1α-induced gene transcription. Recent progress in RNA modifications shows that RNA N6-methyladenosine (m6A) modification is a crucial mechanism to regulate RNA levels. M6A modification of miRNAs can also be linked to tumorigenesis and cancer stemness. Overall, miRNA biogenesis and K63-linked polyubiquitination of DDX17 play an important role in the induction of cancer stemness. Delineation of the mechanisms and identification of suitable targets may provide new therapeutic options for treatment-resistant cancers.
Collapse
Affiliation(s)
- Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Zhang Z, Xu Y, Chi S, Cui L. MicroRNA-582-5p Reduces Propofol-induced Apoptosis in Developing Neurons by Targeting ROCK1. Curr Neurovasc Res 2020; 17:140-146. [PMID: 32031069 DOI: 10.2174/1567202617666200207124817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Propofol is an intravenous drug commonly used in anesthesia procedures and intensive care in children. However, it also has neurotoxic effects on children. MicroRNA plays an important role in neurological diseases and neurotoxicity. METHODS In this study, primary rat hippocampal neurons were used to investigate the role of miR- 582-5p in propofol-induced neurotoxicity. Cell viability was monitored by 3-(4,5-dimethylthiazolyl)- 2,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while the expression of proteins was monitored by real-time quantitation polymerase chain reaction (RT-qPCR) and western blot. TargetScan and double luciferase report assay were used to predict the targeting relationship between miR-582-5p and Rho-associated serine-threonine protein kinase 1 (ROCK1). RESULTS In the present study, the viability of neurons and the expression of miR-582-5p were decreased in a time-dependent manner after propofol treatment. Besides, miR-582-5p overexpression significantly reduced the toxicity of propofol on neuron cells but had no significant effect on normal nerve cells. In addition, miR-582-5p overexpression significantly reversed the expression of apoptosis-related proteins (cleaved caspase 3 and cleaved caspase 9) induced by propofol but had no significant effect in normal nerve cells. TargetScan and Dual-luciferase report assay revealed that ROCK1 was a targeted regulatory gene for miR-582-5p, and propofol treatment up-regulated ROCK1 expression by inhibiting miR-582-5p expression. Notably, miR-582-5p overexpression significantly increased cell viability, while ROCK1 overexpression reversed the effect of miR-582- 5p. CONCLUSION Taken together, these findings suggest that miR-582-5p alleviated propofol-induced apoptosis of newborn rat neurons by inhibiting ROCK1.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Yan Xu
- Department of Endocrinology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Songyuan Chi
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Longji Cui
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| |
Collapse
|
16
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
17
|
Fellenberg J, Lehner B, Saehr H, Schenker A, Kunz P. Tumor Suppressor Function of miR-127-3p and miR-376a-3p in Osteosarcoma Cells. Cancers (Basel) 2019; 11:cancers11122019. [PMID: 31847321 PMCID: PMC6966509 DOI: 10.3390/cancers11122019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Since the introduction of high-dose chemotherapy about 35 years ago, survival rates of osteosarcoma patients have not been significantly improved. New therapeutic strategies replacing or complementing conventional chemotherapy are therefore urgently required. MicroRNAs represent promising targets for such new therapies, as they are involved in the pathology of multiple types of cancer, and aberrant expression of several miRNAs has already been shown in osteosarcoma. In this study, we identified silencing of miR-127-3p and miR-376a-3p in osteosarcoma cell lines and tissues and investigated their role as potential tumor suppressors in vitro and in vivo. Transfection of osteosarcoma cells (n = 6) with miR-127-3p and miR-376a-3p mimics significantly inhibited proliferation and reduced the colony formation capacity of these cells. In contrast, we could not detect any influence of miRNA restoration on cell cycle and apoptosis induction. The effects of candidate miRNA restoration on tumor engraftment and growth in vivo were analyzed using a chicken chorioallantoic membrane (CAM) assay. Cells transfected with mir-127-3p and miR-376a-3p showed reduced tumor take rates and tumor volumes and a significant decrease of the cumulative tumor volumes to 41% and 54% compared to wildtype cells. The observed tumor suppressor function of both analyzed miRNAs indicates these miRNAs as potentially valuable targets for the development of new therapeutic strategies for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Joerg Fellenberg
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, 69118 Heidelberg, Germany; (B.L.); (H.S.); (A.S.); (P.K.)
- Correspondence: ; Tel.: +49-6221-56-29291
| | - Burkhard Lehner
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, 69118 Heidelberg, Germany; (B.L.); (H.S.); (A.S.); (P.K.)
| | - Heiner Saehr
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, 69118 Heidelberg, Germany; (B.L.); (H.S.); (A.S.); (P.K.)
| | - Astrid Schenker
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, 69118 Heidelberg, Germany; (B.L.); (H.S.); (A.S.); (P.K.)
| | - Pierre Kunz
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, 69118 Heidelberg, Germany; (B.L.); (H.S.); (A.S.); (P.K.)
