1
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
3
|
Wenfei Z, Xiang T, Chen C, Yang T, Yun T, Zhibiao C, Ge Z. Isoliquiritigenin attenuates neuroinflammation after subarachnoid hemorrhage through inhibition of NF-κB-mediated NLRP3 inflammasome activation. Chem Biol Drug Des 2024; 103:e14436. [PMID: 38395608 DOI: 10.1111/cbdd.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024]
Abstract
Neuroinflammation contributes to neurological dysfunction in the patients who suffer from subarachnoid hemorrhage (SAH). Isoliquiritigenin (ISL) is a bioactive component extracted from Genus Glycyrrhiza. This work is to investigate whether ISL ameliorates neuroinflammation after SAH. In this study, intravascular perforation of male Sprague-Dawley rats was used to establish a SAH model. ISL was administered by intraperitoneal injection 6 h after SAH in rats. The mortality, SAH grade, neurological score, brain water content, and blood-brain barrier (BBB) permeability were examined at 24 h after the treatment. Expressions of tumor necrosis factor-α, interleukin-6, Iba-1, and MPO were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the expression levels of NF-κB p65 and NLRP3, ASC, caspase-1, IL-1β, and IL-18 were analyzed by western blot. The experimental data suggested that ISL treatment could ameliorate neurological impairment, attenuate brain edema, and ameliorate BBB injury after SAH in rats. ISL treatment repressed the expression of proinflammatory cytokines TNF-α and IL-6, and meanwhile inhibited the expression of Iba-1 and MPO. ISL also repressed NF-κB p65 expression as well as the transport from the cytoplasm to the nucleus. In addition, ISL significantly suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3), ASC, caspase-1, IL-1β, and IL-18. These findings suggest that ISL inactivates NLRP3 pathway by inhibiting NF-κB p65 translocation, thereby repressing the neuroinflammation after SAH, and it is a potential drug for the treatment of SAH.
Collapse
Affiliation(s)
- Zhang Wenfei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, China
| | - Tao Yang
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Yun
- Department of Stomatology, Wuhan Central Hospital, Wuhan, China
| | - Chen Zhibiao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ge
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Xie M, Zhang M, Qiao Y, Yang Y, Xie F, Chen L, Liu N, Gu J. Molecular mechanism of PSORI-CM01 for psoriasis by regulating the inflammatory cytokines network. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116935. [PMID: 37479070 DOI: 10.1016/j.jep.2023.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is an inflammatory skin disease, there is no radical cure. Traditional Chinese medicine has accumulated a lot of clinical experience in the treatment of psoriasis and developed a variety of treatment methods, among which Yinxieling optimization formula (PSORI-CM01) have a definite clinical effect in the treatment of psoriasis, but their mechanism of action is still unclear. AIM OF THE STUDY To investigate the molecular mechanism of the PSORI-CM01 in the treatment of psoriasis. MATERIALS AND METHODS Firstly, potential active compounds and key signaling pathways of PSORI-CM01 were explored by the systems pharmacology method. Then MTT assay was used to screen the potentially active compounds of PSORI-CM01, and explore the combined effects of potentially active compounds. The regulation of potentially active compounds on inflammatory factors were evaluated by a Human Th17 Magnetic Bead Panel. The regulation of PSORI-CM01 on key targets in the key signaling pathways were explored by qRT-PCR method. Finally, the molecular mechanism of PSORI-CM01 in the treatment of psoriasis was explained by the systems pharmacology method. RESULTS The potentially active compounds of PSORI-CM01 included gallic acid, liquiritigenin, rosmarinic acid, syringic acid, isoliquiritin apioside, caffeic acid, naringenin, cryptochlorogenic acid, (+)-taxifolin, p-coumaric acid, chlorogenic acid, fraxin, 5-hydroxymethylfurfural, lithospermic acid, isoliquiritigenin, salviandic acid B, octahydrocurcumin, catechin, syringaldehyde, methyl rosmarinate, paeonol, protocatechuic acid, astilbin, isoastilbin, isofraxidin and zederone. Both antagonistic and synergistic effects were determined in the combinations of active compounds. Most of the active compounds up-regulated IL-2, IL-6, IL-9 and TNF-α, and down-regulated IFN-γ, IL-1β, IL-2, IL-9, IL-10, IL-13, IL-15, IL-17F, IL-21, IL-22 and IL-27. The PI3K-Akt signaling pathway would be the key signaling pathway of PSORI-CM01. The qRT-PCR results showed that its compounds can effectively regulate the expression of key targets in this pathway. CONCLUSIONS The molecular mechanism of PSORI-CM01 for treating psoriasis would be mediated by regulating the network of inflammatory factors through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mingxiang Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510910, China.
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China.
