1
|
Liu H, Wang J, Yue G, Xu J. Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway. Ren Fail 2024; 46:2303396. [PMID: 38234193 PMCID: PMC10798286 DOI: 10.1080/0886022x.2024.2303396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common chronic microvascular complication of diabetes mellitus. Although studies have indicated the therapeutic potential of mesenchymal stem cells (MSCs) for DKD, the underlying molecular mechanisms remain unclear. Herein, we explored the renoprotective effect of placenta-derived MSCs (P-MSCs) and the potential mechanism of SIRT1/FOXO1 pathway-mediated autophagy in DKD. The urine microalbumin/creatinine ratio was determined using ELISA, and renal pathological changes were detected by special staining techniques. Immunofluorescence was used for detecting the renal tissue expression of podocin and nephrin; immunohistochemistry for the renal expression of autophagy-related proteins (LC3, Beclin-1, SIRT1, and FOXO1); and western blotting and PCR for the expression of podocyte autophagy- and pathway-related indicators. We found that P-MSCs ameliorated renal tubular injury and glomerular mesangial matrix deposition and alleviated podocyte damage in DKD rats. PMSCs enhanced autophagy levels and increased SIRT1 and FOXO1 expression in DKD rat renal tissue, whereas the autophagy inhibitor 3-methyladenine significantly attenuated the renoprotective effect of P-MSCs. P-MSCs improved HG-induced Mouse podocyte clone5(MPC5)injury, increased podocyte autophagy, and upregulated SIRT1 and FOXO1 expression. Moreover, downregulation of SIRT1 expression blocked the P-MSC-mediated enhancement of podocyte autophagy and improvement of podocyte injury. Thus, P-MSCs can significantly improve renal damage and reduce podocyte injury in DKD rats by modulating the SIRT1/FOXO1 pathway and enhancing podocyte autophagy.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, P.R. China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| |
Collapse
|
2
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
3
|
Lou Y, Luan YT, Rong WQ, Gai Y. Corilagin alleviates podocyte injury in diabetic nephropathy by regulating autophagy via the SIRT1-AMPK pathway. World J Diabetes 2024; 15:1916-1931. [PMID: 39280180 PMCID: PMC11372637 DOI: 10.4239/wjd.v15.i9.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 μM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 μM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.
Collapse
Affiliation(s)
- Yu Lou
- Department of Preventive Treatment of Disease, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu-Ting Luan
- Department of Infectious Diseases, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Wen-Qing Rong
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yun Gai
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
4
|
Chen Y, Peng S, Liang J, Wei K. SIRT1 in acute lung injury: unraveling its pleiotropic functions and therapeutic development prospects. Mol Cell Biochem 2024:10.1007/s11010-024-05111-z. [PMID: 39269678 DOI: 10.1007/s11010-024-05111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, often associated with severe complications and even death. In ALI, macrophages, alveolar epithelial cells and vascular endothelial cells in the lung are damaged to varying degrees and their function is impaired. Research in recent years has focused on the use of SIRT1 for the treatment of ALI. In this paper, we reviewed the role of SIRT1 in ALI in terms of its cellular and molecular mechanism, targeting of SIRT1 by non-coding RNAs and drug components, as well as pointing out the value of SIRT1 for clinical diagnosis and prognosis. Based on the current literature, SIRT1 exhibits diverse functionalities and possesses significant therapeutic potential. Targeting SIRT1 may provide new therapeutic ideas for the treatment of ALI.
Collapse
Affiliation(s)
- Yina Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuangyan Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
5
|
Dong W, Zhang K, Wang X, Li J, Zou H, Yuan Y, Gu J, Zhu J, Liu G, Liu Z, Song R. SIRT1 alleviates Cd nephrotoxicity through NF-κB/p65 deacetylation-mediated pyroptosis in rat renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172392. [PMID: 38608885 DOI: 10.1016/j.scitotenv.2024.172392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.
Collapse
Affiliation(s)
- Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
6
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
7
|
Tabaa MME, Tabaa MME, Rashad E, Elballal MS, Elazazy O. Harmine alleviated STZ-induced rat diabetic nephropathy: A potential role via regulating AMPK/Nrf2 pathway and deactivating ataxia-telangiectasia mutated (ATM) signaling. Int Immunopharmacol 2024; 132:111954. [PMID: 38554444 DOI: 10.1016/j.intimp.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow: CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3β levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | | | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
8
|
Liao MC, Lo CS, Pang YC, Yang WX, Su K, Zhao XP, Miyata KN, Peng J, Ingelfinger JR, Chan JSD, Zhang SL. Heterogeneous nuclear ribonucleoprotein F deficiency in mouse podocyte promotes podocytopathy mediated by methyltransferase-like 14 nuclear translocation resulting in Sirtuin 1 gene inhibition. Transl Res 2024; 267:1-9. [PMID: 38195017 DOI: 10.1016/j.trsl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein F (HnRNP F) is a key regulator for nucleic acid metabolism; however, whether HnRNP F expression is important in maintaining podocyte integrity is unclear. Nephroseq analysis from a registry of human kidney biopsies was performed. Age- and sex-matched podocyte-specific HnRNP F knockout (HnRNP FPOD KO) mice and control (HnRNP Ffl/fl) were studied. Podocytopathy was induced in male mice (more susceptible) either by adriamycin (ADR)- or low-dose streptozotocin treatment for 2 or 8 weeks. The mouse podocyte cell line (mPODs) was used in vitro. Nephroseq data in three human cohorts were varied greatly. Both sexes of HnRNP FPOD KO mice were fertile and appeared grossly normal. However, male 20-week-old HnRNP FPOD KO than HnRNP Ffl/fl mice had increased urinary albumin/creatinine ratio, and lower expression of podocyte markers. ADR- or diabetic- HnRNP FPOD KO (vs. HnRNP Ffl/fl) mice had more severe podocytopathy. Moreover, methyltransferase-like 14 (Mettl14) gene expression was increased in podocytes from HnRNP FPOD KO mice, further enhanced in ADR- or diabetic-treated HnRNP FPOD KO mice. Consequently, this elevated Mettl14 expression led to sirtuin1 (Sirt1) inhibition, associated with podocyte loss. In mPODs, knock-down of HnRNP F promoted Mettl14 nuclear translocation, which was associated with podocyte dysmorphology and Sirt1 inhibition-mediated podocyte loss. This process was more severe in ADR- or high glucose- treated mPODs. Conclusion: HnRNP F deficiency in podocytes promotes podocytopathy through activation of Mettl14 expression and its nuclear translocation to inhibit Sirt1 expression, underscoring the protective role of HnRNP F against podocyte injury.
Collapse
Affiliation(s)
- Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Yu-Chao Pang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Wen-Xia Yang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Ke Su
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada; Division of Nephrology, Department of Internal Medicine, Saint Louis University, 1008 Spring Ave. St Louis, MO 63110, USA
| | - Junzheng Peng
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Mass General Hospital for Children at Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| |
Collapse
|
9
|
Zheng R, Xu Q, Wang Y, Zhong Y, Zhu R. Cordyceps cicadae polysaccharides attenuate diabetic nephropathy via the miR-30a-3p/TRIM16 axis. J Diabetes Investig 2024; 15:300-314. [PMID: 38149724 PMCID: PMC10906025 DOI: 10.1111/jdi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Xu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiwen Wang
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yifei Zhong
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Zhu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
10
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Henderson JD, Quigley SNZ, Chachra SS, Conlon N, Ford D. The use of a systems approach to increase NAD + in human participants. NPJ AGING 2024; 10:7. [PMID: 38302501 PMCID: PMC10834541 DOI: 10.1038/s41514-023-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
Reversal or mitigation against an age-related decline in NAD+ has likely benefits, and this premise has driven academic and commercial endeavour to develop dietary supplements that achieve this outcome. We used a systems-based approach to improve on current supplements by targeting multiple points in the NAD+ salvage pathway. In a double-blind, randomised, crossover trial, the supplement - Nuchido TIME+® (NT) - increased NAD+ concentration in whole blood. This was associated with an increase in SIRT1 and an increase in nicotinamide phosphoribosyltransferase (NAMPT) in peripheral blood mononucleocytes, lower concentrations of pro-inflammatory cytokines in plasma, including a reduction in interleukin 2 (IL2), a reduction in glycated serum protein and a shift in the glycosylation profile of immunoglobulin G (IgG) toward a younger biological age, all of which are likely to promote a healthier ageing trajectory.
