1
|
Zhang A, Wei Q, Zheng Y, Ma M, Cao T, Zhan Q, Cao P. Hydrogen Sulfide Delivery System Based on Salting-Out Effect for Enhancing Synergistic Photothermal and Photodynamic Cancer Therapies. Adv Healthc Mater 2024; 13:e2400803. [PMID: 39036862 DOI: 10.1002/adhm.202400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/30/2024] [Indexed: 07/23/2024]
Abstract
The simultaneous application of photothermal therapy (PTT) and photodynamic therapy (PDT) offers substantial advantages in cancer treatment. However, their synergistic anticancer efficacy is often limited by tumor hypoxia, and thermotolerance induced by high expression of heat shock proteins (HSP). Fortunately, hydrogen sulfide (H2S), known for its direct cytotoxic effect on tumor cells, has been recognized for its ability to enhance PTT and PDT. The effectiveness of H2S in these therapies is challenged by its low loading efficiency, poor stability, and short diffusion distance. To address these issues, a nanoscale emulsion drop template created through the salting-out effect is employed to construct a robust H2S delivery system. Polydopamine (PDA), chosen for its interfacial polymerization tendency and excellent photothermal conversion rate, is utilized as a carrier for the H2S donor (ADT) and Zinc phthalocyanine (ZnPc) to fabricate a novel nanomedicine termed APZ NPs. The temperature-responsive APZ NPs are designed to release H2S during the PTT process. Elevated H2S levels promoted vasodilation, thereby enhancing the enhanced permeability and retention effect (EPR) of APZ NPs within solid tumors. This strategy effectively alleviated tumor hypoxia by disrupting the mitochondrial respiratory chain and mitigated tumor cell heat tolerance by inhibiting HSP expression.
Collapse
Affiliation(s)
- Aimei Zhang
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qingyun Wei
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
| | - Yuhan Zheng
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengyuan Ma
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Cao
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qichen Zhan
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
| | - Peng Cao
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212002, P. R. China
| |
Collapse
|
2
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
3
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
5
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Wang J, Xu J, Chao B, Liu H, Xie L, Qi H, Luo X. Hydrogen sulfide inhibits the rupture of fetal membranes throngh anti-aging pathways. Placenta 2023; 143:22-33. [PMID: 37793324 DOI: 10.1016/j.placenta.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION To investigate the relationship between hydrogen sulfide(H2S) and the senescence level of the fetal membranes, and to elucidate how H2S affects the integrity of the fetal membranes. METHODS The H2S and the senescence levels of fetal membranes, and the expressions of H2S synthase CBS and CSE were detected in the preterm (PT) group and the preterm premature ruptured membranes (pPROM) group. The effects of H2S donors and knockdown of CBS on the senescence level of amniotic epithelial cells, and the expression level of matrix metalloproteinases (MMPs) and epithelial-mesenchymal translation (EMT) were observed. RESULTS The level of H2S in the fetal membranes in the pPROM group is significantly lower than that in the PT group matched for gestational age. The level of H2S is negatively correlated with the senescence level of fetal membranes. Treatment with H2S donors reduced cell senescence and MMPs expression, but did not affect EMT. CBS siRNA transfection accelerated the senescence of amniotic epithelial cells, and promoted the expression of MMPs and EMT occurrence, but l-cysteine could reverse these effects. DISCUSSION Our study suggests that H2S, through its anti-aging effect, can influence the expression of MMPs and EMT, thereby contributing to the maintenance of fetal membrane integrity.
Collapse
Affiliation(s)
- Jie Wang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Jiacheng Xu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bingdi Chao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongli Liu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lumei Xie
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xin Luo
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Ma W, Zhang X, Zhuang L. Exogenous Hydrogen Sulfide Induces A375 Melanoma Cell Apoptosis Through Overactivation of the Unfolded Protein Response. Clin Cosmet Investig Dermatol 2023; 16:1641-1651. [PMID: 37396710 PMCID: PMC10314752 DOI: 10.2147/ccid.s412588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Purpose Melanomas are highly malignant and rapidly develop drug resistance due to dysregulated apoptosis. Therefore, pro-apoptotic agents could be effective for the management of melanoma. Hydrogen sulfide is ubiquitous in the body, and exogenous hydrogen sulfide has been reported to show inhibitory and pro-apoptotic effects on cancer cells. However, whether high concentrations of exogenous hydrogen sulfide have pro-apoptotic effects on melanoma and its mechanisms remain unknown. Hence, this study aimed to explore the pro-apoptotic effects and mechanisms of exogenous hydrogen sulfide on the A375 melanoma cell line treated with a hydrogen sulfide donor (NaHS). Methods The cell proliferation test, flow cytometric analysis, Hoechst 33258 staining, and Western blotting of B-cell lymphoma 2 and cleaved caspase-3 were used to explore the pro-apoptotic effects of hydrogen sulfide on A375 cells. The transcriptional profile of NaHS-treated A375 cells was further explored via high-throughput sequencing. Western blotting of phosphorylated inositol-requiring enzyme 1α (p-IRE1α), phosphorylated protein kinase R-like ER kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homologous protein, glucose-regulating protein 78, IRE1α, PERK, and eIF2α was performed to verify the changes in the transcriptional profile. Results NaHS inhibited A375 melanoma cell proliferation and induced apoptosis. The endoplasmic reticulum stress unfolded protein response and apoptosis-associated gene expression was upregulated in NaHS-treated A375 melanoma cells. The overactivation of the unfolded protein response and increase in endoplasmic reticulum stress was verified at the protein level. Conclusion Treatment with NaHS increased endoplasmic reticulum stress, which triggered the overactivation of the unfolded protein response and ultimately lead to melanoma cell apoptosis. The pro-apoptotic effect of NaHS suggests that it can be explored as a potential therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiuwen Zhang
- Department of Dermatology, Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China
| | - Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
8
|
Bechelli C, Macabrey D, Deglise S, Allagnat F. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci 2023; 24:9955. [PMID: 37373103 DOI: 10.3390/ijms24129955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant, cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis, inflammation, vascular calcification, and other vasculo-protective effects.
Collapse
Affiliation(s)
- Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Sebastien Deglise
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| |
Collapse
|
9
|
Strutynskyi R, Strutynska N, Mys L, Goshovska Y, Korkach Y, Fedichkina R, Okhai I, Strutynskyi V, Sagach V. Glutathione Upregulates the Expression of K ATP Channels and Vasorelaxation Responses and Inhibits mPTP Opening and Oxidative Stress in the Heart Mitochondria of Old Rats. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3562847. [PMID: 37265475 PMCID: PMC10232108 DOI: 10.1155/2023/3562847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Background In the present work, we investigated the effect of exogenous glutathione in old rats on the expression of ATP-sensitive potassium (KATP) channels, the mitochondrial permeability transition pore (mPTP) opening in the heart, and the vasorelaxation responses of isolated aortic rings to activation of KATP channels. Methods Experiments were performed on adult (6 months) and old (24 months) male Wistar rats, which were divided into three groups: adult, old, and glutathione-treated old rats. Glutathione was injected intraperitoneally at a dose of 52 mg/kg 1 hour before the studies. The mRNA expression of KATP channels was determined using reverse transcription and real-time polymerase chain reaction analysis. The effect of glutathione administration on mPTP opening, relaxation responses of isolated aortic rings, and oxidative stress markers was studied. Results It was shown that the expression levels of Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and levels of reduced glutathione were significantly increased in glutathione-treated old rats (by 8.3, 2.8, 13.1, and 1.5-fold, respectively), whereas the levels of oxidative stress markers (hydrogen peroxide, diene conjugates, malondialdehyde, and rate of superoxide generation) in heart mitochondria and mPTP opening were significantly reduced. Relaxation of aortic rings was significantly increased in response to the actions of KATP channel openers flocalin and pinacidil in glutathione-treated animals, which was prevented by glibenclamide. Conclusions Thus, the administration of exogenous glutathione to old rats resulted in a significant increase in the expression levels of the Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and a decrease in oxidative stress. This was accompanied by inhibition of mPTP opening and enhancement of vasorelaxation responses to activation of KATP channels.