| | - Yuanyuan Qiao
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yibing Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Fuda Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lichun Chen
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Chen Z, Ding W, Yang X, Lu T, Liu Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117059. [PMID: 37604329 DOI: 10.1016/j.jep.2023.117059] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a medicinal herb with a 2000-year history of applications in traditional Chinese medicine. Isoliquiritigenin (ISL) is a bioactive chalcone compound isolated from licorice. It has attracted increasing attention in recent years due to its excellent anti-inflammatory activity. AIM OF THE STUDY This study is to provide a comprehensive summary of the anti-inflammatory activity of ISL and the underlying molecular mechanisms, and discuss new insights for its potential clinical applications as an anti-inflammation agent. MATERIALS AND METHODS We examined literatures published in the past twenty years from PubMed, Research Gate, Web of Science, Google Scholar, and SciFinder, with single or combined key words of "isoliquiritigenin", "inflammation", and "anti-inflammatory". RESULTS ISL elicits its anti-inflammatory activity by mediating various cellular processes. It inhibits the upstream of the nuclear factor kappa B (NF-κB) pathway and activates the nuclear factor erythroid related factor 2 (Nrf2) pathway. In addition, it suppresses the NOD-like receptor protein 3 (NLRP3) pathway and restrains the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS Current studies indicate a great therapeutical potential of ISL as a drug candidate for treatment of inflammation-associated diseases. However, the pharmacokinetics, biosafety, and bioavailability of ISL remain to be further investigated.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Zhan YP, Chen BS. Drug Target Identification and Drug Repurposing in Psoriasis through Systems Biology Approach, DNN-Based DTI Model and Genome-Wide Microarray Data. Int J Mol Sci 2023; 24:10033. [PMID: 37373186 DOI: 10.3390/ijms241210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Psoriasis is a chronic skin disease that affects millions of people worldwide. In 2014, psoriasis was recognized by the World Health Organization (WHO) as a serious non-communicable disease. In this study, a systems biology approach was used to investigate the underlying pathogenic mechanism of psoriasis and identify the potential drug targets for therapeutic treatment. The study involved the construction of a candidate genome-wide genetic and epigenetic network (GWGEN) through big data mining, followed by the identification of real GWGENs of psoriatic and non-psoriatic using system identification and system order detection methods. Core GWGENs were extracted from real GWGENs using the Principal Network Projection (PNP) method, and the corresponding core signaling pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing core signaling pathways of psoriasis and non-psoriasis and their downstream cellular dysfunctions, STAT3, CEBPB, NF-κB, and FOXO1 are identified as significant biomarkers of pathogenic mechanism and considered as drug targets for the therapeutic treatment of psoriasis. Then, a deep neural network (DNN)-based drug-target interaction (DTI) model was trained by the DTI dataset to predict candidate molecular drugs. By considering adequate regulatory ability, toxicity, and sensitivity as drug design specifications, Naringin, Butein, and Betulinic acid were selected from the candidate molecular drugs and combined into potential multi-molecule drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yu-Ping Zhan
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Atteia HH, Alamri ES, Sirag N, Zidan NS, Aljohani RH, Alzahrani S, Arafa MH, Mohammad NS, Asker ME, Zaitone SA, Sakr AT. Soluble guanylate cyclase agonist, isoliquiritigenin attenuates renal damage and aortic calcification in a rat model of chronic kidney failure. Life Sci 2023; 317:121460. [PMID: 36716925 DOI: 10.1016/j.lfs.2023.121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
AIMS Chronic kidney disease (CKD) is a growing fatal health problem worldwide associated with vascular calcification. Therapeutic approaches are limited with higher costs and poor outcomes. Adenine supplementation is one of the most relevant CKD models to human. Insufficient Nitric Oxide (NO)/ cyclic Guanosine Monophosphate (cGMP) signaling plays a key role in rapid development of renal fibrosis. Natural products display proven protection against CKD. Current study therefore explored isoliquiritigenin, a bioflavonoid extracted from licorice roots, potential as a natural activator for soluble Guanylate Cyclase (sGC) in a CKD rat model. MATERIALS AND METHODS 60 male Wistar rats were grouped into Control group (n = 10) and the remaining rats received adenine (200 mg/kg, p.o) for 2 wk to induce CKD. They were equally sub-grouped into: Adenine untreated group and 4 groups orally treated by isoliquiritigenin low or high dose (20 or 40 mg/kg) with/without a selective sGC inhibitor, ODQ (1-H(1,2,4)oxadiazolo(4,3-a)-quinoxalin-1-one, 2 mg/kg, i.p) for 8 wk. KEY FINDINGS Long-term treatment with isoliquiritigenin dose-dependently and effectively amended adenine-induced chronic renal and endothelial dysfunction. It not only alleviated renal fibrosis and apoptosis markers but also aortic calcification. Additionally, this chalcone neutralized renal inflammatory response and oxidative stress. Isoliquiritigenin beneficial effects were associated with up-regulation of serum NO, renal and aortic sGC, cGMP and its dependent protein kinase (PKG). However, co-treatment with ODQ antagonized isoliquiritigenin therapeutic impact. SIGNIFICANCE Isoliquiritigenin seems to exert protective effects against CKD and vascular calcification by activating sGC, increasing cGMP and its downstream PKG.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt.
| | - Eman Saad Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nahla Salah Zidan
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Home Economics, Faculty of Specific Education, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | | | - Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Nanies Sameeh Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Mervat Elsayed Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amr Tawfik Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
9
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
10
|
Dordoe C, Wang X, Lin P, Wang Z, Hu J, Wang D, Fang Y, Liang F, Ye S, Chen J, Zhao Y, Xiong Y, Yang Y, Lin L, Li X. Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-κB pathways. Neuropharmacology 2022; 212:109064. [PMID: 35452626 DOI: 10.1016/j.neuropharm.2022.109064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that participate in response to pathological process after ischemic injury. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is an effective neuroprotective factor that is also known as a metabolic regulator. The present study aimed to investigate the effects and mechanism of the neuroprotective ability of nmFGF1 on microglia in mice after photothrombosis (PT) stroke model, to determine whether it could ameliorate ischemic injury in stroke experiment. We discovered that the intranasal administration of nmFGF1 reduced infarct size and ameliorated neurological deficits in behavioral assessment by regulating the secretion of proinflammatory and anti-inflammatory cytokines. Furthermore, in the in vitro experiments, we found that nmFGF1 regulated the expression levels of proinflammatory and anti-inflammatory cytokines in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation. Evidence have shown that when nuclear factor erythroid 2-related factor 2 (Nfr2) is activated, it inhibits nuclear factor-kappa B (NF-κB) activation to alleviate inflammation. Interestingly, nmFGF1 treatment in vivo remarkably inhibited NF-κB pathway activation and activated Nrf2 pathway. In addition, nmFGF1 and NF-κB inhibitor (BAY11-7082) inhibited NF-κB pathway in LPS-stimulated BV2 microglia. Moreover, in LPS-stimulated BV2 microglia, the anti-inflammatory effect produced by nmFGF1 was knocked down by Nrf2 siRNA. These results indicate that nmFGF1 promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via Nrf2 and NF-κB signaling pathways, making nmFGF1 a potential agent against ischemic stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 501-190, Republic of Korea
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yunjun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang, 325035, China.