Collapse
Affiliation(s)
- John D Henderson
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 7, Sal, 2200, København N, Denmark
| | - Sophia N Z Quigley
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
| | - Shruti S Chachra
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK
| | - Nichola Conlon
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK.
| | - Dianne Ford
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
13
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
14
|
Li D, Yuan S, Deng Y. Interference in the nutrient-sensing and inflammatory signaling pathways by renal autophagy activation in mice with late stage diabetic nephropathy. Int Urol Nephrol 2024; 56:303-311. [PMID: 37355515 DOI: 10.1007/s11255-023-03687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Disturbance in metabolism and inflammation are the main causes of kidney injury in patients with late stage diabetic nephropathy (DN). Here, we explored whether autophagy was activated in mice with late stage DN and whether it was associated with disturbance in metabolism and inflammation. METHODS In total, mice were divided into the control group (db/m) and DN group (db/db). Mice were raised for 7 months, and their biochemical indices were measured. Subsequently, their kidneys were collected to detect autophagy and the related nutrient-sensing and inflammatory signaling pathways in late stage DN. RESULTS The expression levels of autophagy markers LC3-I and LC3-II were significantly increased in mice with late stage DN, whereas that of autophagy flux marker P62 was significantly decreased, indicating activation of autophagy. Concurrently, mechanistic target of rapamycin was highly expressed as a cellular nutrient-sensing and energy regulator in mice with late stage DN. Additionally, the expression levels of markers of nutrient-sensing signaling pathways adenosine monophosphate-activated protein kinase (AMPK) were increased markedly in mice with late stage DN. Additionally, the expression levels of the marker of nutrient-sensing signaling pathways silent information regulator T1 (SIRT1), the marker of inflammatory signaling pathways high mobility group box protein 1 (HMGB1), and interferon regulatory factor 3 (IRF3) were significantly increased in mice with late stage DN. CONCLUSIONS The findings of our study indicate that autophagy activation in late stage DN may interfere with nutrient-sensing and inflammatory signaling pathways involving AMPK, SIRT1, HMGB1, and IRF3.
Collapse
Affiliation(s)
- Delun Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Siyu Yuan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
15
|
Yu B, Zhou M, Dong Z, Zheng H, Zhao Y, Zhou J, Zhang C, Wei F, Yu G, Liu WJ, Liu H, Wang Y. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified Shen-Yan-Fang-Shuai formula in treating diabetic nephropathy. PHARMACEUTICAL BIOLOGY 2023; 61:1222-1233. [PMID: 37565668 PMCID: PMC10424623 DOI: 10.1080/13880209.2023.2241521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
CONTEXT Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown. OBJECTIVE To investigate the mechanism of M-SYFSF against DN by network pharmacological analysis and biological experiments. MATERIALS AND METHODS Utilizing a web-based pharmacology database, the potential mechanisms of M-SYFSF against DN were identified. In vivo experiments, male SD rats were injected with streptozotocin (50 mg/kg) and got uninephrectomy to construct a model of DN. M-SYFSF (11.34 g/kg/d) was gavaged once per day for 12 weeks after model establishment. In vitro experiments, human proximal tubular cells (HK-2) were performed with advanced glycation end-products (AGEs) (100 μg/mL), then intervened with M-SYFSF freeze-dried powder. Pathological staining, WB, IHC, ELISA were conducted to explore the mechanism of M-SYFSF against DN. RESULTS Network pharmacological analysis showed that MAPK pathway was the potential pathway. Results showed that compared with the Model group, M-SYFSF significantly reduced 24h urine albumin, UACR, and serum creatinine levels (54.90 ± 26.67 vs. 111.78 ± 4.28, 8.87 ± 1.69 vs. 53.94 ± 16.01, 11.56 ± 1.70 vs. 118.70 ± 49.57, respectively), and improved renal pathological changes. Furthermore, the intervention of M-SYFSF reduced the expression of pro-inflammatory cytokines and inhibited the activation of MAPK pathway in AGEs-treated HK-2 cells. DISCUSSION AND CONCLUSION M-SYFSF is likely to reduce inflammation in DN by inhibiting the MAPK pathway. It provides a theoretical basis for the clinical application of M-SYFSF in the treatment of DN.
Collapse
Affiliation(s)
- Borui Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuxue Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Beijing Dongcheng First People’s Hospital, Beijing, P.R. China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Fudong Wei
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Guoyong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Hongfang Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yaoxian Wang
- Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
16
|
Yang X, Zhou P, Zhao Z, Li J, Fan Z, Li X, Cui Z, Fu A. Improvement Effect of Mitotherapy on the Cognitive Ability of Alzheimer's Disease through NAD +/SIRT1-Mediated Autophagy. Antioxidants (Basel) 2023; 12:2006. [PMID: 38001859 PMCID: PMC10669341 DOI: 10.3390/antiox12112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
To date, Alzheimer's disease (AD) has grown to be a predominant health challenge that disturbs the elderly population. Studies have shown that mitochondrial dysfunction is one of the most significant features of AD. Transplantation therapy of healthy mitochondria (mitotherapy), as a novel therapeutic strategy to restore mitochondrial function, is proposed to treat the mitochondria-associated disease. Also, the molecular mechanism of mitotherapy remains unclear. Here, we applied the mitotherapy in AD model mice induced by amyloid-β (Aβ) plaque deposition and suggested that autophagy would be an important mechanism of the mitotherapy. After the healthy mitochondria entered the defective neuronal cells damaged by the misfolded Aβ protein, autophagy was activated through the NAD+-dependent deacetylase sirtuin 1 (SIRT1) signal. The damaged mitochondria and Aβ protein were eliminated by autophagy, which could also decrease the content of radical oxygen species (ROS). Moreover, the levels of brain-derived neurotrophic factor (BDNF) and extracellular-regulated protein kinases (ERK) phosphorylation increased after mitotherapy, which would be beneficial to repair neuronal function. As a result, the cognitive ability of AD animals was ameliorated in a water maze test after the healthy mitochondria were administrated to the mice. The study indicated that mitotherapy would be an effective approach to AD treatment through the mechanism of autophagy activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.Y.); (P.Z.); (Z.Z.); (J.L.); (Z.F.); (X.L.); (Z.C.)