- Clinic for Shoulder and Elbow Surgery, Catholic Hospital Mainz, Rhineland-Pfalz, 55131 Mainz, Germany
| |
Collapse
|
18
|
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2019; 206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
19
|
Naser Al Deen N, Nassar F, Nasr R, Talhouk R. Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:335-364. [DOI: 10.1007/978-3-030-20301-6_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
21
|
Zahid KR, Su M, Khan ARR, Han S, Deming G, Raza U. Systems biology based meth-miRNA-mRNA regulatory network identifies metabolic imbalance and hyperactive cell cycle signaling involved in hepatocellular carcinoma onset and progression. Cancer Cell Int 2019; 19:89. [PMID: 31007607 PMCID: PMC6454777 DOI: 10.1186/s12935-019-0804-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading cause of cancer associated deaths worldwide. Independent studies have proposed altered DNA methylation pattern and aberrant microRNA (miRNA) levels leading to abnormal expression of different genes as important regulators of disease onset and progression in HCC. Here, using systems biology approaches, we aimed to integrate methylation, miRNA profiling and gene expression data into a regulatory methylation-miRNA–mRNA (meth-miRNA–mRNA) network to better understand the onset and progression of the disease. Methods Patients’ gene methylation, miRNA expression and gene expression data were retrieved from the NCBI GEO and TCGA databases. Differentially methylated genes, and differentially expressed miRNAs and genes were identified by comparing respective patients’ data using two tailed Student’s t-test. Functional annotation and pathway enrichment, miRNA–mRNA inverse pairing and gene set enrichment analyses (GSEA) were performed using DAVID, miRDIP v4.1 and GSEA tools respectively. meth-miRNA–mRNA network was constructed using Cytoscape v3.5.1. Kaplan–Meier survival analyses were performed using R script and significance was calculated by Log-rank (Mantel-Cox) test. Results We identified differentially expressed mRNAs, miRNAs, and differentially methylated genes in HCC as compared to normal adjacent tissues by analyzing gene expression, miRNA expression, and methylation profiling data of HCC patients and integrated top miRNAs along with their mRNA targets and their methylation profile into a regulatory meth-miRNA–mRNA network using systems biology approach. Pathway enrichment analyses of identified genes revealed suppressed metabolic pathways and hyperactive cell cycle signaling as key features of HCC onset and progression which we validated in 10 different HCC patients’ datasets. Next, we confirmed the inverse correlation between gene methylation and its expression, and between miRNA and its targets’ expression in various datasets. Furthermore, we validated the clinical significance of identified methylation, miRNA and mRNA signatures by checking their association with clinical features and survival of HCC patients. Conclusions Overall, we suggest that simultaneous (1) reversal of hyper-methylation and/or oncogenic miRNA driven suppression of genes involved in metabolic pathways, and (2) induction of hyper-methylation and/or tumor suppressor miRNA driven suppression of genes involved in cell cycle signaling have potential of inhibiting disease aggressiveness, and predicting good survival in HCC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0804-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Mingyang Su
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Abdur Rehman Raza Khan
- 2Military College of Signals, National University of Science and Technology (NUST), Khadim Hussain Rd, Rawalpindi, Pakistan
| | - Shiming Han
- 3School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004 China
| | - Gou Deming
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, Rawalpindi, Pakistan
| |
Collapse
|
22
|
MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:126. [PMID: 30866999 PMCID: PMC6416947 DOI: 10.1186/s13046-019-1105-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background Cancer stem cells (CSCs) play an important role in the development of pancreatic cancer. We previously showed that the microRNA miR-137 is downregulated in clinical samples of pancreatic cancer, and its expression negatively regulates the proliferation and invasiveness of pancreatic cancer cells. Methods The stemness features of pancreatic cancer cells was detected by flow cytometry, immunofluorescence and sphere formation assay. Xenograft mouse models were used to assess the role of miR-137 in stemness features of pancreatic cancer cells in vivo. Dual-luciferase reporter assays were used to determine how miR-137 regulates KLF12. Bioinformatics and Chromatin immunoprecipitation analysis of KLF12 recruitment to the DVL2 promoters. Involvement of the Wnt/β-catenin pathways was investigated by western blot and Immunohistochemistry. Results miR-137 inhibits pancreatic cancer cell stemness in vitro and vivo. KLF12 as miR-137 target inhibits CSC phenotype in pancreatic cancer cells. Suppression of KLF12 by miR-137 inhibits Wnt/β-catenin signalling. KLF12 expression correlates with DVL2 and canonical Wnt pathway in clinical pancreatic cancer. Conclusion Our results suggest that miR-137 reduces stemness features of pancreatic cancer cells by Targeting KLF12-associated Wnt/β-catenin pathways and may identify new diagnostic and therapeutic targets in pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1105-3) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
24
|
Ziebarth JD, Bhattacharya A, Cui Y. Functional Analysis of Genetic Variants and Somatic Mutations Impacting MicroRNA-Target Recognition: Bioinformatics Resources. Methods Mol Biol 2019; 1970:101-120. [PMID: 30963491 DOI: 10.1007/978-1-4939-9207-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small noncoding RNA molecules with great importance in regulating a large number of diverse biological processes in health and disease. MicroRNAs can bind to both coding and noncoding RNAs and regulate their stability and expression. Genetic variants and somatic mutations may alter microRNA sequences and their target sites and therefore impact microRNA-target recognition. Aberrant microRNA-target interactions have been associated with many diseases. In recent years, computational resources have been developed for retrieving, annotating, and analyzing the impact of mutations on microRNA-target recognition. In this chapter, we provide an overview on the computational analysis of mutations impacting microRNA target recognition, followed by a detailed tutorial on how to use three major Web-based bioinformatics resources: PolymiRTS ( http://compbio.uthsc.edu/miRSNP ), a database of genetic variants impacting microRNA target recognition; SomamiR ( http://compbio.uthsc.edu/SomamiR ), a database of somatic mutations affecting the interactions between microRNAs and their targets in mRNAs and noncoding RNAs; and miR2GO ( http://compbio.uthsc.edu/miR2GO ), a computational tool for knowledge-based functional analysis of genetic variants and somatic mutations in microRNA seed regions.