| | - Xianfeng Li
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China.
| |
Collapse
|
11
|
Ruan SF, Hu Y, Wu WF, Du QQ, Wang ZX, Chen TT, Shen Q, Liu L, Jiang CP, Li H, Yi Y, Shen CY, Zhu HX, Liu Q. Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Front Pharmacol 2022; 13:832088. [PMID: 35211023 PMCID: PMC8861462 DOI: 10.3389/fphar.2022.832088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.
Collapse
Affiliation(s)
- Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun-Qun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting-Ting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9523071. [PMID: 35082907 PMCID: PMC8786487 DOI: 10.1155/2022/9523071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Rui-Zhi T, Ke-Huan X, Yuan L, Xiao L, Bing-Wen Z, Tong-Tong L, Li W. Renoprotective effect of isoliquiritigenin on cisplatin-induced acute kidney injury through inhibition of FPR2 in macrophage. J Pharmacol Sci 2022; 148:56-64. [PMID: 34924130 DOI: 10.1016/j.jphs.2021.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.
Collapse
MESH Headings
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/drug therapy
- Acute Kidney Injury/genetics
- Acute Kidney Injury/prevention & control
- Animals
- Cells, Cultured
- Chalcones/isolation & purification
- Chalcones/pharmacology
- Chalcones/therapeutic use
- Cisplatin/adverse effects
- Gene Expression/drug effects
- Glycyrrhiza/chemistry
- Inflammation
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Phytotherapy
- Receptors, Formyl Peptide/antagonists & inhibitors
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/physiology
- Receptors, Lipoxin/antagonists & inhibitors
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/metabolism
- Receptors, Lipoxin/physiology
- Up-Regulation/drug effects
- Mice
Collapse
Affiliation(s)
- Tan Rui-Zhi
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xie Ke-Huan
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liao Yuan
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Xiao
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhu Bing-Wen
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu Tong-Tong
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wang Li
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Isoliquiritigenin alleviates P. gingivalis-LPS/ATP-induced pyroptosis by inhibiting NF-κB/ NLRP3/GSDMD signals in human gingival fibroblasts. Int Immunopharmacol 2021; 101:108338. [PMID: 34794890 DOI: 10.1016/j.intimp.2021.108338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate whether pyroptosis is induced by Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS)/ adenosine triphosphate (ATP) through NF-κB/NLRP3/GSDMD signaling in human gingival fibroblasts (HGFs) and whether isoliquiritigenin (ISL) alleviates pyroptosis by inhibition of NF-κB/NLRP3/GSDMD signals. DESIGN Periodontitis was optimally simulated using a combination of P. gingivalis-LPS and ATP. The expression levels of genes and proteins of NF-κB, NLRP3 inflammasome, GSDMD, and IL-1β was characterized by qRT-PCR, western blotting and ELISA. The 2',7'‑dichlorodihydrofluorescein diacetate fluorescence probe was used to determine the intracellular ROS level. Hoechst 33342 and PI double staining, cytotoxicity assay, and caspase-1 activity assay were used to confirm the influence of ISL on pyroptosis in P. gingivalis-LPS/ATP-treated HGFs. RESULTS P. gingivalis-LPS/ATP stimulation significantly promoted expression of NF-κB, the NLRP3 inflammasome, GSDMD, and IL-1β at gene and protein levels. The proportion of membrane-damaged cells, caspase-1 activity, and the release of lactate dehydrogenase (LDH) were also elevated. However, pretreatment with ISL observably suppressed these effects. CONCLUSIONS P. gingivalis-LPS/ATP induced pyroptosis in HGFs by activating NF-κB/NLRP3/GSDMD signals and ISL attenuated P. gingivalis-LPS/ATP-induced pyroptosis by inhibiting these signals. This evidence may provide a new direction for the treatment of periodontitis.