Collapse
Affiliation(s)
- Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Nataliіa Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Iryna Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vladyslav Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vadym Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| |
Collapse
|
10
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
11
|
Chaudhuri A, Singha T, Jena BC, Shee M, Datta PK, Mandal M, Singh NDP. A two-photon responsive hydroxyphenylquinazolinone (HPQ)-based fluorescent organic nanoprodrug for H 2S release against oxidative stress. Chem Commun (Camb) 2023; 59:1177-1180. [PMID: 36628583 DOI: 10.1039/d2cc05768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Light-activated H2S donors have attracted considerable interest in understanding the physiological role and clinical potential of H2S, as their release is highly localized and controlled. Herein, we have evolved a new HPQ chromophore-based fluorescent organic nanosystem localized in a target area that tolerates oxidative stress and precisely releases H2S under one- and two-photon irradiation with real-time monitoring capability. The two-photon absorption cross-section of this new phototrigger was calculated to be 283 GM at 720 nm. H2S photorelease was also demonstrated in vitro on the MDA-MB-468 cell line in the presence of excess ROS. Our developed H2S nanoprodrug can be applied to living systems to release the H2S-gasotransmitter under laser irradiation in a phototherapeutic window.
Collapse
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
12
|
Strutynskyi RB, Strutynska NA, Piven OO, Mys LA, Goshovska YV, Fedichkina RA, Okhai IY, Strutynskyi VR, Dosenko VE, Dobrzyn P, Sagach VF. Upregulation of ATP-Sensitive Potassium Channels as the Potential Mechanism of Cardioprotection and Vasorelaxation Under the Action of Pyridoxal-5-Phosphate in Old Rats. J Cardiovasc Pharmacol Ther 2023; 28:10742484231213175. [PMID: 37946524 DOI: 10.1177/10742484231213175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Background: The aging process is accompanied by the weakening of the protective systems of the organism, in particular by the decrease in the expression of ATP-sensitive potassium (KATP) channels and in the synthesis of H2S. The aim of our work was to investigate the role of KATP channels in the cardioprotection induced by pyridoxal-5-phosphate (PLP) in aging. Methods: Experiments were performed on adult and old (aged 24 months) male Wistar rats, which were divided into 3 groups: adults, old, and old PLP-treated rats. PLP was administered orally once a day for 14 days at a dose of 0.7 mg/kg. The levels of mRNA expression of subunits KATP channels were determined by reverse transcription and real-time polymerase chain reaction analysis. Protein expression levels were determined by the Western blot. Cardiac tissue morphology was determined using transverse 6 μm deparaffinized sections stained with picrosirius red staining. Vasorelaxation responses of isolated aortic rings and the function of Langendorff-perfused isolated hearts during ischemia-reperfusion, H2S levels, and markers of oxidative stress were also studied. Results: Administration of PLP to old rats reduces cardiac fibrosis and improves cardiac function during ischemia-reperfusion and vasorelaxation responses to KATP channels opening. At the same time, there was a significant increase in mRNA and protein expression of SUR2 and Kir6.1 subunits of KATP channels, H2S production, and reduced markers of oxidative stress. The specific KATP channel inhibitor-glibenclamide prevented the enhancement of vasodilator responses and anti-ischemic protection in PLP-treated animals. Conclusions: We suggest that this potential therapeutic effect of PLP in old animals may be a result of increased expression of KATP channels and H2S production.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliіa A Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana O Piven
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidiia A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa A Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Y Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladyslav R Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Pawel Dobrzyn
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vadim F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
13
|
Berenyiova A, Cebova M, Aydemir BG, Golas S, Majzunova M, Cacanyiova S. Vasoactive Effects of Chronic Treatment with Fructose and Slow-Releasing H2S Donor GYY-4137 in Spontaneously Hypertensive Rats: The Role of Nitroso and Sulfide Signalization. Int J Mol Sci 2022; 23:ijms23169215. [PMID: 36012477 PMCID: PMC9409378 DOI: 10.3390/ijms23169215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Increased fructose consumption induces metabolic-syndrome-like pathologies and modulates vasoactivity and the participation of nitric oxide (NO) and hydrogen sulfide (H2S). We investigated whether a slow-releasing H2S donor, GYY-4137, could exert beneficial activity in these conditions. We examined the effect of eight weeks of fructose intake on the blood pressure, biometric parameters, vasoactive responses, and NO and H2S pathways in fructose-fed spontaneously hypertensive rats with or without three weeks of GYY-4137 i.p. application. GYY-4137 reduced triacylglycerol levels and blood pressure, but not adiposity, and all were increased by fructose intake. Fructose intake generally enhanced endothelium-dependent vasorelaxation, decreased adrenergic contraction, and increased protein expression of interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and concentration of conjugated dienes in the left ventricle (LV). Although GYY-4137 administration did not affect vasorelaxant responses, it restored disturbed contractility, LV oxidative damage and decreased protein expression of TNFα in fructose-fed rats. While the participation of endogenous H2S in vasoactive responses was not affected by fructose treatment, the expression of H2S-producing enzyme cystathionine β-synthase in the LV was increased, and the stimulation of the NO signaling pathway improved endothelial function in the mesenteric artery. On the other hand, chronic treatment with GYY-4137 increased the expression of H2S-producing enzyme cystathionine γ-lyase in the LV and stimulated the beneficial pro-relaxant and anti-contractile activity of endogenous H2S in thoracic aorta. Our results suggest that sulfide and nitroso signaling pathways could trigger compensatory vasoactive responses in hypertensive rats with metabolic disorder. A slow H2S-releasing donor could partially amend metabolic-related changes and trigger beneficial activity of endogenous H2S.
Collapse
Affiliation(s)
- Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Martina Cebova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Basak Gunes Aydemir
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Miroslava Majzunova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 841-04 Bratislava, Slovakia
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
14
|
Liu XY, Qian LL, Wang RX. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front Pharmacol 2022; 13:911704. [PMID: 35721210 PMCID: PMC9198332 DOI: 10.3389/fphar.2022.911704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
15
|
Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS One 2022; 17:e0264891. [PMID: 35298485 PMCID: PMC8929647 DOI: 10.1371/journal.pone.0264891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.
Collapse
Affiliation(s)
- Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wen Yu
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Boyang lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| |
Collapse
|
16
|
Mys L, Goshovska Y, Strutynska N, Fedichkina R, Korkach Y, Strutynskyi R, Sagach V. Pyridoxal-5-phosphate induced cardioprotection in aging associated with up-expression of cystathionine-γ-lyase, 3-mercaptopyruvate sulfurtransferase, and ATP-sensitive potassium channels. Eur J Clin Invest 2022; 52:e13683. [PMID: 34587304 DOI: 10.1111/eci.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the present work, we investigated the cardioprotective potential of pyridoxal-5-phosphate (PLP) in old rats as a cofactor of enzymes that synthesize hydrogen sulphide (H2 S). MATERIALS AND METHODS PLP was administered per os in a dose of 0.7 mg per kg daily for 2 weeks. Rats were divided into three groups (adult, old and old +PLP) of 20 animals. The cardiac mRNA levels of genes encoding H2 S-synthesizing enzymes cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), uncoupling proteins (UCP3), subunits of ATP-sensitive potassium (KATP ) channels were determined using real-time polymerase chain reaction analysis. We also studied the effect of PLP-administration on the content of H2 S, oxidative stress, the activities of inducible and constitutive NO-synthase (iNOS, cNOS), arginase and nitrate reductase in the heart homogenates as well as cardiac resistance to ischemia-reperfusion in Langendorff-isolated heart model. RESULTS It was shown that PLP restored mRNA levels of CSE, 3-MST and UCP3 genes, and H2 S content and also significantly increased the expression of SUR2 and Kir6.1 (2.2 and 3.3 times, respectively) in the heart of old rats. PLP significantly reduced the formation of superoxide, malondialdehyde, diene conjugates as well as the activity of iNOS and arginase. PLP significantly increased constitutive synthesis of NO and prevented reperfusion disturbances of the heart function after ischemia. CONCLUSIONS Thus, PLP-administration in old rats was associated with up-expression of CSE, 3-MST, UCP3 and SUR2 and Kir6.1 subunits of KATP channels, and also increased cNOS activity and reduced oxidative stress and prevented reperfusion dysfunction of the heart in ischemia-reperfusion.