| |
Collapse
|
17
|
Wang MJ, Cai X, Liang RY, Zhang EM, Liang XQ, Liang H, Fu C, Zhou AD, Shi Y, Xu F, Cai MY. SIRT1-dependent deacetylation of Txnip H3K9ac is critical for exenatide-improved diabetic kidney disease. Biomed Pharmacother 2023; 167:115515. [PMID: 37742607 DOI: 10.1016/j.biopha.2023.115515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Glucagon-like peptide 1 receptor agonist exenatide (exendin-4) has potential protective capabilities against diabetic kidney disease (DKD). However, the underlying mechanism has not been fully elucidated. The expression of thioredoxin-interacting protein (Txnip) is upregulated during DKD progression by histone acetylation. Sirtuin 1 (SIRT1) is a deacetylase and is decreased in DKD, which indicates that it may regulate Txnip in this disease. Here, we used whole-body heterozygous Sirt1 knockout (Sirt1+/-) and kidney-specific Sirt1 knockout (KSK) mice to investigate whether SIRT1 regulates Txnip via histone deacetylation in DKD and exenatide-alleviated DKD. Exenatide substantially improved renal pathological damage, decreased the albumin-to-creatinine ratio (ACR), upregulated SIRT1 expression, and downregulated Txnip expression in kidneys of high-fat diet-treated C57BL/6J mice. However, these effects diminished in Sirt1+/- and KSK mice under exenatide treatment. The downregulation of Txnip expression by exendin-4 in high-glucose-treated SV40 MES13 cells was hampered during Sirt1 knockdown. These results demonstrate that kidney SIRT1 is indispensable in exenatide-improved DKD and downregulation of Txnip expression. Exendin-4 mechanistically downregulated Txnip histone 3 lysine 9 acetylation (H3K9ac) in a SIRT1-dependent manner and decreased spliced X-box binding protein 1 (XBP1s) recruitment to the Txnip promoter. These findings provide epigenetic evidence elucidating the specific mechanism for exenatide-mediated DKD alleviation and highlight the importance of Txnip as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Mei-Jun Wang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China; Department of Endocrinology and Metabolism, Guangzhou First people's Hospital, Guangzhou, China
| | - Xiang Cai
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Ri-Ying Liang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - En-Ming Zhang
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Xiao-Qi Liang
- Department of Animal Experimental Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Chang Fu
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - An-Dong Zhou
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Yi Shi
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Fen Xu
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, China.
| | - Meng-Yin Cai
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, China.
| |
Collapse
|
18
|
Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal 2023; 21:288. [PMID: 37845726 PMCID: PMC10577991 DOI: 10.1186/s12964-023-01323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Huang W, Zhong Y, Gao B, Zheng B, Liu Y. Nrf2-mediated therapeutic effects of dietary flavones in different diseases. Front Pharmacol 2023; 14:1240433. [PMID: 37767395 PMCID: PMC10520786 DOI: 10.3389/fphar.2023.1240433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a pathological status that occurs when the body's balance between oxidants and antioxidant defense systems is broken, which can promote the development of many diseases. Nrf2, a redox-sensitive transcription encoded by NFE2L2, is the master regulator of phase II antioxidant enzymes and cytoprotective genes. In this context, Nrf2/ARE signaling can be a compelling target against OS-induced diseases. Recently, natural Nrf2/ARE regulators like dietary flavones have shown therapeutic potential in various acute and chronic diseases such as diabetes, neurodegenerative diseases, ischemia-reperfusion injury, and cancer. In this review, we aim to summarize nrf2-mediated protective effects of flavones in different conditions. Firstly, we retrospected the mechanisms of how flavones regulate the Nrf2/ARE pathway and introduced the mediator role Nrf2 plays in inflammation and apoptosis. Then we review the evidence that flavones modulated Nrf2/ARE pathway to prevent diseases in experimental models. Based on these literature, we found that flavones could regulate Nrf2 expression by mechanisms below: 1) dissociating the binding between Nrf2 and Keap1 via PKC-mediated Nrf2 phosphorylation and P62-mediated Keap1 autophagic degradation; 2) regulating Nrf2 nuclear translocation by various kinases like AMPK, MAPKs, Fyn; 3) decreasing Nrf2 ubiquitination and degradation via activating sirt1 and PI3K/AKT-mediated GSK3 inhibition; and 4) epigenetic alternation of Nrf2 such as demethylation at the promoter region and histone acetylation. In conclusion, flavones targeting Nrf2 can be promising therapeutic agents for various OS-related disorders. However, there is a lack of investigations on human subjects, and new drug delivery systems to improve flavones' treatment efficiency still need to be developed.
Collapse
Affiliation(s)
- Wenkai Huang
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuan Zhong
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Botao Gao
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bowen Zheng
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yi Liu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Tang Y, Wan F, Tang X, Lin Y, Zhang H, Cao J, Yang R. Celastrol attenuates diabetic nephropathy by upregulating SIRT1-mediated inhibition of EZH2related wnt/β-catenin signaling. Int Immunopharmacol 2023; 122:110584. [PMID: 37454630 DOI: 10.1016/j.intimp.2023.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Proteinuria is an independent risk factor for the progression of diabetic nephropathy (DN) and an imbalance in podocyte function aggravates proteinuria. Celastrol is the primary active ingredient of T. wilfordii, effective in treating DN renal injury; however, the mechanisms underlying its effect are unclear. We explored how celastrol prevents DN podocyte damage using in vivo and in vitro experiments. We randomly divided 24 male C57BLKS/J mice into three groups: db/m (n = 8), db/db (n = 8), and celastrol groups (db/db + celastrol, 1 mg/kg/d, gavage administration, n = 8). In vivo experiments lasted 12 weeks and intervention lasted ten weeks. Serum samples and kidney tissues were collected for biochemical tests, pathological staining, transmission electron microscopy, fluorescencequantitation polymerase chain reaction, and western blotting analysis. In vitro experiments to elaborate the mechanism of celastrol protection were performed on high glucose (HG)-induced podocyte injury. Celastrol reduced blood glucose levels and renal function index in db/db mice, attenuated renal histomorphological injury and glomerular podocyte foot injuries, and induced significant anti-inflammatory effects. Celastrol upregulated silent information regulator 2 related enzyme 1(SIRT1) expression and downregulated enhancer of zeste homolog (EZH2), inhibiting the wnt/β-catenin pathway-related molecules, such as wnt1, wnt7a, and β-catenin. SIRT1 repressed the promoter activity of EZH2, and was co-immunoprecipitated with EZH2 in mouse podocyte cells (MPC5). SIRT1 knockdown aggravated the protective effects of celastrol on MPC5 cells. Celastrol protected podocyte injury via SIRT1/EZH2, which participates in the wnt/β-catenin pathway. Overall, celastrol-mediated SIRT1 upregulation inhibited the EZH2-related wnt/β-catenin signaling pathway to attenuate DN and podocyte injury, providing a theoretical basis for celastrol clinical application.