Collapse
|
15
|
Zhu J, Yang T, Tang M, Yang Z, Pei H, Ye H, Tang Y, Cheng Z, Lin P, Chen L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed Pharmacother 2021; 137:111373. [PMID: 33761599 DOI: 10.1016/j.biopha.2021.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, inflammatory autoimmune disease mediated by T cells, and characterized with abnormal proliferation and differentiation of keratinocytes, and inflammatory infiltration. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway has been identified to play essential roles in mediating various of biological processes, and is closely related to autoimmune diseases. Dendritic cells (DCs) are important antigen presenting cells and play an important regulatory role in T cells. The proliferation, differentiation and function of DCs are regulated by JAK and FMS-like tyrosine kinase 3 (FLT3) signal pathways. Flonoltinib maleate (FM), a high selectivity dual JAK2/FLT3 inhibitor with IC50 values of 0.8 nM and 15 nM for JAK2 and FLT3, respectively, was developed by our laboratory. Moreover, FM was a potent JAK2 inhibitor with 863-fold and 696-fold selectivity over JAK1 and JAK3, respectively. In this study, the anti-psoriasis activity of FM was evaluated both in vitro and in vivo. FM effectively inhibited the proliferation of HaCaT, the inflammatory keratinocyte induced by M5 and markedly suppressed the generation and differentiation of DCs from bone marrow (BM), and inhibited the expression of FLT3 in DCs in vitro. FM effectively inhibited the ear thickening and improved the pathological changes of the ear in interleukin (IL)-23-induced psoriasis-like acanthosis mouse model. Further in keratin 14-vascular endothelial growth factor (K14-VEGF) transgenic homozygous mice model, FM could obviously improve the psoriatic symptom and pathological changes, significantly inhibit the generations of Th1 and Th17 cells in the spleen, and the accumulations of DCs in the ears. FM could also significantly reduce the expression of various inflammatory factors both in C57BL/6 and K14-VEGF mice ears, and the serum of K14-VEGF mice. Mechanism revealed that FM effectively suppressed the phosphorylation of JAK2, STAT3 and STAT5 in inflammatory keratinocytes and the mice ears of C57BL/6 and K14-VEGF, as well as the phosphorylation of FLT3 in K14-VEGF mice ears. In conclusion, FM plays an excellent anti-psoriasis activity, including inhibiting keratinocyte proliferation and regulating inflammatory response through inhibiting JAK2 and FLT3 signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhixuan Cheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Lin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Zhang C, Lu Y, Ai Y, Xu X, Zhu S, Zhang B, Tang M, Zhang L, He T. Glabridin Liposome Ameliorating UVB-Induced Erythema and Lethery Skin by Suppressing Inflammatory Cytokine Production. J Microbiol Biotechnol 2021; 31:630-636. [PMID: 33526759 PMCID: PMC9706034 DOI: 10.4014/jmb.2011.11006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Glabridin, a compound of the flavonoid, has shown outstanding skin-whitening and anti-aging properties, but its water insolubility limits its wide application. Therefore, glabridin liposome (GL) has been developed to improve its poor bioavailability, while there are few studies to evaluate its amelioration of UVB- induced photoaging. This study is performed to investigate the amelioration of GL against UVB- induced cutaneous photoaging. The prepared GL has a spheroidal morphology with an average diameter of 200 nm. The GL shows lower cytotoxicity than glabridin, but it has a more effective role in inhibition of melanin. Moreover, the application of GL can effectively relieve UV radiation induced erythema and leathery skin, associated with the down-regulated expression of inflammatory cytokines (TNF-α, IL-6 and IL-10). Taken together, these results demonstrate that GL has potentials as topical therapeutic agents against UVB radiation induced skin damage through inhibiting inflammation.
Collapse
Affiliation(s)
- Chijian Zhang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yong Ai
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Xian Xu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Siyang Zhu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Bing Zhang
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Minghui Tang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Tinggang He
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| |
Collapse
|
17
|
Wang H, Xu Y, Jin M, Li H, Li S. miR-383 reduces keratinocyte proliferation and induces the apoptosis in psoriasis via disruption of LCN2-dependent JAK/STAT pathway activation. Int Immunopharmacol 2021; 96:107587. [PMID: 33819732 DOI: 10.1016/j.intimp.2021.107587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a chronic and relapsing disorder with considerable negative effects on patients' quality of life. The finer details associated with the molecular mechanism of psoriasis and its pathogenesis remain somewhat elusive. Extensive studies have highlighted the crucial role of microRNAs (miRNAs) in the development of psoriasis. Hence, the current study aimed to investigate the effect of miR-383 on a psoriasis rat model and elucidate the underlying molecular mechanism. The rat psoriasis model was established via imiquimod (IMQ) induction followed by verification of miR-383 and LCN2 expression in the skin tissues of the models. ELISA was conducted to determine the secretion of inflammatory factors. Keratinocyte proliferation and apoptosis was evaluated by MTT assay and flow cytometric analysis. Down-regulation of miR-383 and up-regulation of LCN2 were detected in the psoriasis rat model. Our data indicated that miR-383 targeted LCN2 by binding to its 3'UTR and inhibited JAK/STAT pathway activation. Notably, miR-383 overexpression or LCN2 knockdown attenuated psoriasis-like symptoms, suppressed inflammatory response, reduced the expression of JAK3 and STAT3, ceased keratinocyte proliferation, and promoted the apoptosis. The findings of our study suggest that miR-383 may inhibit LCN2 and inactivate the JAK/STAT pathway, suppressing the progression of psoriasis in a rat model. This study provided novel insights into the pathogenesis of psoriasis and offered potential targets for psoriasis treatment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China.
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Meishan Jin
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Hongxia Li
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Shanshan Li
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China.