Collapse
Affiliation(s)
- Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliia Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Duan J, Xiang L, Yang Z, Chen L, Gu J, Lu K, Ma D, Zhao H, Yi B, Zhao H, Ning J. Methionine Restriction Prevents Lipopolysaccharide-Induced Acute Lung Injury via Modulating CSE/H 2S Pathway. Nutrients 2022; 14:322. [PMID: 35057502 PMCID: PMC8777780 DOI: 10.3390/nu14020322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) result in high mortality, whereas effective treatments are limited. Methionine restriction (MR) has been reported to offer various benefits against multiple pathological processes of organ injuries. However, it remains unknown whether MR has any potential therapeutic value for ALI/ARDS. The current study was set to investigate the therapeutic potential of MR on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We found that MR attenuated LPS-induced pulmonary edema, hemorrhage, atelectasis, and alveolar epithelial cell injuries in mice. MR upregulated cystathionine-gamma-lyase (CSE) expression and enhanced the production of hydrogen sulfide (H2S). MR also inhibited the activation of Toll-like receptors 4 (TLR4)/NF-κB/NOD-like receptor protein 3 (NLRP3), then reduced IL-1β, IL-6, and TNF-α release and immune cell infiltration. Moreover, the protective effects of MR on LPS-induced ALI were abrogated by inhibiting CSE, whereas exogenous H2S treatment alone mimicked the protective effects of MR in Cse-/- mice after LPS administration. In conclusion, our findings showed that MR attenuated LPS-induced lung injury through CSE and H2S modulation. This work suggests that developing MR towards clinical use for ALI/ARDS patients may be a valuable strategy.
Collapse
Affiliation(s)
- Jiaxiang Duan
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Lunli Xiang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Li Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| |
Collapse
|
18
|
Lv S, Li X, Zhao S, Liu H, Wang H. The Role of the Signaling Pathways Involved in the Protective Effect of Exogenous Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury. Front Cell Dev Biol 2021; 9:723569. [PMID: 34527675 PMCID: PMC8435706 DOI: 10.3389/fcell.2021.723569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 01/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury refers to the functional and structural changes in the process of blood flow recovery after ischemia. In addition to ischemia, the blood flow recovery can also lead to very harmful damage, such as the obvious cell swelling and the irreversible cell necrosis. I/R injury is related with many diseases, including myocardial I/R injury. Myocardial I/R injury refers to the aggravation of ischemic myocardial tissue injury due to sudden disorder of blood circulation. Although there are many studies on myocardial I/R injury, the exact mechanism is not fully understood. Hydrogen sulfide (H2S), like carbon monoxide and nitric oxide, is an important gas signal molecule. It plays an important role in many physiological and pathological processes. Recent studies indicate that H2S can improve myocardial I/R injury, however, its mechanism is not fully understood, especially the involved signal pathways. In this review, we summarize the related researches about the role of the signaling pathways involved in the protective effects of exogenous H2S on myocardial I/R injury, so as to provide theoretical reference for the future in-depth researches.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huiyang Liu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Strutynskyi RB, Goncharov SV, Tumanovska LV, Nagibin VS, Dosenko VE. Cardiac dysfunction in spontaneously hypertensive old rats is associated with a significant decrease of SUR2 expression. Mol Cell Biochem 2021; 476:4343-4349. [PMID: 34455535 DOI: 10.1007/s11010-021-04237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels are participants of mechanisms of pathological myocardial remodeling containment. The aim of our work was to find the association of changes in the expression of Kir6.1, Kir6.2, SUR1, and SUR2 subunits of KATP channels with changes in heart function and structure during aging under conditions of the constant increase of vascular pressure. The experiments were carried out on young and old spontaneously hypertensive rats (SHR) and Wistar rats. The expression levels of KATP channels subunits were determined using reverse transcription and quantitative PCR. It is shown that the mRNA expression level of Kir6.1 in young SHR rats is significantly lower (6.3-fold, p = 0.035) than that of young Wistar rats that may be one of the causes of arterial hypertension in SHR. At the same time, mRNA expression of both Kir6.1 and Kir6.2 in old SHR rats was significantly higher (6.8-fold, p = 0.003, and 5.9-fold, p = 0.006, respectively) than in young hypertensive animals. In both groups of old animals, SUR2 expression was significantly reduced compared to young animals, in Wistar rats at 3.87-fold (p = 0.028) and in SHR rats at 48.2-fold (p = 0.033). Changes in SUR1 expression were not significant. Thus, significant changes in the cardiovascular system, including impaired function and structure of the heart in old SHR rats, were associated with a significant decrease in SUR2 expression that may be one of the mechanisms of heart failure decompensation. Therefore, it can be assumed that increased expression of SUR2 may be one of the protective mechanisms against pathological myocardial remodeling.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Serhii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Vasyl S Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine.
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| |
Collapse
|
20
|
Zhang MY, Dugbartey GJ, Juriasingani S, Sener A. Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:6452. [PMID: 34208631 PMCID: PMC8235480 DOI: 10.3390/ijms22126452] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.
Collapse
Affiliation(s)
- Max Y. Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
| | - Smriti Juriasingani
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
21
|
Lv S, Wang Z, Wang J, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role Through Regulating Autophagy in Ischemia/Reperfusion Injury. Front Mol Biosci 2021; 8:681676. [PMID: 34055892 PMCID: PMC8155623 DOI: 10.3389/fmolb.2021.681676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by limiting blood supply to organs, then restoring blood flow and reoxygenation. It leads to many diseases, including acute kidney injury, myocardial infarction, circulatory arrest, ischemic stroke, trauma, and sickle cell disease. Autophagy is an important and conserved cellular pathway, in which cells transfer the cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. Hydrogen sulfide (H2S), along with carbon monoxide (CO) and nitric oxide (NO), is an important gas signal molecule and regulates various physiological and pathological processes. In recent years, there are many studies on the improvement of I/R injury by H2S through regulating autophagy, but the related mechanisms are not completely clear. Therefore, we summarize the related research in the above aspects to provide theoretical reference for future in-depth research.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhu Wang
- Henan Technician College of Medicine and Health, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
22
|
The expression of ATP-sensitive potassium channels in human umbilical arteries with severe pre-eclampsia. Sci Rep 2021; 11:7955. [PMID: 33846486 PMCID: PMC8041753 DOI: 10.1038/s41598-021-87146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to establish the expression of ATP-sensitive potassium channels(KATP) in human umbilical arteries with severe pre-eclampsia. Real-time quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of KATP channel subunits Kir6.1 and SUR2B in human umbilical arteries from normal pregnant and those with severe pre-eclampsia, early onset severe pre-eclampsia and late onset severe pre-eclampsia. The mRNA and protein levels of SUR2B in the severe pre-eclampsia group were lower than those in the normal group (P < 0.001), and the expression of Kir6.1 was not statistically significant between the two groups (P > 0.05). The mRNA and protein levels of SUR2B in early onset severe pre-eclampsia group were lower than those in late onset severe pre-eclampsia group (P < 0.001). There was no significant difference in expression of Kir6.1 between the two groups (P > 0.05). The mRNA and protein expression levels of SUR2B in pregnant women with severe pre-eclampsia were lower than those in normal pregnant women, suggesting that the expression of the SUR2B of the KATP channel may be related to the occurrence and development of severe pre-eclampsia. Compared with late onset severe pre-eclampsia, the mRNA and protein expression levels of SUR2B were lower in the umbilical arteries of women with early onset severe pre-eclampsia, suggesting that the occurrence time of severe pre-eclampsia may be related to the extent reduced expression of the SUR2B of the KATP channel.