Collapse
Affiliation(s)
- Yuewen Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Wan
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuanli Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Lin
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huaqin Zhang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiawei Cao
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruchun Yang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Yu J, Ke L, Zhou J, Ding C, Yang H, Yan D, Yu C. Stachydrine Relieved the Inflammation and Promoted the Autophagy in Diabetes Retinopathy Through Activating the AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:2593-2604. [PMID: 37649589 PMCID: PMC10464895 DOI: 10.2147/dmso.s420253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Background Diabetes retinopathy (DR) is a chronic, progressive, and potentially harmful retinal disease associated with persistent hyperglycemia. Autophagy is a lysosome-dependent degradation pathway that widely exists in eukaryotic cells, which has recently been demonstrated to participate in the DR development. Stachydrine (STA) is a water-soluble alkaloid extracted from Leonurus heterophyllus. This study aimed to explore the effects of STA on the autophagy in DR progression in vivo and in vitro. Methods High glucose-treated human retinal microvascular endothelial cells (HRMECs) and STA-treated rats were used to establish DR model. The reactive oxygen species (ROS) and inflammatory factor levels (TNF-α, IL-1β, and IL-6) were determined using corresponding kits. Additionally, the cell growth was analyzed using CCK-8 and EdU assays. Besides, LC3BII, p62, p-AMPKα, AMPKα, and SIRT1 protein levels were measured using Western blot. The LC3BII and SIRT1 expressions were also determined using immunofluorescence. Results The results showed that STZ decreased the ROS and inflammatory factor levels in the HG-treated HRMECs. Besides, after STA treatment, the beclin-1, LC3BII, p-AMPKα, and SIRT1 levels were increased, and p62 was decreased in the HG-treated HRMECs and the retinal tissue of STZ-treated rats. Conclusion In conclusion, this study demonstrated that STA effectively relieved the inflammation and promoted the autophagy in DR progression in vivo and in vitro through activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Jiewei Yu
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Lingling Ke
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Jingjing Zhou
- Image Center, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chunyan Ding
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Hui Yang
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Dongbiao Yan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chengbi Yu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| |
Collapse
|
22
|
Robles-Osorio ML, Sabath E. Tight junction disruption and the pathogenesis of the chronic complications of diabetes mellitus: A narrative review. World J Diabetes 2023; 14:1013-1026. [PMID: 37547580 PMCID: PMC10401447 DOI: 10.4239/wjd.v14.i7.1013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
The chronic complications of diabetes mellitus constitute a major public health problem. For example, diabetic eye diseases are the most important cause of blindness, and diabetic nephropathy is the most frequent cause of chronic kidney disease worldwide. The cellular and molecular mechanisms of these chronic complications are still poorly understood, preventing the development of effective treatment strategies. Tight junctions (TJs) are epithelial intercellular junctions located at the most apical region of cell-cell contacts, and their main function is to restrict the passage of molecules through the paracellular space. The TJs consist of over 40 proteins, and the most important are occludin, claudins and the zonula occludens. Accumulating evidence suggests that TJ disruption in different organs, such as the brain, nerves, retina and kidneys, plays a fundamental pathophysiological role in the development of chronic complications. Increased permeability of the blood-brain barrier and the blood-retinal barrier has been demonstrated in diabetic neuropathy, brain injury and diabetic retinopathy. The consequences of TJ disruption on kidney function or progression of kidney disease are currently unknown. In the present review, we highlighted the molecular events that lead to barrier dysfunction in diabetes. Further investigation of the mechanisms underlying TJ disruption is expected to provide new insights into therapeutic approaches to ameliorate the chronic complications of diabetes mellitus.
Collapse
Affiliation(s)
| | - Ernesto Sabath
- Renal and Metabolism Unit, Hospital General de Querétaro, Queretaro 76180, Mexico
- Department of Nutrition, Universidad Autónoma de Queretaro, Queretaro 76230, Mexico
| |
Collapse
|
23
|
Liang Y, Liang Z, Huang J, Jia M, Liu D, Zhang P, Fang Z, Hu X, Li H. Identification and validation of aging-related gene signatures and their immune landscape in diabetic nephropathy. Front Med (Lausanne) 2023; 10:1158166. [PMID: 37404805 PMCID: PMC10316791 DOI: 10.3389/fmed.2023.1158166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Background Aging and immune infiltration have essential role in the physiopathological mechanisms of diabetic nephropathy (DN), but their relationship has not been systematically elucidated. We identified aging-related characteristic genes in DN and explored their immune landscape. Methods Four datasets from the Gene Expression Omnibus (GEO) database were screened for exploration and validation. Functional and pathway analysis was performed using Gene Set Enrichment Analysis (GSEA). Characteristic genes were obtained using a combination of Random Forest (RF) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm. We evaluated and validated the diagnostic performance of the characteristic genes using receiver operating characteristic (ROC) curve, and the expression pattern of the characteristic genes was evaluated and validated. Single-Sample Gene Set Enrichment Analysis (ssGSEA) was adopted to assess immune cell infiltration in samples. Based on the TarBase database and the JASPAR repository, potential microRNAs and transcription factors were predicted to further elucidate the molecular regulatory mechanisms of the characteristic genes. Results A total of 14 differentially expressed genes related to aging were obtained, of which 10 were up-regulated and 4 were down-regulated. Models were constructed by the RF and SVM-RFE algorithms, contracted to three signature genes: EGF-containing fibulin-like extracellular matrix (EFEMP1), Growth hormone receptor (GHR), and Vascular endothelial growth factor A (VEGFA). The three genes showed good efficacy in three tested cohorts and consistent expression patterns in the glomerular test cohorts. Most immune cells were more infiltrated in the DN samples compared to the controls, and there was a negative correlation between the characteristic genes and most immune cell infiltration. 24 microRNAs were involved in the transcriptional regulation of multiple genes simultaneously, and Endothelial transcription factor GATA-2 (GATA2) had a potential regulatory effect on both GHR and VEGFA. Conclusion We identified a novel aging-related signature allowing assessment of diagnosis for DN patients, and further can be used to predict immune infiltration sensitivity.
Collapse
Affiliation(s)
- Yingchao Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhiyi Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, China
| | - Jinxian Huang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjie Jia
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Pengxiang Zhang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zebin Fang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyu Hu
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
24
|
Khazaeli M, Nunes ACF, Zhao Y, Khazaeli M, Prudente J, Vaziri ND, Singh B, Lau WL. Tetrahydrocurcumin Add-On therapy to losartan in a rat model of diabetic nephropathy decreases blood pressure and markers of kidney injury. Pharmacol Res Perspect 2023; 11:e01079. [PMID: 36971089 PMCID: PMC10041385 DOI: 10.1002/prp2.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Tetrahydrocurcumin (THC), a principal metabolite of curcumin, was tested in a rat model of type 2 diabetes mellitus. THC was administered via daily oral gavage with the lipid carrier polyenylphosphatidylcholine (PPC) as add-on therapy to losartan (angiotensin receptor blocker) to examine effects on kidney oxidative stress and fibrosis. A combination of unilateral nephrectomy, high-fat diet and low-dose streptozotocin was used to induce diabetic nephropathy in male Sprague-Dawley rats. Animals with fasting blood glucose >200 mg/dL were randomized to PPC, losartan, THC + PPC or THC + PPC + losartan. Untreated chronic kidney disease (CKD) animals had proteinuria, decreased creatinine clearance, and evidence of kidney fibrosis on histology. THC + PPC + losartan treatment significantly lowered blood pressure concurrent with increased messenger RNA levels of antioxidant copper-zinc-superoxide dismutase and decreased protein kinase C-α, kidney injury molecule-1 and type I collagen in the kidneys; there was decreased albuminuria and a trend for increased creatinine clearance compared to untreated CKD rats. There was decreased fibrosis on kidney histology in PPC-only and THC-treated CKD rats. Plasma levels of kidney injury molecule-1 were decreased in THC + PPC + losartan animals. In summary, add-on THC to losartan therapy improved antioxidant levels and decreased fibrosis in the kidneys, and lowered blood pressure in diabetic CKD rats.
Collapse
Affiliation(s)
- Mahyar Khazaeli
- Pathology Department, University at Buffalo, Buffalo, New York, USA
| | - Ane C F Nunes
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - Yitong Zhao
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - Mahziar Khazaeli
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - John Prudente
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - Bhupinder Singh
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
25
|
Su S, Ma Z, Wu H, Xu Z, Yi H. Oxidative stress as a culprit in diabetic kidney disease. Life Sci 2023; 322:121661. [PMID: 37028547 DOI: 10.1016/j.lfs.2023.121661] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease (ESRD), and the prevalence of DKD has increased worldwide during recent years. DKD is associated with poor therapeutic outcomes in most patients, but there is limited understanding of its pathogenesis. This review suggests that oxidative stress interacts with many other factors in causing DKD. Highly active mitochondria and NAD(P)H oxidase are major sources of oxidants, and they significantly affect the risk for DKD. Oxidative stress and inflammation may be considered reciprocal causes of DKD, in that each is a cause and an effect of DKD. Reactive oxygen species (ROS) can act as second messengers in various signaling pathways and as regulators of metabolism, activation, proliferation, differentiation, and apoptosis of immune cells. Epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs can modulate oxidative stress. The development of new technologies and identification of new epigenetic mechanisms may provide novel opportunities for the diagnosis and treatment of DKD. Clinical trials demonstrated that novel therapies which reduce oxidative stress can slow the progression of DKD. These therapies include the NRF2 activator bardoxolone methyl, new blood glucose-lowering drugs such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists. Future studies should focus on improving early diagnosis and the development of more effective combination treatments for this multifactorial disease.