| |
Collapse
|
18
|
Alzahrani S, Zaitone SA, Said E, El-Sherbiny M, Ajwah S, Alsharif SY, Elsherbiny NM. Protective effect of isoliquiritigenin on experimental diabetic nephropathy in rats: Impact on Sirt-1/NFκB balance and NLRP3 expression. Int Immunopharmacol 2020; 87:106813. [PMID: 32707499 DOI: 10.1016/j.intimp.2020.106813] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
The prevalence of diabetes mellitus (DM) drastically increases worldwide. Persistent hyperglycemia affects body microvasculature causing injuries to kidney producing diabetic nephropathy (DNE). Manifestation of these microvascular complications is associated with disturbed redox homeostasis. The current study evaluated the effect of isoliquiritigenin (ISLQ), a bioactive chalcone found in licorice which is known for its antioxidant effect, on diabetes-induced renal injury. DM was prompted in male rats by streptozotocin (STZ, 50 mg/kg, intraperitoneally). ISLQ was administrated by oral gavage for 8 weeks at a dose (20 mg/kg/day). Features of renal injury were observed in kidneys of diabetic rats including, albuminuria and deteriorated renal function. Renal dysfunction was associated with reduced sirtuin-1 (Sirt-1) expression, increased renal oxidative stress, nucleotide-binding domain and leucine-rich repeat containing protein-3 (NLRP3), nuclear factor-κB (NFκB) and inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Moreover, there was significant downregulation of anti-inflammatory cytokine interleukin-10 (IL-10), glomerular and tubular injury and collagen accumulation. ISLQ administration preserved renal function and architecture, restored Sirt1 and renal oxidant-antioxidant balance, dampened inflammation and attenuated collagen accumulation. It can be inferred that ISLQ possess a protective effect and could have a potential as a food supplement to halt development and progression of DNE.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Department of Anatomy, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Sadeem Ajwah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
19
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
20
|
Zhu B, Gao J, Ouyang Y, Hu Z, Chen X. Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice. J Pain Res 2019; 12:3135-3145. [PMID: 31819598 PMCID: PMC6874503 DOI: 10.2147/jpr.s219462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell injury, while its effect on neuropathic pain is still not known. As the mechanism of neuropathic pain remains unclear, we investigated whether miR138 is involved in the development of neuropathic pain and the role of miR138 in the modulation of inflammation in the spinal cord in a mouse model of neuropathic pain induced by spared sciatic nerve injury (SNI). Materials and methods Firstly, the expression of miR138 in spinal cord was evaluated on days 1, 3, 5, 7, 9 and 14 after SNI. And then, LV-miR-control and LV-miR138 were intrathecally injected 1 week before the surgery followed by investigation of the expression of miR138, mechanical allodynia and thermal hyperalgesia on day 1, 3, 5, 7, 9, 14 after SNI. Ipsilateral L4-L6 spinal cord tissue was harvested on day 14 post-SNI and detected by Western blotting, enzyme-linked immunosorbent assay or immunohischemistry. Results We observed decreased expression of miR138 and increased expression of proinflammatory cytokines, along with activated microglia, astrocytes and nuclear factor-κВ (NF-κВ), in the spinal cord dorsal horn after SNI. Moreover, the intrathecal upregulation of miR138 significantly alleviated SNI-induced mechanical allodynia and thermal hyperalgesia, downregulated the production of proinflammatory cytokines, and deactivated microglia, astrocytes and NF-κВ. Conclusion The results indicate that miR138 contributes to the development of neuropathic pain and that the overexpression of miR138 alleviates pain hypersensitivity by inhibiting proinflammatory cytokine production and glial activation, which suggests a novel target for reducing neuropathic pain.
Collapse
Affiliation(s)
- Benfan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Jie Gao
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
21
|
Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci 2019; 20:41. [PMID: 31387531 PMCID: PMC6685153 DOI: 10.1186/s12868-019-0520-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background Oxidative stress and neuroinflammation are central pathogenic mechanisms common to many neurological diseases. Isoliquiritigenin (ISL) is a flavonoid in licorice with multiple pharmacological properties, including anti-inflammatory activity, and has demonstrated protective efficacy against acute neural injury. However, potential actions against cognitive impairments have not been examined extensively. We established a rat model of cognitive impairment by intracerebroventricular injection of lipopolysaccharide (LPS), and examined the effects of ISL pretreatment on cognitive function, hippocampal injury, and hippocampal expression of various synaptic proteins, antioxidant enzymes, pro-inflammatory cytokines, and signaling factors controlling anti-oxidant and pro-inflammatory responses. Results Rats receiving LPS alone demonstrated spatial learning deficits in the Morris water maze test as evidenced by longer average escape latency, fewer platform crossings, and shorter average time in the target quadrant than untreated controls. ISL pretreatment reversed these deficits as well as LPS-induced decreases in the hippocampal expression levels of synaptophysin, postsynaptic density-95, brain-derived neurotrophic factor, superoxide dismutase, glutathione peroxidase, and BCL-2. ISL pretreatment also reversed LPS-induced increases in TUNEL-positive (apoptotic) cells, BAX/BCL-2 ratio, and expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 3. Pretreatment with ISL increased the expression levels of phosphorylated (p)-GSK-3β, nuclear NRF2, HO-1 mRNA, and NQO1 mRNA, and reversed LPS-induced nuclear translocation of nuclear factor (NF)-κB. Conclusions ISL protects against LPS-induced cognitive impairment and neuronal injury by promoting or maintaining antioxidant capacity and suppressing neuroinflammation, likely through phosphorylation-dependent inactivation of GSK-3β, enhanced expression of NRF2-responsive antioxidant genes, and suppression of NF-κB-responsive pro-inflammatory genes.