Collapse
|
23
|
Zou S, Shimizu T, Yamamoto M, Shimizu S, Higashi Y, Karashima T, Saito M. Age-related differences in responses to hydrogen sulfide in the bladder of spontaneously hypertensive rats. Int J Urol 2021; 28:459-465. [PMID: 33403726 DOI: 10.1111/iju.14478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate whether a response to hydrogen sulfide donors (GYY4137 and sodium hydrosulfide) and the endogenous hydrogen sulfide system (hydrogen sulfide level and expression of cysteine aminotransferase, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase) in the spontaneously hypertensive rat bladder differ with age, we compared the responses of hydrogen sulfide donors to micturition and bladder relaxation, and the endogenous hydrogen sulfide system in the bladder of 18-week versus 12-week-old spontaneously hypertensive rats. METHODS GYY4137 was intravesically administered and cystometry was performed in anesthetized rats. The responses of sodium hydrosulfide were evaluated in carbachol-mediated precontracted bladder strips. Bladder hydrogen sulfide levels and expression levels of each enzyme were investigated using the methylene blue method and Western blotting, respectively. RESULTS GYY4137 treatment significantly prolonged intercontraction intervals only in 12-week-old rats. Sodium hydrosulfide-induced bladder relaxation was significantly attenuated in the strips of 18-week-old rats compared with that in 12-week-old rats. In the bladder dome, significant increases in hydrogen sulfide levels and in the expression of cystathionine β-synthase, 3-mercaptopyruvate sulfurtransferase, and cysteine aminotransferase were observed in 18-week-old rats compared with 12-week-old rats. However, cystathionine γ-lyase bands were not detected in bladder tissues of either group. CONCLUSIONS Bladder relaxation induced by hydrogen sulfide may be attenuated in spontaneously hypertensive rats in an age-dependent manner.
Collapse
Affiliation(s)
- Suo Zou
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takahiro Shimizu
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Masaki Yamamoto
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takashi Karashima
- Department of, Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Departments of, Department of, Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
24
|
Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021; 27:85-97. [PMID: 33318869 PMCID: PMC7728588 DOI: 10.1016/j.jare.2020.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide (CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular remodeling have has proved to be related to the impaired H2S generation. AIM OF REVIEW This study aimed to summarize and discuss current data about the function of H2S in vascular physiology and pathophysiology as well as the underlying mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primarily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physiologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the progression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified in animal and cell experiments and even in the clinical investigation. Besides, H2S system and angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design and application of novel H2S donors have significant clinical implications in the treatment of vascular-related diseases. However, further research regarding the role of H2S in vascular physiology and pathophysiology is required.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| |
Collapse
|
25
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
26
|
Tian X, Zhou D, Zhang Y, Song Y, Zhang Q, Bu D, Sun Y, Wu L, Long Y, Tang C, Du J, Huang Y, Jin H. Persulfidation of transcription factor FOXO1 at cysteine 457: A novel mechanism by which H 2S inhibits vascular smooth muscle cell proliferation. J Adv Res 2020; 27:155-164. [PMID: 33318874 PMCID: PMC7728583 DOI: 10.1016/j.jare.2020.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
FOXO1 is involved in the inhibitory effect of H2S on vascular smooth muscle cell proliferation. H2S inhibits vascular smooth muscle cell proliferation by maintaining FOXO1 activity. H2S preserves FOXO1 activity by persulfidation. H2S persulfidates FOXO1 at Cys457 and subsequently prevents FOXO1 phosphorylation at Ser256. The results provide new ideas for therapeutic strategies for anti-vascular remodeling.
Introduction The proliferation of vascular smooth muscle cells (VSMCs) is an important physiological and pathological basis for many cardiovascular diseases. Endogenous hydrogen sulfide (H2S), the third gasotransmitter, is found to preserve vascular structure by inhibiting VSMC proliferation. However, the mechanism by which H2S suppresses VSMC proliferation has not been fully clear. Objectives This study aimed to explore whether H2S persulfidates the transcription factor FOXO1 to inhibit VSMC proliferation. Methods After the proliferation of VSMC A7r5 cells was induced by endothelin-1 (ET-1), FOXO1 phosphorylation and proliferating cell nuclear antigen (PCNA) expression were detected by Western blotting, the degree of FOXO1 nuclear exclusion and PCNA fluorescent signals in the nucleus were detected by immunofluorescence, and the persulfidation of FOXO1 was measured through a biotin switch assay. Results The results showed that ET-1 stimulation increased cell proliferation, FOXO1 phosphorylation and FOXO1 nuclear exclusion to the cytoplasm in the cells. However, pretreatment with NaHS, an H2S donor, successfully abolished the ET-1-induced increases in the VSMC proliferation, FOXO1 phosphorylation, and FOXO1 nuclear exclusion to the cytoplasm. Mechanistically, H2S persulfidated the FOXO1 protein in A7r5 and 293T cells, and the thiol reductant DTT reversed this effect. Furthermore, the C457S mutation of FOXO1 abolished the H2S-induced persulfidation of FOXO1 in the cells and the subsequent inhibitory effects on FOXO1 phosphorylation at Ser256, FOXO1 nuclear exclusion to the cytoplasm and cell proliferation. Conclusion Thus, our findings demonstrated that H2S might inhibit VSMC proliferation by persulfidating FOXO1 at Cys457 and subsequently preventing FOXO1 phosphorylation at Ser256.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhou
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Yong Zhang
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Yunjia Song
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Qingyou Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Dingfang Bu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Liling Wu
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100091, China
| | - Yuan Long
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100091, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| |
Collapse
|
27
|
Wang H, Shi X, Qiu M, Lv S, Zheng H, Niu B, Liu H. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci 2020; 16:2752-2760. [PMID: 33110394 PMCID: PMC7586428 DOI: 10.7150/ijbs.47595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasome is a complex composed of several proteins and an important part of the natural immune system. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. It plays an important role in many diseases. Hydrogen sulfide (H2S) is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicated that H2S played anti-inflammatory and pro-inflammatory roles in many diseases through influencing NLRP3 inflammasome, but its mechanism was not fully understood. This article reviewed the progress about the effects of H2S on NLRP3 inflammasome and its mechanisms involved in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Hong Zheng
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Baohua Niu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
28
|
Gu Y, Chen J, Zhang H, Shen Z, Liu H, Lv S, Yu X, Zhang D, Ding X, Zhang X. Hydrogen sulfide attenuates renal fibrosis by inducing TET-dependent DNA demethylation on Klotho promoter. FASEB J 2020; 34:11474-11487. [PMID: 32729950 DOI: 10.1096/fj.201902957rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Hypoxia is a key pathogenetic characteristic of chronic kidney disease (CKD). Klotho has renoprotective effect and its expression is commonly suppressed in CKD patients. We showed that chronic hypoxia in unilateral ureteral obstruction model mice is associated with renal Klotho promoter methylation and expression silencing. Administration of low-dose of sodium hydrosulfide (NaHS) effectively ameliorated renal tubulointerstitial fibrosis in the mouse model by demethylating Klotho promoter and restoring its expression. Mechanistically, hypoxia microenvironment in CKD reduced cellular oxygen availability and Fe2+ concentration, and led to impaired activity of ten-eleven translocation (TET), which is critical in maintaining Klotho promoter demethylation status. NaHS treatment greatly improved hypoxia condition, restored TET activity, reversed DNA methylation, and thus, increased Klotho expression. Our results strongly suggested that correcting hypoxia condition to restore TET activity could be a promising therapeutic strategy against CKD.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Hong Liu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Shiqi Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xixi Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Di Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