Collapse
Affiliation(s)
- Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anindya Bhattacharya
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Song X, Kong F, Zong Z, Ren M, Meng Q, Li Y, Sun Z. miR-124 and miR-142 enhance cisplatin sensitivity of non-small cell lung cancer cells through repressing autophagy via directly targeting SIRT1. RSC Adv 2019; 9:5234-5243. [PMID: 35514612 PMCID: PMC9060797 DOI: 10.1039/c8ra09914f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Drug resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). Recently, miRNAs are reported to be involved in the drug resistance of NSCLC. The roles of miR-124 and miR-142 in the multidrug resistance of NSCLC cells have been reported. However, the underlying mechanism by which miR-124 and miR-142 regulate resistance to cisplatin (CDDP) remains unknown. Methods: The expressions of miR-124, miR-142 and sirtuin 1 (SIRT1) in CDDP-sensitive and CDDP-resistant NSCLC tissues and cells were detected by qRT-PCR and western blot. IC50 value and cell proliferation were determined by MTT assay. Apoptosis was assessed by flow cytometry analysis. Autophagy was evaluated by western blot analysis of the protein levels of LC3-I, LC3-II and p62, and FITC-LC3 punctate formation assay. The interaction between miR-124 or miR-142 and SIRT1 was determined by luciferase reporter, RNA immunoprecipitation (RIP) and western blot assays. A tumor xenograft was performed to further validate the role of miR-124 and miR-142 in the sensitivity of CDDP-resistant NSCLC to cisplatin. Results: miR-124 and miR-142 were downregulated, while SIRT1 was upregulated in CDDP-resistant NSCLC tissues and cells compared to CDDP-sensitive groups. Functionally, overexpression of miR-124 and miR-142 or SIRT1 silencing enhanced the CDDP sensitivity of H1299/CDDP cells via suppressing autophagy, as evidenced by the reduced LC3-II/LC3-I radio, elevated p62 protein, and suppressed FITC-LC3 punctate formation in H1299/CDDP cells. miR-124 and miR-142 were demonstrated to co-target SIRT1. Re-expression of SIRT1 overturned miR-124 and miR-142-mediated chemosensitivity in H1299/CDDP cells via triggering autophagy. Conclusion: miR-124 and miR-142 enhance the cytotoxic effect of CDDP through repressing autophagy via targeting SIRT1 in CDDP-resistant NSCLC cells. Drug resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC).![]()
Collapse
Affiliation(s)
- Xiang Song
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Fanyi Kong
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Zhenfeng Zong
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Mingming Ren
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Qingjun Meng
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Yanguang Li
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| | - Zhen Sun
- Department of Thoracic Surgery
- Cangzhou Central Hospital
- Cangzhou 061000
- China
| |
Collapse
|
26
|
Pourteimoor V, Paryan M, Mohammadi‐Yeganeh S. microRNA as a systemic intervention in the specific breast cancer subtypes with C‐MYC impacts; introducing subtype‐based appraisal tool. J Cell Physiol 2018; 233:5655-5669. [DOI: 10.1002/jcp.26399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Mahdi Paryan
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Samira Mohammadi‐Yeganeh
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
27
|
Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E, Mutlu M, Ersan PG, Altundağ MK, Zhang JD, Doğan HT, Güler G, Şahin Ö. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 7:49859-49877. [PMID: 27409664 PMCID: PMC5226553 DOI: 10.18632/oncotarget.10489] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPR-Cas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53-mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.