Collapse
|
22
|
Zhang WJ, Li PH, Zhao MC, Gu YH, Dong CZ, Chen HX, Du ZY. Synthesis and identification of quinoline derivatives as topoisomerase I inhibitors with potent antipsoriasis activity in an animal model. Bioorg Chem 2019; 88:102899. [DOI: 10.1016/j.bioorg.2019.03.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 12/27/2022]
|
23
|
Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int Immunopharmacol 2018; 66:309-316. [PMID: 30502652 DOI: 10.1016/j.intimp.2018.11.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
Luteoloside, a flavonoid compound, has been reported to have anti-inflammatory, anti-oxidative, antibacterial, antiviral, anticancer, and cardioprotective effects, among others, but its neuroprotective effects have rarely been studied. The purpose of this study was to investigate the protective effect of luteoloside on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of luteoloside on cerebral ischemia-reperfusion (I/R). Male Sprague-Dawley rats were randomly divided into six groups: sham, MCAO, luteoloside (20 mg/kg, 40 mg/kg, 80 mg/kg) and nimodipine (4 mg/kg). The results showed that luteoloside alleviated neurologic deficits and cerebral edema as well as improved cerebral infarction and histopathological changes in MCAO rats. Luteoloside significantly inhibited I/R-induced neuroinflammation, as demonstrated by reduced levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the brain tissues of MCAO rats. Furthermore, our results demonstrated that luteoloside significantly suppressed the activation of nuclear factor-kappa B (NF-κB) signaling, upregulated the protein expression of peroxisome proliferator activated receptor gamma (PPARγ) and increased NF-E2-related factor (Nrf2) nuclear accumulation in MCAO rats. Collectively, our findings suggested that luteoloside played a crucial neuroprotective role by inhibiting NF-κB signaling in focal cerebral ischemia in rats. Furthermore, PPARγ and Nrf2 were also important for the anti-inflammatory effect of luteoloside. In addition, our data suggested that luteoloside might be an effective treatment for cerebral ischemia and other neurological disorders.
Collapse
|
24
|
Wang W, Yang B, Cui Y, Zhan Y. Isoliquiritigenin attenuates spinal tuberculosis through inhibiting immune response in a New Zealand white rabbit model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:369-377. [PMID: 29962851 PMCID: PMC6019872 DOI: 10.4196/kjpp.2018.22.4.369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Spinal tuberculosis (ST) is the tuberculosis caused by Mycobacterium tuberculosis (Mtb) infections in spinal curds. Isoliquiritigenin 4,2′,4′-trihydroxychalcone, ISL) is an anti-inflammatory flavonoid derived from licorice (Glycyrrhiza uralensis), a Chinese traditional medicine. In this study, we evaluated the potential of ISL in treating ST in New Zealand white rabbit models. In the model, rabbits (n=40) were infected with Mtb strain H37Rv or not in their 6th lumbar vertebral bodies. Since the day of infection, rabbits were treated with 20 mg/kg and 100 mg/kg of ISL respectively. After 10 weeks of treatments, the adjacent vertebral bone tissues of rabbits were analyzed through Hematoxylin-Eosin staining. The relative expression of Monocyte chemoattractant protein-1 (MCP-1/CCL2), transcription factor κB (NF-κB) p65 in lymphocytes were verified through reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and enzyme-linked immunosorbent assays (ELISA). The serum level of interleukin (IL)-2, IL-4, IL-10 and interferon γ (IFN-γ) were evaluated through ELISA. The effects of ISL on the phosphorylation of IκBα, IKKα/β and p65 in NF-κB signaling pathways were assessed through western blotting. In the results, ISL has been shown to effectively attenuate the granulation inside adjacent vertebral tissues. The relative level of MCP-1, p65 and IL-4 and IL-10 were retrieved. NF-κB signaling was inhibited, in which the phosphorylation of p65, IκBα and IKKα/β were suppressed whereas the level of IκBα were elevated. In conclusion, ISL might be an effective drug that inhibited the formation of granulomas through downregulating MCP-1, NF-κB, IL-4 and IL-10 in treating ST.
Collapse
Affiliation(s)
- Wenjing Wang
- Record Room, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Baozhi Yang
- Department of Obstetrics & Gynaecology, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Yong Cui
- Department of Traditional Chinese Medicine, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Ying Zhan
- Department of Orthopedics, Shandong Chest Hospital, Jinan 250101, Shandong, China
| |
Collapse
|
25
|
Li P, Li Y, Jiang H, Xu Y, Liu X, Che B, Tang J, Liu G, Tang Y, Zhou W, Zhang L, Dong C, Chen H, Zhang K, Du Z. Glabridin, an isoflavan from licorice root, ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int Immunopharmacol 2018; 59:243-251. [DOI: 10.1016/j.intimp.2018.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
|
26
|
Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X, Zhong G. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 2018; 7:85318-85331. [PMID: 27863401 PMCID: PMC5356739 DOI: 10.18632/oncotarget.13347] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Imbalances in intestinal bacteria correlate with colitis-associated colorectal cancer (CAC). Traditional Chinese medicines have been used to adjust the gut microbiota, and isoliquiritigenin (ISL), a flavonoid extracted from licorice, has shown antitumor efficacy. In this study, the effects of ISL on CAC development and the gut microbiota were evaluated using an azoxymethane and dextran sulphate sodium (AOM/DSS)-induced mouse model of CAC (CACM). Histopathological analysis suggested that ISL reduced tumor incidence in vivo. Moreover, high-throughput sequencing and terminal restriction fragment length polymorphism (T-RFLP) studies of the bacterial 16S rRNA gene revealed that the structure of the gut microbial community shifted significantly following AOM/DSS treatment, and that effect was alleviated by treatment with high-dose ISL (150 mg/kg). Compared to the microbiota in the control mice (CK), the levels of Bacteroidetes decreased and the levels of Firmicutes increased during CAC development. ISL reversed the imbalance at the phylum level and altered the familial constituents of the gut microbiota. Specifically, the abundance of Helicobacteraceae increased after treatment with high-dose ISL, while the abundance of Lachnospiraceae and Rikenellaceae decreased. At the genus level, ISL reduced the abundance of opportunistic pathogens (Escherichia and Enterococcus), and increased the levels of probiotics, particularly butyrate-producing bacteria (Butyricicoccus, Clostridium, and Ruminococcus). Thus, ISL protects mice from AOM/DSS-induced CAC, and ISL and the gut microbiota may have synergistic anti-cancer effects.