Collapse
|
26
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
27
|
Placental Mesenchymal Stem Cells Alleviate Podocyte Injury in Diabetic Kidney Disease by Modulating Mitophagy via the SIRT1-PGC-1alpha-TFAM Pathway. Int J Mol Sci 2023; 24:ijms24054696. [PMID: 36902127 PMCID: PMC10003373 DOI: 10.3390/ijms24054696] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) has become a new strategy for treating diabetic kidney disease (DKD). However, the role of placenta derived mesenchymal stem cells (P-MSCs) in DKD remains unclear. This study aims to investigate the therapeutic application and molecular mechanism of P-MSCs on DKD from the perspective of podocyte injury and PINK1/Parkin-mediated mitophagy at the animal, cellular, and molecular levels. Western blotting, reverse transcription polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to detect the expression of podocyte injury-related markers and mitophagy-related markers, SIRT1, PGC-1α, and TFAM. Knockdown, overexpression, and rescue experiments were performed to verify the underlying mechanism of P-MSCs in DKD. Mitochondrial function was detected by flow cytometry. The structure of autophagosomes and mitochondria were observed by electron microscopy. Furthermore, we constructed a streptozotocin-induced DKD rat model and injected P-MSCs into DKD rats. Results showed that as compared with the control group, exposing podocytes to high-glucose conditions aggravated podocyte injury, represented by a decreased expression of Podocin along with increased expression of Desmin, and inhibited PINK1/Parkin-mediated mitophagy, manifested as a decreased expression of Beclin1, the LC3II/LC3I ratio, Parkin, and PINK1 associated with an increased expression of P62. Importantly, these indicators were reversed by P-MSCs. In addition, P-MSCs protected the structure and function of autophagosomes and mitochondria. P-MSCs increased mitochondrial membrane potential and ATP content and decreased the accumulation of reactive oxygen species. Mechanistically, P-MSCs alleviated podocyte injury and mitophagy inhibition by enhancing the expression of the SIRT1-PGC-1α-TFAM pathway. Finally, we injected P-MSCs into streptozotocin-induced DKD rats. The results revealed that the application of P-MSCs largely reversed the markers related to podocyte injury and mitophagy and significantly increased the expression of SIRT1, PGC-1α, and TFAM compared with the DKD group. In conclusion, P-MSCs ameliorated podocyte injury and PINK1/Parkin-mediated mitophagy inhibition in DKD by activating the SIRT1-PGC-1α-TFAM pathway.
Collapse
|
28
|
Chen HH, Zhang YX, Lv JL, Liu YY, Guo JY, Zhao L, Nan YX, Wu QJ, Zhao YH. Role of sirtuins in metabolic disease-related renal injury. Biomed Pharmacother 2023; 161:114417. [PMID: 36812714 DOI: 10.1016/j.biopha.2023.114417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Poor control of metabolic diseases induces kidney injury, resulting in microalbuminuria, renal insufficiency and, ultimately, chronic kidney disease. The potential pathogenetic mechanisms of renal injury caused by metabolic diseases remain unclear. Tubular cells and podocytes of the kidney show high expression of histone deacetylases known as sirtuins (SIRT1-7). Available evidence has shown that SIRTs participate in pathogenic processes of renal disorders caused by metabolic diseases. The present review addresses the regulatory roles of SIRTs and their implications for the initiation and development of kidney damage due to metabolic diseases. SIRTs are commonly dysregulated in renal disorders induced by metabolic diseases such as hypertensive nephropathy and diabetic nephropathy. This dysregulation is associated with disease progression. Previous literature has also suggested that abnormal expression of SIRTs affects cellular biology, such as oxidative stress, metabolism, inflammation, and apoptosis of renal cells, resulting in the promotion of invasive diseases. This literature reviews the research progress made in understanding the roles of dysregulated SIRTs in the pathogenesis of metabolic disease-related kidney disorders and describes the potential of SIRTs serve as biomarkers for early screening and diagnosis of these diseases and as therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yi-Xiao Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Urology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jia-Le Lv
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Yang Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jing-Yi Guo
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Xin Nan
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Qi-Jun Wu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Hong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
29
|
Karkashadze GA, Namazova-Baranova LS, Yatsik LM, Gordeeva OB, Vishneva EA, Efendieva KE, Kaytukova EV, Sukhanova NV, Sergienko NS, Nesterova JV, Kondratova SE, Fatakhova MT, Pashkov AV, Naumova IV, Zelenkova IV, Gankovskiy VA, Gubanova SG, Leonova EV, Pankova AR, Alexeeva AA, Bushueva DA, Gogberashvili TY, Kratko DS, Sadilloeva SH, Sergeeva NE, Kurakina MA, Konstantinidi TA, Povalyaeva IA, Soloshenko MA, Slipka MI, Altunin VV, Rykunova AI, Salimgareeva TA, Prudnikov PA, Ulkina NA, Firumyantc AI, Shilko NS, Kazanceva JE. Levels of Neurospecific Peptides, Neurotransmitters and Neuroreceptor Markers in the Serum of Children with Various Sensory Disorders, Mild Cognitive Impairments and Other Neuropathology. PEDIATRIC PHARMACOLOGY 2023. [DOI: 10.15690/pf.v19i6.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background. The role of recently discovered neurospecific peptides in the pathogenesis of acute and progressive neurologic disorders, their neuroprotective features, and possibilities to use them as markers for the course and prognosis of certain diseases have been actively studied in recent decades. However, neurospecific peptides are almost not studied in chronic residual diseases. In our study we measured the levels of neurospecific peptides and some other markers to achieve understanding of general neurophysiological trends in congenital and acquired chronic non-progressive brain pathology with reference to the selection of relevant groups — study objects. Objective. The aim of the study is to study patterns of neurospecific peptides, neurotransmitters and neuroreceptor markers distribution in the serum of children with various pathogenetic variants of chronic neuropathology. Methods. The study included children from 3 to 16 years old with different pathologies. The sample was divided into groups by pathology type: no sensory and neurological disorders, congenital sensory deficit due to mutation of genes expressed and not expressed in the brain, early acquired sensory deficit of multifactorial nature, congenital mild and severe organic disorders of central nervous system (CNS) in residual stage without baseline sensory deficit, acquired functional CNS disorders without baseline organic defect and sensory deficit. The following laboratory data (neurophysiological components) was studied: nerve growth factor, brain-derived neurotropic factor, neurotrophin-3, neurotrophin-4, neuregulin-1-beta-1, beta-secretase, sirtuin-1, synaptophysin, neuronal nitric oxide synthase, and anti-NR2 glutamate receptor antibodies. The parameters of cognitive activity, sense of vision, sense of smell, and acoustic sense were also evaluated. Results. The study included 274 participants. Neuropeptides and markers have shown a variable degree and range in the group spectrum of differences from normal levels. The most variable in the examined sample was NO-synthase, as well as levels of both neurotrophins, beta-secretase, and glutamate receptor marker. All visual deficits were associated with increased NO-synthase levels (p < 0.001). Neuroplasticity peptides (beta-secretase, neurotrophin-3 and 4) have been activated in all pathological conditions. Nerve growth factor and brain-derived neurotropic factor were specifically activated in mild organic CNS lesions (mild cognitive impairments), while neuregulin — in congenital genetically determined visual deficits. There was no specific activation of neuropeptides and NO-synthase level tended to decrease in cases of severe CNS lesions. Conclusion. The study results suggest that all types of early visual impairment are associated with increased physiological neuronal activity, and non-organic neurological functional disorders — mainly with increased physiological synaptic activity. General neuroplasticity processes were activated in all cases of visual deficits but more specific. However, more specific and well-studied processes were activated in mild organic CNS lesions, and neuroplasticity processes did not activate adequately in severe organic CNS lesions probably due to the limited neuronal and synaptic resources.