Collapse
Affiliation(s)
- Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Stefan Uhlmann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Erol Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emre Yurdusev
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Merve Mutlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Pelin Gülizar Ersan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Mustafa Kadri Altundağ
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06410 Ankara, Turkey
| | | | | | - Gülnur Güler
- Department of Pathology, Hacettepe University, 06410 Ankara, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
28
|
Zakharia Y, Bhattacharya A, Rustum YM. Selenium targets resistance biomarkers enhancing efficacy while reducing toxicity of anti-cancer drugs: preclinical and clinical development. Oncotarget 2018; 9:10765-10783. [PMID: 29535842 PMCID: PMC5828194 DOI: 10.18632/oncotarget.24297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Selenium (Se)-containing molecules exert antioxidant properties and modulate targets associated with tumor growth, metastasis, angiogenesis, and drug resistance. Prevention clinical trials with low-dose supplementation of different types of Se molecules have yielded conflicting results. Utilizing several xenograft models, we earlier reported that the enhanced antitumor activity of various chemotherapeutic agents by selenomethione and Se-methylselenocysteine in several human tumor xenografts is highly dose- and schedule-dependent. Further, Se pretreament offered selective protection of normal tissues from drug-induced toxicity, thereby allowing higher dosing than maximum tolerated doses. These enhanced therapeutic effects were associated with inhibition of hypoxia-inducible factor 1- and 2-alpha (HIF1α, HIF2α) protein, nuclear factor (erythyroid-derived 2)-like 2 (Nrf2) and pair-related homeobox-1 (Prx1) transcription factors, downregulation of oncogenic- and upregulation of tumor suppressor miRNAs. This review provides: 1) a brief update of clinical prevention trials with Se; 2) advances in the use of specific types, doses, and schedules of Se that selectively modulate antitumor activity and toxicity of anti-cancer drugs; 3) identification of targets selectively modulated by Se; 4) plasma and tumor tissue Se levels achieved after oral administration of Se in xenograft models and cancer patients; 5) development of a phase 1 clinical trial with escalating doses of orally administered selenomethionine in sequential combination with axitinib to patients with advanced clear cell renal cell carcinoma; and 6) clinical prospects for future therapeutic use of Se in combination with anticancer drugs.
Collapse
Affiliation(s)
- Yousef Zakharia
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Arup Bhattacharya
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| | - Youcef M. Rustum
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| |
Collapse
|
29
|
Li J, Xia L, Zhou Z, Zuo Z, Xu C, Song H, Cai J. MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Arch Biochem Biophys 2018; 640:53-60. [PMID: 29325758 DOI: 10.1016/j.abb.2018.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA-186-5p (miR-186-5p) is upregulated and exhibits as a crucial oncogene in various human tumors. However, the functions and underlying mechanisms of this microRNA on colorectal cancer remain largely unknown. Here, we report that miR-186-5p share a lower expression in colorectal cancer cell lines (HT116, H29, SW620 and LoVo) than in normal colonic epithelial cell line NCM460. MiR-186-5p overexpression inhibits proliferation, metastasis and epithelial-to-mesenchymal transition (EMT) of colorectal cancer cell line LoVo. Zinc Finger E-Box Binding Homeobox 1 (ZEB1), an EMT related marker, is predicted as a target of miR-186-5p. Luciferase reporter assay, qRT-PCR and western blot analysis showed that miR-186-5p directly targeted the 3'-untranslated regions (3'UTR) of ZEB1 messenger RNA. Further functional experiments indicated that overexpression of miR-186-5p suppress the proliferation and metastasis ability of LoVo, which was consistent with the inhibitory effects by knockdown of ZEB1. Additionally, overexpression of ZEB1 could significantly reverse the miR-186-5p mimics initiated suppression impact of proliferation, metastasis and EMT on LoVo. In summary, miRNA-186-5p affects the proliferation, metastasis and EMT process of colorectal cancer cell by inhibition of ZEB1. Hence, it may serve as a promising therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Jinlei Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Limin Xia
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Zhenhua Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Chang Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Huayu Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Jianhui Cai
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
30
|
Shao Q, Xu J, Guan X, Zhou B, Wei W, Deng R, Li D, Xu X, Zhu H. In vitro and in vivo effects of miRNA-19b/20a/92a on gastric cancer stem cells and the related mechanism. Int J Med Sci 2018; 15:86-94. [PMID: 29333091 PMCID: PMC5765743 DOI: 10.7150/ijms.21164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