29
|
Cysteine becomes conditionally essential during hypobaric hypoxia and regulates adaptive neuro-physiological responses through CBS/H 2S pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165769. [PMID: 32184133 DOI: 10.1016/j.bbadis.2020.165769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Brain is well known for its disproportionate oxygen consumption and high energy-budget for optimal functioning. The decrease in oxygen supply to brain, thus, necessitates rapid activation of adaptive pathways - the absence of which manifest into vivid pathological conditions. Amongst these, oxygen sensing in glio-vascular milieu and H2S-dependent compensatory increase in cerebral blood flow (CBF) is a major adaptive response. We had recently demonstrated that the levels of H2S were significantly decreased during chronic hypobaric hypoxia (HH)-induced neuro-pathological effects. The mechanistic basis of this phenomenon, however, remained to be deciphered. We, here, describe experimental evidence for marked limitation of cysteine during HH - both in animal model as well as human volunteers ascending to high altitude. We show that the preservation of brain cysteine level, employing cysteine pro-drug (N-acetyl-L-cysteine, NAC), markedly curtailed effects of HH - not only on endogenous H2S levels but also, impairment of spatial reference memory in our animal model. We, further, present multiple lines of experimental evidence that the limitation of cysteine was causally governed by physiological propensity of brain to utilize cysteine, in cystathionine beta synthase (CBS)-dependent manner, past its endogenous replenishment potential. Notably, decrease in the levels of brain cysteine manifested despite positive effect (up-regulation) of HH on endogenous cysteine maintenance pathways and thus, qualifying cysteine as a conditionally essential nutrient (CEN) during HH. In brief, our data supports an adaptive, physiological role of CBS-mediated cysteine-utilization pathway - activated to increase endogenous levels of H2S - for optimal responses of brain to hypobaric hypoxia.
Collapse
|
30
|
Xiao Q, Ying J, Qiao Z, Yang Y, Dai X, Xu Z, Zhang C, Xiang L. Exogenous hydrogen sulfide inhibits human melanoma cell development via suppression of the PI3K/AKT/ mTOR pathway. J Dermatol Sci 2020; 98:26-34. [PMID: 32098704 DOI: 10.1016/j.jdermsci.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive, therapy-resistant skin cancers in the world. Hydrogen sulfide (H2S), a newly discovered gasotransmitter, plays a crucial role in the progression and development of many types of cancers. However, the effect of H2S on human skin melanoma remains to be elucidated. OBJECTIVE We aimed to explore the effect of exogenous H2S on melanoma cells and its underlying mechanisms. METHODS In this study, human skin melanoma cell lines, including A375 and SK-MEL-28, were treated with a donor of H2S (NaHS). CCK-8, scratch assay, flow cytometric analysis, western blotting and transmission electron microscopy (TEM) were performed to explore the effects of H2S on cell behaviors. RESULTS Treatment with NaHS inhibited cell proliferation, migration and division, while it could induce cell apoptosis and autophagy in melanoma cell lines. Moreover, NaHS significantly decreased the expression of p-PI3K, p-Akt and mTOR proteins. Furthermore, insulin-like growth factor-1 (IGF-1), the activator of PI3K/AKT/mTOR pathway, could reverse the cell behaviors caused by NaHS. CONCLUSION Our results demonstrated that exogenous hydrogen sulfide could inhibit human melanoma cell development via suppression of the PI3K/AKT/mTOR pathway. Hydrogen sulfide might serve as a potential therapeutic option for melanoma.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhuhui Qiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoxi Dai
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
31
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
32
|
Rietsema S, Eelderink C, Joustra ML, van Vliet IMY, van Londen M, Corpeleijn E, Singh-Povel CM, Geurts JMW, Kootstra-Ros JE, Westerhuis R, Navis G, Bakker SJL. Effect of high compared with low dairy intake on blood pressure in overweight middle-aged adults: results of a randomized crossover intervention study. Am J Clin Nutr 2019; 110:340-348. [PMID: 31237322 PMCID: PMC6669052 DOI: 10.1093/ajcn/nqz116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Observational studies suggest that high dairy intake is associated with a lower blood pressure (BP). OBJECTIVE We aimed to investigate the effect of a high-dairy diet (HDD) as compared with a low-dairy diet (LDD) on BP in overweight middle-aged adults. METHODS Fifty-two overweight men and women were included in a randomized crossover intervention study. Each subject consumed 2 isocaloric diets for 6 wk, an LDD (≤1 dairy portion per day) and an HDD (6 or 5 reduced-fat dairy portions for men and women, respectively), with a 4-wk washout period in between the diets during which the subjects consumed their habitual diet. BP was measured at the start and at the end of the intervention diets. The effect of the intervention study was evaluated by 2-sample t tests. Mixed-model analyses were used for adjustment for the potential influence of changes in dietary protein and mineral intake and risk factors for hypertension including body weight and plasma cholesterol. RESULTS Consumption of an HDD as compared with an LDD resulted in a reduction of both systolic BP (mean ± SD: 4.6 ± 11.2 mm Hg, P < 0.01) and diastolic BP (3.0 ± 6.7 mm Hg, P < 0.01). In further analyses, these reductions appeared dependent on the concomitant increase in calcium intake. CONCLUSIONS This intervention study shows that an HDD results in a reduction of both systolic and diastolic BP in overweight middle-aged men and women. If the results of our study are reproduced by other studies, advice for high dairy intake may be added to treatment and prevention of high BP. This trial was registered at trialregister.nl as NTR4899.
Collapse
Affiliation(s)
- Susan Rietsema
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Address correspondence to SR (e-mail: )
| | - Coby Eelderink
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monica L Joustra
- Interdisciplinary Center for Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Iris M Y van Vliet
- Department of Dietetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco van Londen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | - Jenny E Kootstra-Ros
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ralf Westerhuis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Hydrogen sulfide-induced relaxation of the bladder is attenuated in spontaneously hypertensive rats. Int Urol Nephrol 2019; 51:1507-1515. [PMID: 31289981 DOI: 10.1007/s11255-019-02222-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare hydrogen sulfide (H2S)-induced relaxation on the bladder between normotensive and spontaneously hypertensive rat (SHR), we evaluated the effects of H2S donors (GYY4137 and NaHS) on the micturition reflex and on the contractility of bladder tissues. We also investigated the content of H2S and the expression levels of enzymes related to H2S biosynthesis [cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (MPST), and cysteine aminotransferase (CAT)] in the bladder. METHODS Eighteen-week-old male normotensive Wistar rats and SHRs were used. Under urethane anesthesia, the effects of intravesically instilled GYY4137 (10-8, 10-7 and 10-6 M) on the micturition reflex were evaluated by cystometry. The effects of NaHS (1 × 10-8-3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips. Tissue H2S content was measured by the methylene blue method. The expression levels of these enzymes were investigated by Western blot. RESULTS GYY4137 significantly prolonged intercontraction intervals in Wistar rats, but not in SHRs. NaHS-induced relaxation on pre-contracted bladder strips was significantly attenuated in SHRs compared with Wistar rats. The H2S content in the bladder of SHRs was significantly higher than that of Wistar rats. CBS, MPST and CAT were detected in the bladder of Wistar rats and SHRs. The expression levels of MPST in the SHR bladder were significantly higher than those in the Wistar rat bladder. CONCLUSION H2S-induced bladder relaxation in SHRs is impaired, thereby resulting in a compensatory increase of the H2S content in the SHR bladder.