Collapse
|
30
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
- Yu-Peng Han
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Li-Juan Liu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
31
|
Levstek T, Vujkovac B, Cokan Vujkovac A, Trebušak Podkrajšek K. Urinary-derived extracellular vesicles reveal a distinct microRNA signature associated with the development and progression of Fabry nephropathy. Front Med (Lausanne) 2023; 10:1143905. [PMID: 37035314 PMCID: PMC10076752 DOI: 10.3389/fmed.2023.1143905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Early initiation is essential for successful treatment of Fabry disease, but sensitive and noninvasive biomarkers of Fabry nephropathy are lacking. Urinary extracellular vesicles (uEVs) represent a promising source of biomarkers of kidney involvement. Among them, microRNAs (miRNAs) are important post-transcriptional regulators of gene expression that contribute to the development and progression of various kidney diseases. We aimed to identify uEV-derived miRNAs involved in the development and/or progression of Fabry nephropathy. Methods Patients with genetically confirmed Fabry disease and matched control subjects were included. EVs were isolated from the second morning urine by size exclusion chromatography, from which miRNAs were extracted. miRNA urine exosome PCR panels were used to characterize the miRNA signature in a discovery cohort. Individual qPCRs were performed on a validation cohort that included chronological samples. We identified the target genes of dysregulated miRNAs and searched for potential hub genes. Enrichment analyses were performed to identify their potential function. Results The expression of miR-21-5p and miR-222-3p was significantly higher in patients with stable renal function and those with progressive nephropathy compared with the corresponding controls. In addition, the expression of miR-30a-5p, miR-10b-5p, and miR-204-5p was significantly lower in patients with progressive nephropathy, however, in the chronological samples, this was only confirmed for miR-204-5p. Some of the identified hub genes controlled by the dysregulated miRNAs have been associated with kidney impairment in other kidney diseases. Conclusion The miRNA cargo in uEVs changes with the development and progression of Fabry nephropathy and, therefore, represents a potential biomarker that may provide a new option to prevent or attenuate the progression of nephropathy. Furthermore, dysregulated miRNAs were shown to be potentially associated with pathophysiological pathways in the kidney.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojan Vujkovac
- Centre for Fabry Disease, General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | | | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: Katarina Trebušak Podkrajšek,
| |
Collapse
|
32
|
Tozzi R, Campolo F, Baldini E, Venneri MA, Lubrano C, Ulisse S, Gnessi L, Mariani S. Ketogenic Diet Increases Serum and White Adipose Tissue SIRT1 Expression in Mice. Int J Mol Sci 2022; 23:ijms232415860. [PMID: 36555502 PMCID: PMC9785229 DOI: 10.3390/ijms232415860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Overnutrition and its sequelae have become a global concern due to the increasing incidence of obesity and insulin resistance. A ketogenic diet (KD) is widely used as a dietary treatment for metabolic disorders. Sirtuin1 (SIRT1), a metabolic sensor which regulates fat homeostasis, is modulated by dietary interventions. However, the influence of nutritional ketosis on SIRT1 is still debated. We examined the effect of KD on adipose tissue, liver, and serum levels of SIRT1 in mice. Adult C57BL/6J male mice were randomly assigned to two isocaloric dietary groups and fed with either high-fat KD or normal chow (NC) for 4 weeks. Serum SIRT1, beta-hydroxybutyrate (βHB), glucose, and triglyceride levels, as well as SIRT1 expression in visceral (VAT), subcutaneous (SAT), and brown (BAT) adipose tissues, and in the liver, were measured. KD-fed mice showed an increase in serum βHB in parallel with serum SIRT1 (r = 0.732, p = 0.0156), and increased SIRT1 protein expression in SAT and VAT. SIRT1 levels remained unchanged in BAT and in the liver, which developed steatosis. Normal glycemia and triglycerides were observed. Under a KD, serum and white fat phenotypes show higher SIRT1, suggesting that one of the molecular mechanisms underlying a KD's potential benefits on metabolic health involves a synergistic interaction with SIRT1.
Collapse
Affiliation(s)
- Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-6-49970509; Fax: +39-6-4461450
| |
Collapse
|
33
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
36
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
37
|
Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 2022; 37:2181-2195. [PMID: 35616799 DOI: 10.1007/s11011-022-00956-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
About 50% of the diabetic patients worldwide suffer from Diabetic peripheral neuropathy (DPN) which is characterized by chronic pain and loss of sensation, frequent foot ulcerations, and risk for amputation. Numerous factors like hyperglycemia, oxidative stress (OS), impaired glucose signaling, inflammatory responses, neuronal cell death are known to be the various mechanisms underlying DACD and DPN. Development of tolerance, insufficient and inadequate relief and potential toxicity of classical antinociceptives still remains a challenge in the clinical setting. Therefore, there is an emerging need for novel treatments which are both without any potential side effects as well as which focus more on the pathophysiological mechanisms underlying the disease. Also, sirtuins are known to deacetylate Nrf2 and contribute to its action of reducing ROS by generation of anti-oxidant enzymes. Therefore, targeting sirtuins could be a favourable therapeutic strategy to treat diabetic neuropathy by reducing ROS and thereby alleviating OS in DPN. In the present review, we outline the potential use of SIRT1 activators as therapeutic alternatives in treating DPN. We have tried to highlight how sirtuins are interlinked with Nrf2 and NF-κB and put forth how SIRT activators could serve as potential therapy for DPN.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Hasnat Khan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
38
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Lingappa N, Mayrovitz HN. Role of Sirtuins in Diabetes and Age-Related Processes. Cureus 2022; 14:e28774. [PMID: 36225477 PMCID: PMC9531907 DOI: 10.7759/cureus.28774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The practice of intermittent fasting continues to grow as a widely practiced diet trend due to its feasibility and reported high success rate. By practicing intermittent fasting, levels of sirtuin proteins (SIRTs), also known as the longevity protein, rise in the body and bring numerous health benefits. Currently, seven SIRTs have been described in humans in different locations of the cell with a wide variety of corresponding functions including gene transcription, DNA repair, and protection against oxidative damage. SIRT activators, such as resveratrol found in red wine, are also commonly consumed to amplify the health benefits associated with protection against diabetes and age-related disease processes. The purpose of this review is to explore the interaction of intermittent fasting on SIRT levels and how the increase in these proteins impacts age-related disease processes. The understanding of SIRTs is continuously evolving as more interactions and SIRT-specific activators are being revealed. New discoveries are crucial for forming potential therapeutics that delay many common diseases and promote healthy living.