We aimed to analyze the in vitro and in vivo effects of miRNA-19b/20a/92a on gastric cancer stem cells (GCSCs) and the related mechanism. GCSCs were cultured until adherence and differentiation, and subjected to miRNA microarray analysis to find and to verify miRNA deletion. Cells stably expressing lentivirus carrying miRNA-19b/20a/92a were constructed by transfection. The relationship between miRNA-19b/20a/92a and renewal of GCSCs was studied by the tumor sphere assay, and that between miRNA-19b/20a/92a and their proliferation was explored with MTT and colony formation assays. Target genes of miRNA for promoting the proliferation and self-renewal of GCSCs were found by using bioinformatics database, and verified by the reporter gene assay and Western blot. The expressions of miRNA-19b/20a/92a gradually decreased during the adherence and differentiation of GCSCs. The expressions of lentivirus carrying miRNA-17-19 gene in MKN28 and CD44-/EpCAM- cells were increased significantly. Transient transfection with pre-miRNA-19b/20a/92a elevated miRNA expressions in CD44-/EpCAM- and MKN28 cells, whereas transfection with pre-miRNA-19b/20a/92a antagonists reduced the expressions in SGC7901 and CD44+/EpCAM+ cells. Overexpression of lenti-miRNA-19b/20a/92a significantly enhanced the capability of GCSCs to form tumor spheres. In the presence of chemotherapeutic agent, the survival of lenti-miRNA-19b/20a/92a-infected cells was prolonged. Transient transfection with pre-miRNA-19b/20a/92a significantly increased the number of CD44+/EpCAM+ cells, but transfection with antagonists had the opposite outcomes. The stable miRNA-19b/20a/92a expression groups proliferated faster than the control group did. The proliferation of cells transfected with pre-miRNA-19b/20a/92a was accelerated, whereas that of cells transfected with the antagonists was decelerated. Compared with the control group, the number of colonies in the former group was higher, but that in the latter group was lower. miRNA-19b and miRNA-92a could bind the 3' untranslated region of HIPK1, while miRNA-20a was able to bind that of E2F1. Expressions of miRNA-20a and miRNA-92a in gastric cancer samples were negatively correlated with the prognosis of patients. miRNA-19b/20a/92a facilitated the self-renewal of GCSCs by targeting E2F1 and HIPK1 on the post-transcriptional level and activating the β-catenin signal transduction pathway. miRNA-92a was an independent factor and index predicting the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Qianwen Shao
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing 210029, Jiangsu Province, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing 210029, Jiangsu Province, China
| | - Xin Guan
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Bing Zhou
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Wei Wei
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Rong Deng
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Dongzhen Li
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Xinyu Xu
- Department of Pathology, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| | - Haitao Zhu
- Department of General Surgery, Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
31
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
32
|
Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 2017; 15:2735-2742. [PMID: 29434998 DOI: 10.3892/ol.2017.7638] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that performs an important role in post-transcriptional gene regulation. Since miRNAs were first identified in 1993, a number of studies have demonstrated that they act as tumor suppressors or oncogenes in human cancer, including colorectal, lung, brain, breast and liver cancer, and leukemia. Large high-throughput studies have previously revealed that miRNA profiling is critical for the diagnosis and prognosis of patients with cancer, while certain miRNAs possess the potential to be used as diagnostic and prognostic biomarkers or therapeutic targets in cancer. The present study reviews the studies and examines the roles of miRNAs in cancer diagnosis, prognosis and treatment, and discusses the potential therapeutic modality of exploiting miRNAs.
Collapse
Affiliation(s)
- Weige Tan
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 51000, P.R. China
| | - Bodu Liu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shaohua Qu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Gehao Liang
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Luo
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chang Gong
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
33
|
miR-155-5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-κB p65 activation. Oncotarget 2017; 7:16567-80. [PMID: 26934326 PMCID: PMC4941335 DOI: 10.18632/oncotarget.7767] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer tissue-derived MSC-like cells (GC-MSC) share similar characteristics to bone marrow MSC (BM-MSC); however, the phenotypical and functional differences and the molecular mechanism of transition between the two cell types remain unclear. Compared to BM-MSC, GC-MSC exhibited the classic phenotype of reactive stroma cells, a stronger gastric cancer promoting capacity and lower expression of miR-155-5p. Inhibition of miR-155-5p by transfecting miRNA inhibitor induced a phenotypical and functional transition of BM-MSC into GC-MSC-like cells, and the reverse experiment deprived GC-MSC of tumor-promoting phenotype and function. NF-kappa B p65 (NF-κB p65) and inhibitor of NF-kappa B kinase subunit epsilon (IKBKE/IKKε) were identified as targets of miR-155-5p and important for miRNA inhibitor activating NF-κB p65 in the transition. Inactivation of NF-κB by pyrrolidine dithiocarbamic acid (PDTC) significantly blocked the effect of miR-155-5p inhibitor on BM-MSC. IKBKE, NF-κB p65 and phospho-NF-κB p65 proteins were highly enriched in MSC-like cells of gastric cancer tissues, and the latter two were correlated with the pathological progression of gastric cancer. In GC-MSC, the expression of miR-155-5p was downregulated and NF-κB p65 protein was increased and activated. NF-κB inactivation by PDTC or knockdown of its downstream cytokines reversed the phenotype and function of GC-MSC. Taken together, our findings revealed that miR-155-5p downregulation induces BM-MSC to acquire a GC-MSC-like phenotype and function depending on NF-κB p65 activation, which suggests a novel mechanism underlying the cancer associated MSC remodeling in the tumor microenvironment and offers an effective target and approach for gastric cancer therapy.