Collapse
|
34
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid R Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David J Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
35
|
Teng X, Li H, Xue H, Jin S, Xiao L, Guo Q, Wu Y. GABA A receptor, K ATP channel and L-type Ca 2+ channel is associated with facilitation effect of H 2S on the baroreceptor reflex in spontaneous hypertensive rats. Pharmacol Rep 2019; 71:968-975. [PMID: 31470293 DOI: 10.1016/j.pharep.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND We aimed to investigate whether the facilitating effect of H2S on the baroreceptor reflex is associated with the GABAA receptor, KATP channel and L-type Ca2+ channel pathway. METHODS Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were used to investigate the facilitating effect of H2S on the baroreceptor reflex by perfusing the isolated carotid sinus. The mechanism by which H2S facilitated the baroreceptor reflex was determined by using Bay K8644 (an agonist of calcium channels), glibenclamide (Gli, a KATP channel blocker), and picrotoxin (PIC, a blocker of γ-aminobutyric acid [GABA]A receptor). RESULTS As compared with WKY rats, SHRs showed impaired baroreceptor reflex sensitivity, as demonstrated by a right and upward shift of the functional curve for the intrasinus pressure-arterial blood pressure relation. H2S perfusion (25, 50, or 100 μmol/L) dose-dependently ameliorated the impaired sensitivity of the baroreceptor reflex. Bay K8644 (500 nmol/L), Gli (20 μmol/L) and PIC (50 μmol/L) all prevented H2S ameliorating the impaired baroreceptor reflex. CONCLUSIONS H2S facilitating the baroreceptor reflex might be associated with activating the GABAA receptor, opening the KATP channel, and closing the L-type Ca2+ channel. These areas should provide new targets for preventing and treating hypertension.
Collapse
Affiliation(s)
- Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Hui Li
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.
| |
Collapse
|
36
|
Xiao Q, Ying J, Xiang L, Zhang C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore) 2018; 97:e13065. [PMID: 30383685 PMCID: PMC6221678 DOI: 10.1097/md.0000000000013065] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Hydrogen sulfide (H2S), a colorless, water soluble, flammable gas with a characteristic smell of rotten eggs, has been known as a highly toxic gas for several years. However, much like carbon monoxide (CO) and nitric oxide (NO), the initial negative perception of H2S has developed with the discovery that H2S is generated enzymatically in animals under normal conditions. With the result of this discovery, much more work is needed to elucidate the biologic effects of H2S. In recent years, its cytoprotective properties have been recognized in multiple organs and tissues. In particular, H2S plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) and protect the body from oxidative stress. Therefore, this review discusses the biologic effect of H2S and how it protects cells in various diseases by acting as an antioxidant that reduces excessive amounts of ROS and RNS. ETHICS AND DISSEMINATION Ethical approval and informed consent are not required, as the study will be a literature review and will not involve direct contact with patients or alterations to patient care. CONCLUSION H2S has been found to be cytoprotective in oxidative stress in a wide range of physiologic and pathologic conditions, an increasing number of therapeutic potentials of H2S also have been revealed. However, there is still much debate on the clear mechanism of action of H2S, so that the mechanisms of cell signaling that promote cellular survival and organ protection need to be further investigated to provide better H2S-based therapeutics.
Collapse
|
37
|
Abstract
Hydrogen sulfide (H2S) is a novel signaling molecule most recently found to be of fundamental importance in cellular function as a regulator of apoptosis, inflammation, and perfusion. Mechanisms of endogenous H2S signaling are poorly understood; however, signal transmission is thought to occur via persulfidation at reactive cysteine residues on proteins. Although much has been discovered about how H2S is synthesized in the body, less is known about how it is metabolized. Recent studies have discovered a multitude of different targets for H2S therapy, including those related to protein modification, intracellular signaling, and ion channel depolarization. The most difficult part of studying hydrogen sulfide has been finding a way to accurately and reproducibly measure it. The purpose of this review is to: elaborate on the biosynthesis and catabolism of H2S in the human body, review current knowledge of the mechanisms of action of this gas in relation to ischemic injury, define strategies for physiological measurement of H2S in biological systems, and review potential novel therapies that use H2S for treatment.
Collapse
|
38
|
Sun Y, Huang Y, Yu W, Chen S, Yao Q, Zhang C, Bu D, Tang C, Du J, Jin H. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget 2018; 8:31888-31900. [PMID: 28404873 PMCID: PMC5458256 DOI: 10.18632/oncotarget.16649] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
The study was designed to examine if the vasorelaxant effect of hydrogen sulfide was mediated by sulfhydration-associated phosphodiesterase (PDE) 5A dimerization. The thoracic aorta of rat was separated and the vasorelaxant effects were examined with in vitro vascular perfusion experiments. The dimerization and sulfhydration of PDE 5A and soluble guanylatecyclase (sGC) were measured. PDE 5A and protein kinase G (PKG) activities were tested. Intracellular cGMP content was detected by enzyme-linked immunosorbent assay (ELISA). The results showed that NaHS relaxed isolated rat vessel rings at an EC50 of (1.79 ± 0.31)×10-5mol/L, associated with significantly increased PKG activity and cGMP content in vascular tissues. Sulfhydration of sGC β1 was increased, while the levels of sGC αβ1 dimers were apparently decreased after incubation with NaHS in vascular tissues. Moreover, PDE 5A homodimers were markedly decreased, and accordingly the PDE 5A activity demonstrated by the content of 5'-GMP was significantly decreased after incubation with NaHS or GYY4137. Mechanistically, both NaHS and GYY4137 significantly enhanced the PDE 5A sulfhydration in vascular tissues. DTT partially abolished the effects of NaHS on PDE 5A activity, cGMP content and vasorelaxation. Therefore, the present study for the first time suggested that H2S exerted vasorelaxant effect probably via sulfhydration-associated PDE 5A dimerization.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Siyao Chen
- Department of Cardiac Surgery, Guangdong General Hospital, Guangzhou, 510000, China
| | - Qiuyu Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chunyu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Dingfang Bu
- Centre Laboratory of Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Cardiovascular Sciences, Ministry of Education, Beijing, 100034, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
39
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
40
|
The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide 2017; 81:75-87. [PMID: 29097155 DOI: 10.1016/j.niox.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/21/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
Abstract
Our knowledge about hydrogen sulfide (H2S) significantly changed over the last two decades. Today it is considered as not only a toxic gas but also as a gasotransmitter with diverse roles in different physiological and pathophysiological processes. H2S has pleiotropic effects and its possible mechanisms of action involve (1) a reversible protein sulfhydration which can alter the function of the modified proteins similar to nitrosylation or phosphorylation; (2) direct antioxidant effects and (3) interaction with metalloproteins. Its effects on the human cardiovascular system are especially important due to the high prevalence of hypertension and myocardial infarction. The exact molecular targets that affect the vascular tone include the KATP channel, the endothelial nitric oxide synthase, the phosphodiesterase of the vascular smooth muscle cell and the cytochrome c oxidase among others and the combination of all these effects lead to the final result on the vascular tone. The relative role of each effect depends immensely on the used concentration and also on the used donor molecules but several other factors and experimental conditions could alter the final effect. The aim of the current review is to give a comprehensive summary of the current understanding on the mechanism of action and role of H2S in the regulation of vascular tone and to outline the obstacles that hinder the better understanding of its effects.