Collapse
|
40
|
Ren C, Bao X, Lu X, Du W, Wang X, Wei J, Li L, Li X, Lin X, Zhang Q, Ma B. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154310. [PMID: 35843189 DOI: 10.1016/j.phymed.2022.154310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is an important cause of end-stage renal disease. Complanatoside A (CA), an active component from Semen Astragali Complanati, has been reported to be a potential candidate for the treatment of kidney diseases. However, the underlying mechanisms and protective effects of CA in DN remain unclear. PURPOSE In this paper, the effects and the mechanism of CA against ameliorating DN were investigated in vivo and in vitro. STUDY DESIGN Here, a high-fat diet/streptozotocin-induced diabetic model and TGF-β1-induced HK-2 cells were used to explore the protective effects and mechanisms of CA on DN in vivo and in vitro. METHODS Major biochemical indexes, Histopathological morphology, and Immunohistochemistry have explored the therapeutic effect of CA on DN. Subsequently, TGF-β1-induced HK-2 cells were utilized to investigate the anti-renal fibrosis effect of CA. Finally, the mechanism of CA against renal fibrosis was studied via western blotting, immunofluorescence, transfection, and molecular docking. RESULTS The results showed that CA attenuated glomerular hypertrophy, collagen matrix deposition, and tubular interstitial fibrosis in diabetic mice. Moreover, the activation of TGF-β1-inducible epithelial-mesenchymal transition (EMT) was hindered by CA treatment in HK-2 cells. Mechanistically, the data suggested that upregulated NOX4 during diabetes and TGF-β1 in HK-2 cells was prominently diminished after CA treatment. Furthermore, CA exposure inhibited NLRP3 inflammasome activation and downstream inflammation gene expression such as IL-18 and IL-1β in vivo and vitro. These findings indicated that CA obstructed the EMT to protect renal tubular epithelial cells against fibrosis via blocking NLRP3 activation, which was associated with inhibiting NOX4. Besides, the markedly raised autophagy levels in the diabetic model characterized by increasing LC3II/LC3I and Beclin1 were reversed after CA treatment, which is also a pivotal mechanism against renal fibrosis. More importantly, specific NOX4 overexpressed in HK-2 cells abolished that CA exposure blocked TGF-β1-induced-EMT, ROS generation, NLRP3, and autophagy activation. Meanwhile, the inhibition of cell migration, ROS generation, autophagy, and renal inflammation after CA treatment was more pronounced in NOX4-deficient HK-2 cells. CONCLUSION Our findings provided evidence that CA might be a potential therapeutic agent for DN by ameliorating NLRP3 inflammasome and autophagy activation via targeting NOX4 inhibition.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wei Du
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaoxuan Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Lin
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
41
|
Yu Y, Li L, Yu W, Guan Z. Fluoride Exposure Suppresses Proliferation and Enhances Endoplasmic Reticulum Stress and Apoptosis Pathways in Hepatocytes by Downregulating Sirtuin-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7380324. [PMID: 36046439 PMCID: PMC9420589 DOI: 10.1155/2022/7380324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury. Method Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in rat serum were also analyzed using ELISA kits. Then, the fluorosis cell model was built, which was also alleviated with NaF, Sirt-1 siRNAs, or endoplasmic reticulum stress (ERS) alleviator (4-PBA). CCK-8 also assessed cell proliferation; RT-qPCR or Western blots detect sirtuin-1 (Sirt-1), protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), and endoplasmic reticulum stress (ERS) and apoptosis-related protein levels in liver tissue. Results Our results uncovered that fluorine exposure could aggravate the pathological damage and fibrosis of rat liver tissues and increase indicators related to liver injury. And fluoride exposure also could downregulate Sirt-1 and upregulate ERS-related proteins (PERK, 78-kD glucose-regulated protein (GRP-78), and activating transcription factor 6 (ATF6)) and apoptosis-related protein (caspase-3 and C/EBP-homologous protein (CHOP)) in rat liver tissues. Besides, we proved that fluoride exposure could suppress proliferation and enhances ERS and apoptotic pathways in AML12 cells by downregulating Sirt-1. Moreover, we revealed that ERS alleviator (4-PBA) could induce proliferation and prevent ERS and apoptosis in fluorine-exposed AML12 cells. Conclusions We suggested that fluorine exposure can induce hepatocyte ERS and apoptosis through downregulation of Sirt-1.
Collapse
Affiliation(s)
- Yanlong Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
42
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
43
|
Role of olmesartan in ameliorating diabetic nephropathy in rats by targeting the AGE/PKC, TLR4/P38-MAPK and SIRT-1 autophagic signaling pathways. Eur J Pharmacol 2022; 928:175117. [PMID: 35752350 DOI: 10.1016/j.ejphar.2022.175117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) is one of the most serious consequences of diabetes and the most common reason for end-stage renal disease. The current study was set out to investigate the ability of olmesartan medoxomil (OM) to treat DN by evaluating the reno-protective effects of this drug on fat/fructose/streptozotocin (F/Fr/STZ)-induced diabetic rat model. This model was induced by feeding rats high F/Fr diet for 7 weeks followed by injection of a single sub-diabetogenic dose of STZ (35mg/kg; i.p). The F/Fr/STZ-induced diabetic rats were orally treated with either OM (10 mg/kg) or pioglitazone (10 mg/kg); as a standard drug daily for four consecutive weeks. F/Fr/STZ-induced diabetic rats propagated inflammatory, oxidative, and fibrotic events. OM was able to oppose the injurious effects of diabetes; it significantly reduced the elevated levels of advanced glycated end products (AGEs) and downregulated PKC gene expression, therefore, indicating its antioxidant capacity evidenced by mitigation in GSH, MDA renal content. Moreover, OM impaired the inflammatory cascade by suppressing the elevated level of renal TLR4 as well as diminished the inflammatory profibrotic cytokine TGF-β1. Additionally, OM was able to turn off the MAPK cascade mediated by an upsurge in renal angiotensin 1-7 content and decrease the level of renal tubular injury marker, KIM-1. Furthermore, OM enhanced the autophagic activity pathway by upregulating of gene expression of SIRT-1. The histopathological examination confirmed these results. Finally, OM protected against type 2 diabetes-related nephropathy complications by altering inflammatory pathways, oxidative, fibrotic, and autophagic processes triggered by renal glucose overload. This study shows that OM has a reno-protective effect against DN in rats by inhibiting the AGE/PKC, TLR4/P38-MAPK, and SIRT-1 autophagic signaling pathways.
Collapse
|
44
|
Zhou X, Zhang Z, Shi H, Liu Q, Chang Y, Feng W, Zhu S, Sun S. Effects of Lycium barbarum glycopeptide on renal and testicular injury induced by di(2-ethylhexyl) phthalate. Cell Stress Chaperones 2022; 27:257-271. [PMID: 35362893 PMCID: PMC9106773 DOI: 10.1007/s12192-022-01266-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common environmental pollutant with renal and reproductive toxicity. Lycium barbarum glycopeptide (LbGp) is the main active component of Lycium barbarum, which can protect the kidney and promote reproduction. Autophagy and apoptosis are the regulatory mechanisms of cell adaptation to external stress. This study investigated whether DEHP and LbGp affect kidney and testis by regulating autophagy and apoptosis. DEHP induced apoptosis in human embryonic kidney-293 (HEK-293) cells and human kidney-2 (HK-2) cells, as well as glomerular enlargement, enhanced renal autophagy and inflammation, decreased testicular germ cells, and enhanced testicular autophagy. LbGp reduced apoptosis in HEK-293 cells and HK-2 cells, reduced glomerular enlargement and renal inflammation, enhanced renal autophagy, increased testicular germ cells, and alleviated testicular autophagy. These results suggested that DEHP induced inflammation to cause kidney injury, mildly enhanced renal autophagy, and also induced excessive autophagy, leading to testicular injury. LbGp reduced inflammation and appropriately enhanced autophagy to alleviate renal injury and also reduced excessive autophagy to alleviate testicular injury. Silent information regulator 1 (SIRT1)/forkhead box O3a (FoxO3a)-mediated autophagy and p38 mitogen-activated protein kinase (p38 MAPK)-mediated inflammation played important roles.