Collapse
Affiliation(s)
- Minna Wu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yaqi Wu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Baoguo Deng
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinsong Li
- Department of Pathology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Haiying Cao
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Qu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinlai Qian
- Department of Pathology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Genshen Zhong
- Laboratory of Cancer Biotherapy, Institute of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
27
|
Ji B, Zhang Z, Guo W, Ma H, Xu B, Mu W, Amat A, Cao L. Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Sci Rep 2018; 8:1721. [PMID: 29379010 PMCID: PMC5788865 DOI: 10.1038/s41598-018-19162-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of osteoclastogenesis and anti-angiogenesis activity in a wide variety of cells. Here, we first evaluated the effects of ISL on pathogenesis of osteoarthritis in a mouse model of OA. The data showed that ISL blunted progression of OA and lowered the Osteoarthritis Research Society International (OARSI)-Modified Making Score and protected the articular cartilage. The thickness of calcified cartilage zone was significantly decreased in ISL-treated ACLT mice compared with vehicle group. ISL increased expression level of lubricin and decreased collagen X (Col X), matrix metalloproteinase-13 (MMP-13). Moreover, ISL reduced aberrant active subchondral bone remodelling, including lowered trabecular pattern factor (Tb.pf) and increased bone volume/tissue volume (BV/TV, %) and thickness of subchondral bone plate (SBP) compared with vehicle-treated group. The results of immunostaining further revealed that ISL directly reduced RANKL-RANK-TRAF6 singling pathway induced osteoclastogenesis, prevented abnormal bone formation through indirect inhibition of TGF-β release. Additionally, ISL exerts anti-angiogenesis effects in subchondral bone through direct suppression of MMP-2. These results indicated that ISL attenuates progression of OA by inhibition of bone resorption and angiogenesis in subchondral bone, indicating that this may be a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Zhendong Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wentao Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Hairong Ma
- Research Institute of Clinical Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
28
|
Song X, Zhang Y, Zhang L, Song W, Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9:11572-11580. [PMID: 29545920 PMCID: PMC5837754 DOI: 10.18632/oncotarget.24098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-associated metabolic reprogramming modulates the biological functions of many immune and non-immune cells, and affects immune response types and intensities. Adenosine and indoleamine 2,3-dioxygenase (IDO) are known immunosuppressors, and adenosine is a hypoxia-associated product. We investigated the impact of hypoxia on IDO production in dendritic cells (DCs). We found that hypoxia (1% O2) enhances IDO production in DCs, and this increase was dependent on the adenosine A3 receptor (A3R), but not A2aR or A2bR. A3R blockade during hypoxia inhibited IDO production in DCs, while A2bR blockade further enhanced IDO production. Activating A2aR had no effect on IDO production. Hypoxia (1% O2) upregulated CD86, CD274, HLA-DR, and CD54, and downregulated CD40 and CD83 in DCs as compared to normoxia (21% O2). IDO inhibition in hypoxia-conditioned DCs reversed MHC-II, CD86, CD54, and CD274 upregulation, but further downregulated CD40 and CD83. Our findings offer guidance for pharmacological administration of adenosine receptor agonists or antagonists with the goal of achieving immune tolerance or controlling insulin resistance and other metabolic disorders via IDO modulation.
Collapse
Affiliation(s)
- Xiang Song
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li Zhang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Tai'an 271000, China
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
29
|
Patricia Moreno-Londoño A, Bello-Alvarez C, Pedraza-Chaverri J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol 2017; 109:143-154. [DOI: 10.1016/j.fct.2017.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
|
30
|
Ji B, Guo W, Ma H, Xu B, Mu W, Zhang Z, Amat A, Cao L. Isoliquiritigenin suppresses IL-1β induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-κB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med 2017; 40:1709-1718. [PMID: 29039445 PMCID: PMC5716454 DOI: 10.3892/ijmm.2017.3177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/28/2017] [Indexed: 11/05/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of the nuclear factor-κB (NF-κB) signaling pathway and anti-inflammatory activity in a wide variety of cells. In the present study, the authors first evaluated the effects of ISL on cartilage degeneration in interleukin-1β (IL-1β)-stimulated chondrocyte-like ATDC5 cells and in a mouse model of osteoarthritis (OA). The data of a cell counting kit-8 and flow cytometry assay indicated that ISL suppressed the inhibitory effect of IL-1β on cell viability. The mRNA and protein expression levels of cyclooxygenase-2 and matrix metalloproteinase-13 were significantly decreased, while the expression of collagen II was increased, as indicated by RT-qPCR and western blot analysis following the chondrocyte-like ATDC5 cells were co-intervened with IL-1β and ISL for 48 h. Also, ISL attenuated protein expressions level of pro-apoptotic Bax, cleaved-caspase-3 and cleaved-caspase-9 and promoted expression of anti-apoptotic Bcl-2. Moreover, ISL inhibited NF-κB p65 phosphorylation induced by IL-1β. In addition, ISL also increased improved the thickness of hyaline cartilage and the production of proteoglycans in the cartilage matrix in a mouse OA model. These results indicated that ISL exerted anti-inflammatory and anti-apoptotic effects on IL-1β-stimulated chondrocyte-like ATDC5 cells, which may be associated with the downregulation of the NF-κB signaling pathway. In this way, the data supported the conclusion that ISL may be a novel potential preventive agent suitable for use in OA therapy.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wentao Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hairong Ma
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830054, P.R. China
| | - Boyong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wenbo Mu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhendong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdusami Amat
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
31
|
Manczinger M, Bodnár VÁ, Papp BT, Bolla SB, Szabó K, Balázs B, Csányi E, Szél E, Erős G, Kemény L. Drug Repurposing by Simulating Flow Through Protein-Protein Interaction Networks. Clin Pharmacol Ther 2017. [PMID: 28643328 PMCID: PMC5836852 DOI: 10.1002/cpt.769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As drug development is extremely expensive, the identification of novel indications for in‐market drugs is financially attractive. Multiple algorithms are used to support such drug repurposing, but highly reliable methods combining simulation of intracellular networks and machine learning are currently not available. We developed an algorithm that simulates drug effects on the flow of information through protein–protein interaction networks, and used support vector machine to identify potentially effective drugs in our model disease, psoriasis. Using this method, we screened about 1,500 marketed and investigational substances, identified 51 drugs that were potentially effective, and selected three of them for experimental confirmation. All drugs inhibited tumor necrosis factor alpha‐induced nuclear factor kappa B activity in vitro, suggesting they might be effective for treating psoriasis in humans. Additionally, these drugs significantly inhibited imiquimod‐induced ear thickening and inflammation in the mouse model of the disease. All results suggest high prediction performance for the algorithm.