Collapse
|
34
|
Stojcheva N, Schechtmann G, Sass S, Roth P, Florea AM, Stefanski A, Stühler K, Wolter M, Müller NS, Theis FJ, Weller M, Reifenberger G, Happold C. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget 2017; 7:12937-50. [PMID: 26887050 PMCID: PMC4914333 DOI: 10.18632/oncotarget.7346] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo.
Collapse
Affiliation(s)
- Nina Stojcheva
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Gennadi Schechtmann
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ana-Maria Florea
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, partner site Essen/Düsseldorf, Germany
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis 2017; 8:e3103. [PMID: 29022909 PMCID: PMC5682665 DOI: 10.1038/cddis.2017.499] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Osteosarcoma (OS) has emerged as the most common primary musculoskeletal malignant tumour affecting children and young adults. Cyclin-dependent kinases (CDKs) are closely associated with gene regulation in tumour biology. Accumulating evidence indicates that the aberrant function of CDK14 is involved in a broad spectrum of diseases and is associated with clinical outcomes. MicroRNAs (miRNAs) are crucial epigenetic regulators in the development of OS. However, the essential role of CDK14 and the molecular mechanisms by which miRNAs regulate CDK14 in the oncogenesis and progression of OS have not been fully elucidated. Here we found that CDK14 expression was closely associated with poor prognosis and overall survival of OS patients. Using dual-luciferase reporter assays, we also found that miR-216a inhibits CDK14 expression by binding to the 3′-untranslated region of CDK14. Overexpression of miR-216a significantly suppressed cell proliferation, migration and invasion in vivo and in vitro by inhibiting CDK14 production. Overexpression of CDK14 in the miR-216a-transfected OS cells effectively rescued the suppression of cell proliferation, migration and invasion caused by miR-216a. In addition, Kaplan–Meier analysis indicated that miR-216a expression predicted favourable clinical outcomes for OS patients. Moreover, miR-216a expression was downregulated in OS patients and was negatively associated with CDK14 expression. Overall, these data highlight the role of the miR-216a/CDK14 axis as a novel pleiotropic modulator and demonstrate the associated molecular mechanisms, thus suggesting the intriguing possibility that miR-216a activation and CDK14 inhibition may be novel and attractive therapeutic strategies for treating OS patients.
Collapse
|
36
|
Liu J, Wang C, Liu X, Wang Y, Liu H, Ren G, Zhu L, Sun Z, Chen Z. Low expression of miR-1469 predicts disease progression and unfavorable post-surgical clinical outcomes in patients with esophageal squamous cell cancer. Oncol Lett 2017; 13:4469-4474. [PMID: 28588716 DOI: 10.3892/ol.2017.5957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that deregulated microRNA (miRNA/miR) expression has a profound impact on biological and pathological processes; abnormal miR-1469 expression was detected in several human malignancies. In the present study, the clinicopathological and prognostic significance of miR-1469 was assessed in 129 patients with esophageal squamous cell cancer (ESCC) who successfully underwent esophagectomy and esophagogastrostomy. Low miR-1469 expression was identified to be significantly associated with tumor invasion depth (P=0.026), lymph node metastasis status (P<0.001) and pathological tumor stage (P<0.001). Survival analysis demonstrated that patients with low miR-1469 expression had significantly poorer disease-free survival (DFS) (18.2 vs. 43.2%; P=0.004) and overall survival (29.1 vs. 47.3%; P=0.029) 5 years following surgery compared with patients with high miR-1469 expression. Univariate survival analysis demonstrated that low miR-1469 expression significantly predicted unfavorable 5-year DFS among patients with N1-3 disease (7.1 vs. 31.8%; P=0.043). The results from the present study indicate that miR-1469 expression could be used in the clinic to predict ESCC progression and prognosis. This will aid in the identification of high-risk patients with ESCC that require more aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chuifang Wang
- Department of Thoracic Surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yu Wang
- Department of Gastroenterology, Zhangqiu People's Hospital, Zhangqiu, Shandong 250200, P.R. China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guohua Ren