Collapse
Affiliation(s)
- Xianling Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630, Guangdong, China
| | - Zhigang Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Heng Shi
- Department of Nephrology, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630, Guangdong, China
| | - Qiubo Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Yuling Chang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
45
|
Ke JY, Liu ZY, Wang YH, Chen SM, Lin J, Hu F, Wang YF. Gypenosides regulate autophagy through Sirt1 pathway and the anti-inflammatory mechanism of mitochondrial autophagy in systemic lupus erythematosus. Bioengineered 2022; 13:13384-13397. [PMID: 36700474 PMCID: PMC9275881 DOI: 10.1080/21655979.2022.2066749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To study the mechanism of gynostemma pentaphyllum saponins (GpS) regulating mitochondrial autophagy and anti-inflammatory through Sirtuin 1 (Sirt1) pathway in systemic lupus erythematosus (SLE). JURKAT cells were cultured in vitro, RT-PCR and western blotting (WB) were utilized to identify the expression of related-proteins in Sirt1 pathway and global autophagy and mitochondrial autophagy markers in JURKAT before and after GpS treatment induced by ultraviolet B (UVB), and the related-mechanism of GpS regulation of autophagy was analyzed. The SLE model was established to analyze the alleviating effects of GpS on various symptoms of lupus mice. Sirt1/AMPK/mTOR pathway was activated in UVB induced JURKAT cells. After the addition of GpS, WB revealed that the phosphorylation of AMPK decreased, the phosphorylation of mTOR increased, the expression of Sirt1 protein decreased, and the activation of the pathway was inhibited. Moreover, autophagy of JURKAT cells wasinhibited. In order to further verify the role of Sirt1 pathway, we activated Sirt1 expression in cells by constructing lentiviral vectors, and the therapeutic effect of GpS was significantly reduced. These results indicate GpS can exert autophagy regulation by inhibiting the activity of Sirt1 pathway. To treat SLE. GpS can significantly reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice. GpS can regulate autophagy and mitochondrial autophagy through Sirt1 pathway, which may be a potential mechanism for GpS to reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice.
Collapse
Affiliation(s)
- Jin-Yong Ke
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| | - Zhi-Yong Liu
- Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun-Han Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shi-Ming Chen
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Jing Lin
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Fang Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,CONTACT Fang Hu
| | - Yu-Fang Wang
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| |
Collapse
|
46
|
Chen X, Wei G, Li D, Fan Y, Zeng Y, Qian Z, Jia Z, Tang Y, Shi Y, Wu H, Li X. Sirtuin 1 alleviates microglia-induced inflammation by modulating the PGC-1α/Nrf2 pathway after traumatic brain injury in male rats. Brain Res Bull 2022; 185:28-38. [PMID: 35487384 DOI: 10.1016/j.brainresbull.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/27/2022]
Abstract
Microglial activation and the subsequent inflammatory response play important roles in the central nervous system after traumatic brain injury (TBI). Activation of the PGC-1α pathway is responsible for microglial activation after TBI. Our previous study demonstrated that SIRT1 alleviates neuroinflammation-induced apoptosis after TBI, and activation of the PGC-1α/Nrf2 pathway extenuates TBI-induced neuronal apoptosis. However, no study has investigated whether SIRT1 can affect the PGC-1α/Nrf2 pathway to induce microglial excitation and the subsequent neuroinflammatory response. Microglial activation and the levels of pro-inflammatory factors, namely, tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were assessed to evaluate the neuroinflammatory response after TBI. To examine the effects of SIRT1, immunohistochemical staining and western blot analysis were used to observe the nuclear translocation and secretion of PGC-1α, as well as the activation of the PGC-1α/Nrf2 pathway. Treatment with the SIRT1 inhibitor sirtinol promoted microglial activation and pro-inflammatory factor expression (TNF-α, IL-6, and IL-1β) and inhibited PGC-1α and Nrf2 nuclear translocation and secretion after TBI, while treatment with the SIRT1 activator A3 had the opposite effects. The results of this study suggest that microglial activation, the subsequent neuroinflammatory response, and the PGC-1α/Nrf2 pathway play essential roles in secondary injury after TBI. These results indicate that SIRT1 protects neurons after TBI by inhibiting microglial activation and the subsequent inflammatory response, possibly by activating the PGC-1α/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Guan Wei
- Department of Emergency, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Ding Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Youwu Fan
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yile Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Zhengting Qian
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Zhen Jia
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yong Tang
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Heming Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China.
| | - Xiang Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China.
| |
Collapse
|
47
|
Hu M, Ma Q, Liu B, Wang Q, Zhang T, Huang T, Lv Z. Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease. Front Cell Dev Biol 2022; 10:845371. [PMID: 35517509 PMCID: PMC9065414 DOI: 10.3389/fcell.2022.845371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus, with relatively high morbidity and mortality globally but still in short therapeutic options. Over the decades, a large body of data has demonstrated that oxidative stress, inflammatory responses, and hemodynamic disorders might exert critical influence in the initiation and development of DKD, whereas the delicate pathogenesis of DKD remains profoundly elusive. Recently, long non-coding RNAs (lncRNAs), extensively studied in the field of cancer, are attracting increasing attentions on the development of diabetes mellitus and its complications including DKD, diabetic retinopathy, and diabetic cardiomyopathy. In this review, we chiefly focused on abnormal expression and function of lncRNAs in major resident cells (mesangial cell, endothelial cell, podocyte, and tubular epithelial cell) in the kidney, summarized the critical roles of lncRNAs in the pathogenesis of DKD, and elaborated their potential therapeutic significance, in order to advance our knowledge in this field, which might help in future research and clinical treatment for the disease.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Zhimei Lv,
| |
Collapse
|
48
|
Colloca A, Balestrieri A, Anastasio C, Balestrieri ML, D’Onofrio N. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063212. [PMID: 35328633 PMCID: PMC8949044 DOI: 10.3390/ijms23063212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.
Collapse
Affiliation(s)
- Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, U.O.C. Food Control and Food Safety, 80055 Portici, Italy;
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
- Correspondence: ; Tel.: +39-081-566-5865
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| |
Collapse
|
49
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
50
|
Qiu D, Song S, Wang Y, Bian Y, Wu M, Wu H, Shi Y, Duan H. NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J Transl Med 2022; 20:44. [PMID: 35090502 PMCID: PMC8796493 DOI: 10.1186/s12967-021-03197-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the main complications of diabetes, and oxidative stress plays an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In the present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal tubular epithelial cell oxidative stress and apoptosis. Methods In vivo, the kidneys of db/db mice, which are a type 2 diabetes model, were infected with adeno-associated virus to induce NQO1 overexpression. In vitro, human renal tubular epithelial cells (HK-2 cells) were transfected with NQO1 pcDNA3.1(+) and cultured in high glucose (HG). Gene and protein expression was assessed by quantitative real-time PCR, western blotting, immunofluorescence analysis, and immunohistochemical staining. Reactive oxygen species (ROS) were examined by MitoSox red and flow cytometry. TUNEL assays were used to measure apoptosis. Result In vivo, NQO1 overexpression reduced the urinary albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) level in db/db mice. Our results revealed that NQO1 overexpression could significantly increase the ratio of NAD+/NADH and silencing information regulator 1 (Sirt1) expression and block tubular oxidative stress and apoptosis in diabetic kidneys. In vitro, NQO1 overexpression reduced the generation of ROS, NADPH oxidase 1 (Nox1) and Nox4, the Bax/Bcl-2 ratio and the expression of Cleaved Caspase-3 and increased NAD+/NADH levels and Sirt1 expression in HK-2 cells under HG conditions. However, these effects were reversed by the Sirt1 inhibitor EX527. Conclusions All these data suggest that NQO1 has a protective effect against oxidative stress and apoptosis in DN, which may be mediated by the regulation of Sirt1 through increasing intracellular NAD+/NADH levels. Therefore, NQO1 may be a new therapeutic target for DN.
Collapse
Affiliation(s)
- Duojun Qiu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yuhan Wang
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China.,Digestive Department, Tangshan Workers Hospital, Tangshan, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| |
Collapse
|