Collapse
Affiliation(s)
- M Manczinger
- Department of Dermatology and Allergology, University of Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Hungary
| | - V Á Bodnár
- Department of Dermatology and Allergology, University of Szeged, Hungary
| | - B T Papp
- Department of Dermatology and Allergology, University of Szeged, Hungary.,Szeged Scientists Academy, Hungary
| | - S B Bolla
- Department of Dermatology and Allergology, University of Szeged, Hungary
| | - K Szabó
- Department of Dermatology and Allergology, University of Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Hungary
| | - B Balázs
- Department of Pharmaceutical Technology, University of Szeged, Hungary
| | - E Csányi
- Department of Pharmaceutical Technology, University of Szeged, Hungary
| | - E Szél
- Department of Dermatology and Allergology, University of Szeged, Hungary
| | - G Erős
- Department of Dermatology and Allergology, University of Szeged, Hungary
| | - L Kemény
- Department of Dermatology and Allergology, University of Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Hungary
| |
Collapse
|
32
|
Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, Deng X, Xie Z, Zheng S. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation 2017; 14:119. [PMID: 28610608 PMCID: PMC5470182 DOI: 10.1186/s12974-017-0895-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) induces potently oxidative stress responses and inflammatory processes. Isoliquiritigenin (ILG) is a flavonoid with a chalcone structure and can activate nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated antioxidant system, negatively regulate nuclear factor-κB (NF-κB) and nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathways, but its role and potential molecular mechanisms in the pathology following ICH remain unclear. The present study aimed to explore the effects of ILG after ICH and underlying mechanisms. METHODS ICH model was induced by collagenase IV (0.2 U in 1 μl sterile normal saline) in male Sprague-Dawley rats weighing 280-320 g. Different doses of ILG (10, 20, or 40 mg/kg) was administrated intraperitoneally at 30 min, 12 h, 24 h, and 48 h after modeling, respectively. Rats were intracerebroventricularly administrated with control scramble small interfering RNA (siRNA) or Nrf2 siRNA at 24 h before ICH induction, and after 24 h, ICH model was established with or without ILG (20 mg/kg) treatment. All rats were dedicated at 24 or 72 h after ICH. Neurological deficits, histological damages, brain water content (BWC), blood-brain barrier (BBB) disruption, and neuronal degeneration were evaluated; quantitative real-time RT-PCR (qRT-PCR), immunohistochemistry/immunofluorescence, western blot, and enzyme-linked immunosorbent assay (ELISA) were carried out; catalase, superoxide dismutase activities and reactive oxygen species (ROS), and glutathione/oxidized glutathione contents were measured. RESULTS ILG (20 and 40 mg/kg) markedly alleviated neurological deficits, histological damages, BBB disruption, brain edema, and neuronal degeneration, but there was no significant difference between two dosages. ILG (20 mg/kg) significantly suppressed the NF-κB and NLRP3 inflammasome pathways and activated Nrf2-mediated antioxidant system. Gene silencing of Nrf2 aggravated the neurological deficits, brain edema, and neuronal degeneration and increased the protein levels of NF-κB p65, NLRP3 inflammasome components, and IL-1β. ILG delivery significantly attenuated the effects of Nrf2 siRNA interference mentioned above. CONCLUSIONS Intraperitoneal administration of ILG after ICH reduced early brain impairments and neurological deficits, and the mechanisms were involved in the regulation of ROS and/or NF-κB on the activation of NLRP3 inflammasome pathway by the triggering of Nrf2 activity and Nrf2-induced antioxidant system. In addition, our experimental results may make ILG a potential candidate for a novel therapeutical strategy for ICH.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China.
| | - Rui Ding
- Department of Neurosurgery, Jingmen No. 1 People's Hospital, Jingmen, 448000, Hubei, China
| | - Liang Feng
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Zhenghao Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China
| | - Shuo Yang
- Department of Neurosurgery, Gaoqing Campus of Central Hospital of Zibo, Gaoqing People's Hospital, Gaoqing, Zibo, 256300, Shandong, China
| | - Xinqing Deng
- Department of Neurosurgery, 999 Brain Hospital, Jinan University, Guangzhou, 510510, Guangdong, China
| | - Zhichong Xie
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Shizhong Zheng
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
33
|
Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 2016; 313:204-214. [PMID: 27702603 DOI: 10.1016/j.taap.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200nM to 200μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland.
Collapse
|