Collapse
|
41
|
Dugbartey GJ. The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy. Pharmacol Rep 2017; 70:196-205. [PMID: 29471067 DOI: 10.1016/j.pharep.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a common global health challenge characterized by irreversible pathological processes that reduce kidney function and culminates in development of end-stage renal disease. It is associated with increased morbidity and mortality in addition to increased caregiver burden and higher financial cost. A central player in CKD pathogenesis and progression is renal hypoxia. Renal hypoxia stimulates induction of oxidative and endoplasmic reticulum stress, inflammation and tubulointerstitial fibrosis, which in turn, promote cellular susceptibility and further aggravate hypoxia, thus forming a pathological vicious cycle in CKD progression. Although the importance of CKD is widely appreciated, including improvements in the quality of existing therapies such as dialysis and transplantation, new therapeutic options are limited, as there is still increased morbidity, mortality and poor quality of life among CKD patients. Growing evidence indicates that hydrogen sulfide (H2S), a small gaseous signaling molecule with an obnoxious smell, accumulates in the renal medulla under hypoxic conditions, and functions as an oxygen sensor that restores oxygen balance and increases medullary flow. Moreover, plasma H2S level has been recently reported to be markedly reduced in CKD patients and animal models. Also, H2S has been established to possess potent antioxidant, anti-inflammatory, and anti-fibrotic properties in several experimental models of kidney diseases, suggesting that its supplementation could protect against CKD and retard its progression. The purpose of this review is to discuss current clinical and experimental developments regarding CKD, its pathophysiology, and potential cellular and molecular mechanisms of protection by H2S in experimental models of CKD.
Collapse
Affiliation(s)
- George J Dugbartey
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal 2017; 27:634-653. [PMID: 28398086 PMCID: PMC5576200 DOI: 10.1089/ars.2017.7096] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) metabolism leads to the formation of oxidized sulfide species, including polysulfide, persulfide, and others. Evidence is emerging that many biological effects of H2S may indeed be due to polysulfide and persulfide activation of signaling pathways and reactivity with discrete small molecules. Recent Advances: Exogenous oxidized sulfide species, including polysulfides, are more reactive than H2S with a wide range of molecules. Importantly, endogenous polysulfide and persulfide formation has been reported to occur via transsulfuration enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CRITICAL ISSUES In light of the recent understanding of oxidized sulfide metabolite formation and reactivity, comparatively few studies have been reported comparing cellular biological and in vivo effects of H2S donors versus polysulfide and persulfide donors. Likewise, it is equally unclear when, how, and to what extent persulfide and polysulfide formation occurs in vivo under pathophysiological conditions. FUTURE DIRECTIONS Additional studies regarding persulfide and polysulfide formation and molecular reactions are needed in nearly all aspects of biology to better understand how sulfide metabolites contribute to key chemical biology reactions involved in cardiovascular health and immune responses. Antioxid. Redox Signal. 27, 634-653.
Collapse
Affiliation(s)
- Shuai Yuan
- 1 Department of Cell Biology and Anatomy, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| |
Collapse
|
43
|
Yu W, Jin H, Tang C, Du J, Zhang Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol 2017; 175:1114-1125. [PMID: 28430359 DOI: 10.1111/bph.13829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Sulfur-containing gaseous signal molecules including hydrogen sulphide and sulfur dioxide were previously recognized as toxic gases. However, extensive studies have revealed that they can be generated in the cardiovascular system via a sulfur-containing amino acid metabolic pathway, and have an important role in cardiovascular physiology and pathophysiology. Ion channels are pore-forming membrane proteins present in the membrane of all biological cells; their functions include the establishment of a resting membrane potential and the control of action potentials and other electrical signals by conducting ions across the cell membrane. Evidence has now accumulated suggesting that the sulfur-containing gaseous signal molecules are important regulators of ion channels and transporters. The aims of this review are (1) to discuss the recent experimental evidences in the cardiovascular system regarding the regulatory effects of sulfur-containing gaseous signal molecules on a variety of ion channels, including ATP-sensitive potassium, calcium-activated potassium, voltage-gated potassium, L- and T-type calcium, transient receptor potential and chloride and sodium channels, and (2) to understand how the gaseous signal molecules affect ion channels and cardiovascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Zhiren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
44
|
Yu W, Liao Y, Huang Y, Chen SY, Sun Y, Sun C, Wu Y, Tang C, Du J, Jin H. Endogenous Hydrogen Sulfide Enhances Carotid Sinus Baroreceptor Sensitivity by Activating the Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1) Channel. J Am Heart Assoc 2017; 6:JAHA.116.004971. [PMID: 28512115 PMCID: PMC5524069 DOI: 10.1161/jaha.116.004971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background We aimed to investigate the regulatory effects of hydrogen sulfide (H2S) on carotid sinus baroreceptor sensitivity and its mechanisms. Methods and Results Male Wistar‐Kyoto rats and spontaneously hypertensive rats (SHRs) were used in the experiment and were given an H2S donor or a cystathionine‐β‐synthase inhibitor, hydroxylamine, for 8 weeks. Systolic blood pressure and the cystathionine‐β‐synthase/H2S pathway in carotid sinus were detected. Carotid sinus baroreceptor sensitivity and the functional curve of the carotid baroreceptor were analyzed using the isolated carotid sinus perfusion technique. Effects of H2S on transient receptor potential cation channel subfamily V member 1 (TRPV1) expression and S‐sulfhydration were detected. In SHRs, systolic blood pressure was markedly increased, but the cystathionine‐β‐synthase/H2S pathway in the carotid sinus was downregulated in comparison to that of Wistar‐Kyoto rats. Carotid sinus baroreceptor sensitivity in SHRs was reduced, demonstrated by the right and upward shift of the functional curve of the carotid baroreceptor. Meanwhile, the downregulation of TRPV1 protein was demonstrated in the carotid sinus; however, H2S reduced systolic blood pressure but enhanced carotid sinus baroreceptor sensitivity in SHRs, along with TRPV1 upregulation in the carotid sinus. In contrast, hydroxylamine significantly increased the systolic blood pressure of Wistar‐Kyoto rats, along with decreased carotid sinus baroreceptor sensitivity and reduced TRPV1 protein expression in the carotid sinus. Furthermore, H2S‐induced enhancement of carotid sinus baroreceptor sensitivity of SHRs could be amplified by capsaicin but reduced by capsazepine. Moreover, H2S facilitated S‐sulfhydration of TRPV1 protein in the carotid sinus of SHRs and Wistar‐Kyoto rats. Conclusions H2S regulated blood pressure via an increase in TRPV1 protein expression and its activity to enhance carotid sinus baroreceptor sensitivity.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Liao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
45
|
Greaney JL, Kutz JL, Shank SW, Jandu S, Santhanam L, Alexander LM. Impaired Hydrogen Sulfide-Mediated Vasodilation Contributes to Microvascular Endothelial Dysfunction in Hypertensive Adults. Hypertension 2017; 69:902-909. [PMID: 28348008 DOI: 10.1161/hypertensionaha.116.08964] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/03/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Reductions in hydrogen sulfide (H2S) production have been implicated in the pathogenesis of vascular dysfunction in animal models of hypertension; however, no studies have examined a functional role for H2S in contributing to microvascular dysfunction in hypertensive (HTN) adults. We hypothesized that endogenous production of H2S would be reduced, impaired endothelium-dependent vasodilation would be mediated by reductions in H2S-dependent vasodilation, and vascular responsiveness to exogenous H2S (sodium sulfide) would be attenuated in HTN compared to normotensive adults. Fifteen normotensive (51±2 years; blood pressure, 116±3/76±3 mm Hg) and 14 HTN adults (57±2 years; blood pressure 140±3/89±2 mm Hg) participated. H2S biosynthetic enzyme expression (Western blot) and substrate-dependent H2S production (amperometric probe) were measured in cutaneous tissue homogenates. Red cell flux (laser Doppler flowmetry) was measured during graded perfusions of acetylcholine (ACh; 10-6-10-1 mol/L) and sodium sulfide (10-5-101 mol/L) using intradermal microdialysis; the functional role of H2S was determined using pharmacological inhibition with aminooxyacetic acid (0.5 mmol/L). H2S biosynthetic enzyme expression and substrate-dependent H2S production were reduced in HTN adults (all P<0.05). ACh-induced endothelium-dependent vasodilation was blunted in HTN adults (P=0.012). Aminooxyacetic acid attenuated ACh-induced vasodilation in normotensive adults (ACh, 1.31±0.13 versus ACh+aminooxyacetic acid, 1.07±0.09 flux/mm Hg; P=0.025) but had no effect on vasodilation in HTN adults (ACh, 1.16±0.10 versus ACh+aminooxyacetic acid, 1.37±0.11 flux/mm Hg; P=0.47). Sodium sulfide-induced vasodilation was not different between groups. Collectively, these findings indicate that while the microvasculature maintains the ability to vasodilate in response to exogenous H2S, reductions in endogenous synthesis and H2S-dependent vasodilation contribute to endothelial dysfunction in human hypertension.