- Department of Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhigang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
37
|
Ibrahim AA, Schmithals C, Kowarz E, Köberle V, Kakoschky B, Pleli T, Kollmar O, Nitsch S, Waidmann O, Finkelmeier F, Zeuzem S, Korf HW, Schmid T, Weigert A, Kronenberger B, Marschalek R, Piiper A. Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for Upregulation of Hypoxia-Inducible Factor 1α and Epithelial-Mesenchymal Transition. Clin Cancer Res 2017; 23:3896-3905. [PMID: 28167508 DOI: 10.1158/1078-0432.ccr-16-1762] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: A role of Dicer, which converts precursor miRNAs to mature miRNAs, in the tumor-promoting effect of hypoxia is currently emerging in some tumor entities. Its role in hepatocellular carcinoma (HCC) is unknown.Experimental Design: HepG2 and Huh-7 cells were stably transfected with an inducible Dicer expression vector and were exposed to hypoxia/normoxia. HepG2-Dicer xenografts were established in nude mice; hypoxic areas and Dicer were detected in HCC xenografts and HCCs from mice with endogenous hepatocarcinogenesis; and epithelial-mesenchymal transition (EMT) markers were analyzed by immunohistochemistry or by immunoblotting. The correlation between Dicer and carbonic anhydrase 9 (CA9), a marker of hypoxia, was investigated in resected human HCCs.Results: Hypoxia increased EMT markers in vitro and in vivo and led to a downregulation of Dicer in HCC cells. The levels of Dicer were downregulated in hypoxic tumor regions in mice with endogenous hepatocarcinogenesis and in HepG2 xenografts. In human HCCs, the levels of Dicer correlated inversely with those of CA9, indicating that the negative regulation of Dicer by hypoxia also applies to HCC patients. Forced expression of Dicer prevented the hypoxia-induced increase in hypoxia-inducible factor 1α (HIF1α), HIF2α, hypoxia-inducible genes (CA9, glucose transporter 1), EMT markers, and cell migration.Conclusions: We here identify downmodulation of Dicer as novel essential process in hypoxia-induced EMT in HCC and demonstrate that induced expression of Dicer counteracted hypoxia-induced EMT. Thus, targeting hypoxia-induced downmodulation of Dicer is a promising novel strategy to reduce HCC progression. Clin Cancer Res; 23(14); 3896-905. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed Atef Ibrahim
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The National Research Center, Dokki, Cairo, Egypt
| | | | - Erik Kowarz
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Verena Köberle
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Bianca Kakoschky
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas Pleli
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Otto Kollmar
- Department of General and Visceral Surgery, HELIOS Dr. Horst Schmidt-Kliniken, Wiesbaden, Germany
| | - Scarlett Nitsch
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Waidmann
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Anatomy 2, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Kronenberger
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
38
|
Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. Int J Mol Sci 2017; 18:ijms18010162. [PMID: 28098821 PMCID: PMC5297795 DOI: 10.3390/ijms18010162] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Collapse
|
39
|
Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP, Gu W. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2016; 42:1317-26. [PMID: 26399781 DOI: 10.1111/1440-1681.12493] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Colon cancer is one of the most common cancers worldwide with high mortality. A major issue in colon cancer treatment is drug-resistance and metastasis that have been ascribed to the cancer stem cells. In this study, colon cancer stem cells were isolated through sphere culture and verified with the cancer stem cell markers CD133, CD44, and CD24. It was demonstrated that the PI3K/Akt/mTOR signalling pathway was highly activated in the colon cancer stem cells and that inhibition of the PI3K/Akt/mTOR pathway by the inhibitor BEZ235 suppressed the colon cancer stem cell proliferation with reduced stemness indicated by CD133 and Lgr5 expressions. Treatment with insulin as a known activator of the PI3K/Akt pathway increased CD133 expression and decreased the effects of BEZ235 on colon cancer proliferation and survival. The data presented here collectively suggest that the PI3K/Akt/mTOR pathway underpins the stemness of colon cancer stem cells and BEZ235 is potentially a good drug candidate for treatment of colon cancer drug resistance and metastasis.