Collapse
Affiliation(s)
- Jody L Greaney
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.)
| | - Jessica L Kutz
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.)
| | - Sean W Shank
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.)
| | - Sandeep Jandu
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.)
| | - Lakshmi Santhanam
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.)
| | - Lacy M Alexander
- From the Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park (J.L.G., J.L.K., S.W.S., L.M.A.); Department of Exercise Science, Shenandoah University, Winchester, VA (J.L.K.); and Departments of Anesthesia and Critical Care Medicine and Bioengineering, Johns Hopkins University School of Medicine, Baltimore, MD (S.J., L.S.).
| |
Collapse
|
46
|
Zhang HT, Zhang T, Chai M, Sun JJ, Yu XY, Liu CZ, Huang CC. Effect of tobacco smoke on hydrogen sulfide-induced rat thoracic aorta relaxation. ACTA ACUST UNITED AC 2017; 50:e5592. [PMID: 28177058 PMCID: PMC5390530 DOI: 10.1590/1414-431x20165592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Levels of hydrogen sulfide (H2S), a gaseous signaling molecule, are reduced in the serum of individuals who smoke. We hypothesized that tobacco smoke influenced smooth muscle relaxation by decreasing H2S levels and this effect could also influence expression of cystathionine γ-lyase (CSE) and sulfonylurea receptor-2 (SUR-2). The aim of this study was to explore the effect of tobacco smoke on H2S-mediated rat thoracic aorta relaxation and its possible mechanism. Thirty-two Sprague-Dawley rats were divided into four groups: control (C) group, short-term smoker (SS) group, mid-term smoker (MS) group, and long-term smoker (LS) group. H2S concentrations in serum, action of H2S on rat aortic vascular relaxation, and expression of CSE and SUR-2 in thoracic aortic smooth muscle were measured. Although there was no significant difference in H2S between the C and the SS groups, concentration of H2S was significantly reduced in both the LS and MS groups compared to control (P<0.01). Furthermore, H2S was significantly lower in the LS than in the MS group (P<0.05). Rat aortic vascular relaxation was lower in all three treatment groups compared to the control, with the most significant decrease observed in the LS group (P<0.05 compared to the MS group). Expression of CSE and SUR-2 was reduced in the LS and MS groups compared to control (P<0.05), with the lowest levels observed in the LS group (P<0.05). Therefore, tobacco smoke reduced expression of CSE and SUR-2 in rat thoracic aorta, which may inhibit H2S production and vascular dilation.
Collapse
Affiliation(s)
- H T Zhang
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - T Zhang
- Department of Cardiology, The First People's Hospital of Chuzhou, Chuzhou, China
| | - M Chai
- Department of Cardiology, Lung and Blood Vessel Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Beijing, China
| | - J J Sun
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - X Y Yu
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - C Z Liu
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - C C Huang
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
47
|
H 2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide 2017; 64:52-60. [PMID: 28069557 DOI: 10.1016/j.niox.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Hypertension is the most common cause of cardiovascular morbidities and mortalities, and a major risk factor for renal dysfunction. It is considered one of the causes of chronic kidney disease, which progresses into end-stage renal disease and eventually loss of renal function. Yet, the mechanism underlying the pathogenesis of hypertension and its associated kidney injury is still poorly understood. Moreover, despite existing antihypertensive therapies, achievement of blood pressure control and preservation of renal function still remain a worldwide public health challenge in a subset of hypertensive patients. Therefore, novel modes of intervention are in demand. Hydrogen sulfide (H2S), a gaseous signaling molecule, has been established to possess antihypertensive and renoprotective properties, which may represent an important therapeutic alternative for the treatment of hypertension and kidney injury. This review discusses recent findings about H2S in hypertension and kidney injury from both experimental and clinical studies. It also addresses future direction regarding therapeutic use of H2S.
Collapse
|
48
|
Protective Effects of Hydrogen Sulfide in the Ageing Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7570489. [PMID: 27882191 PMCID: PMC5108860 DOI: 10.1155/2016/7570489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022]
Abstract
Aims. The study aimed to examine whether hydrogen sulfide (H2S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results. H2S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H2S-producing enzymes in kidney, cystathionine γ-lyase (CSE) and cystathionine-β-synthase (CBS), decreased significantly during ageing. Chronic H2S donor (NaHS, 50 μmol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H2S-producing enzymes changed with exogenous H2S administration and contributed to elevated H2S levels in the ageing kidney. Conclusions. Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H2S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.
Collapse
|
49
|
Wang MJ, Cai WJ, Zhu YC. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules. Life Sci 2016; 153:188-97. [PMID: 27071836 DOI: 10.1016/j.lfs.2016.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/20/2016] [Accepted: 03/31/2016] [Indexed: 02/01/2023]
Abstract
As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases.
Collapse
Affiliation(s)
- Ming-Jie Wang
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Cai
- Department of Basic Medicine, College of Medical Instruments and Foodstuff, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi-Chun Zhu
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Hackfort BT, Mishra PK. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2016; 310:H802-12. [PMID: 26801305 PMCID: PMC4867357 DOI: 10.1152/ajpheart.00660.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Despite an obnoxious smell and toxicity at a high dose, hydrogen sulfide (H2S) is emerging as a cardioprotective gasotransmitter. H2S mitigates pathological cardiac remodeling by regulating several cellular processes including fibrosis, hypertrophy, apoptosis, and inflammation. These encouraging findings in rodents led to initiation of a clinical trial using a H2S donor in heart failure patients. However, the underlying molecular mechanisms by which H2S mitigates cardiac remodeling are not completely understood. Empirical evidence suggest that H2S may regulate signaling pathways either by directly influencing a gene in the cascade or interacting with nitric oxide (another cardioprotective gasotransmitter) or both. Recent studies revealed that H2S may ameliorate cardiac dysfunction by up- or downregulating specific microRNAs. MicroRNAs are noncoding, conserved, regulatory RNAs that modulate gene expression mostly by translational inhibition and are emerging as a therapeutic target for cardiovascular disease (CVD). Few microRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new avenue for exploring the H2S-microRNA crosstalk in CVD. This review embodies regulatory mechanisms that maintain the physiological level of H2S, exogenous H2S donors used for increasing the tissue levels of H2S, H2S-mediated regulation of CVD, H2S-microRNAs crosstalk in relation to the pathophysiology of heart disease, clinical trials on H2S, and future perspectives for H2S as a therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|