Collapse
Affiliation(s)
- Jiezhong Chen
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezhi University, Xinjiang, China
| | - Michael Monteiro
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Jun-Ping Liu
- Aging Research Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
40
|
Qin Z, Wang PY, Su DF, Liu X. miRNA-124 in Immune System and Immune Disorders. Front Immunol 2016; 7:406. [PMID: 27757114 PMCID: PMC5047895 DOI: 10.3389/fimmu.2016.00406] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Peng-Yuan Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| |
Collapse
|
41
|
Mutlu M, Saatci Ö, Ansari SA, Yurdusev E, Shehwana H, Konu Ö, Raza U, Şahin Ö. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep 2016; 6:32541. [PMID: 27600857 PMCID: PMC5013276 DOI: 10.1038/srep32541] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Merve Mutlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emre Yurdusev
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
42
|
Fanale D, Castiglia M, Bazan V, Russo A. Involvement of Non-coding RNAs in Chemo- and Radioresistance of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:207-28. [DOI: 10.1007/978-3-319-42059-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
44
|
Cheung CCM, Lun SWM, Chung GTY, Chow C, Lo C, Choy KW, Lo KW. MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma. BMC Cancer 2016; 16:495. [PMID: 27431799 PMCID: PMC4950376 DOI: 10.1186/s12885-016-2525-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/06/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy that exhibits distinct geographical and ethnic prevalence. Although the contemporary therapeutic approach of radio-/chemotherapy provides excellent results for patients with early-stage disease, it is far from satisfactory for those with disease remission and distant metastasis. Promising therapeutic strategies for advanced and relapsed NPC are still lacking. We recently identified and characterized a cancer stem-like cell (CSC) subpopulation in NPC that appeared to play an important role in tumor progression. Microarray analysis revealed downregulation of several stemness-inhibiting miRNAs in these CSC cells. Among these miRNAs, miR-96 and miR-183 showed the highest fold change and were selected to elucidate their role in repressing NPC CSC properties. METHODS MiR-96 and miR-183 expression in NPC CSCs was detected by qRT-PCR. Transient and stable transfection was performed in EBV-positive NPC C666-1 cells to examine the effects of ectopic expression of miR-96 and miR-183 on repressing cell growth and CSC properties. Anchorage-dependent (colony formation) and anchorage-independent (tumor sphere formation) growths of these miR-96 and miR-183 expressing cells were determined. Expression of multiple CSC markers and related molecules were accessed by flow cytometry and Western blotting. The tumorigenicity of the stable miR-96- and miR-183-transfected NPC cells was examined in an in vivo nude mice model. RESULTS Downregulation of miR-96 and miR-183 was confirmed in NPC spheroids. Using transient or stable transfection, we showed that ectopic expression of miR-96 and miR-183 suppressed cell growth and tumor sphere formation in NPC. Reduced NICD3 and NICD4 in miR-96- and miR-183-expressing NPC cells suggests the involvement of the NOTCH signaling pathway in their tumor suppressive function. Finally, we showed that the tumorigenicity of cells stably expressing miR-183 was significantly inhibited in the in vivo nude mice model. CONCLUSIONS miR-183 is a tumor-suppressive miRNA in EBV-associated NPC. Its abilities to suppress CSC properties in vitro and effectively reduce tumor growth in vivo shed light on its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Chartia Ching-Mei Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Samantha Wei-Man Lun
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Carman Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kwong-Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. .,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
45
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|
46
|
Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs Functioning in Colorectal Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:93-108. [PMID: 27573896 DOI: 10.1007/978-3-319-42059-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
47
|
Abstract
The discovery of small regulatory noncoding RNAs revolutionized our thinking on gene regulation. The class of microRNAs (miRs), a group of small noncoding RNAs (20-22 nt in length) that bind imperfectly to the 3'-untranslated region of target mRNA, has been insistently implicated in several pathological conditions including cancer. Indeed, major hallmarks of cancer, such as cell differentiation, cell proliferation, cell cycle, cell survival, and cell invasion, has been described as being regulated by miRs. Recent studies have also implicated miRs in cancer drug resistance. Regardless of the several studies done until now, drug resistance still is a burden for cancer therapy and patients' outcome, often resulting in more aggressive tumors that tend to metastasize to distant organs. Hence, with this review, we aim to summarize the miRs that influence molecular pathways that are involved in cancer drug resistance, such as drug metabolism, drug influx/efflux, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and cancer stem cells.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal.
| |
Collapse
|
48
|
Peng X, Cao P, Li J, He D, Han S, Zhou J, Tan G, Li W, Yu F, Yu J, Li Z, Cao K. MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo. Cancer Biol Ther 2015; 16:261-7. [PMID: 25756509 DOI: 10.1080/15384047.2014.1001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an endemic tumor with a relatively high incidence in Southern China and Southeast Asia. Paclitaxel combination chemotherapy has been used for treatment of advanced NPC. However, treatment failure often occurs due to development of acquired paclitaxel resistance. In this study, we first established a paclitaxel-resistant CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cell sublines by treating the parental CNE-1, HNE-2 and 5-8F cells with increasing doses of paclitaxel for about 5 months, respectively. Then, microRNA arrays were used to screen differentially expressed miRNAs between the CNE-1/Taxol cells and the parental CNE-1 cells. We found 13 differentially expressed miRNAs, of which miR-1204 was significantly downregulated in the paclitaxel-resistant CNE-1/Taxol cells. We restored miR-1204 expression in the CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cells and found that restoration of miR-1204 re-sensitized the paclitaxel-resistant CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cells to paclitaxel both in vitro. Finally, we demonstrated that restoration of miR-1204 in significantly inhibits tumor growth in vivo. Thus, our study provides important information for the development of targeted gene therapy for reversing paclitaxel resistance in NPC.
Collapse
Affiliation(s)
- Xiaowei Peng
- a Department of Head and Neck Surgery and Oncology Plastic Surgery; The Affiliated Cancer Hospital of Xiangya Medical School ; Central South University ; Changsha , Hunan , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|
50
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|